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ON THE ASYMPTOTIC PROPERTIES OF LEAST-SQUARES
ESTIMATORS IN AUTOREGRESSION

By MARTIN J. CROWDER
Surrey University

Consistency and asymptotic normality of least-squares estimators are dis-
cussed for the linear autoregressive model with explanatory variables. Few
assumptions are made about the error sequence. The case of stochastic explana-
tory variables is also considered.

1. Introduction. The asymptotic theory of least-squares estimators in linear
autoregression at present (e.g., Anderson, 1971) relies on rather restrictive assump-
tions. It is the purpose of this paper to show how very much weaker assumptions
can suffice, thereby extending the applicability of the model. Asymptotic theory is
useful when a large amount of data is available, but in such cases there will often
be considerable heterogeneity within the data giving rise to serious departures from
the usual assumptions. We write the basic model in the form (1.1) below involving
just the mean value of Y,, given the previous history of the process. This representa-
tion is probably the most readily interpretable and the mean is usually a feature of
chief interest. The analysis, proofs of consistency and asymptotic normality of the
estimators, follows from (1.1) alone, apart from various technical provisos. This is
because (1.1) implies that the random errors in (1.2) form a martingale difference
sequence, which is central for the various limit theorems. No particular distribu-
tional assumptions are made and most of the analysis is carried out in terms of
second-moment properties only.

We consider the pth order, univariate, autoregressive scheme with ¢ explanatory
variables:

(1.1) E[Y|%,_,] =B"Y,_, + d"z, t>1,
where BT= By Bp)’ o’ = (ap -, aq)’ YtT—l =Yy, Yt—p)’ th =
(21 * * 5 2,); @ and B are the parameters to be estimated, the z,’s are explanatory
variables, and %,_, is the o-field of events generated by (Y, Yy, - - -, ¥,_,). Let
(12) U =Y, - E[YF,_,].

It is common to assume that the U,’s are independently and identically distributed,
often normally (Anderson, 1971, Chaptetr 5). For such reasons as those outlined
above the statistician will frequently have cause to regard such strong assumptions
as unrealistic and we proceed without them.

The motivation for this work lies in the statistical analysis of certain epidemio-
logical data from an ongoing, large-scale survey among general practitioners in the
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LEAST-SQUARES IN AUTOREGRESSION 133

U.K.; this is described in Crowder and Grob (1975). We wish to apply the results
of the present paper with Y, representing the observed prevalence of a given human
disease in a community at week number ¢, and z, representing various possible
explanatory variables such as weather indices, other related diseases, and environ-
mental factors. In the previous paper a limited analysis was carried out in which ¥,
was reduced to binary form (scoring 1 if Y, exceeds a specified count and 0 if not),
and a certain two-state Markov chain model was used incorporating just three z’s,
all weather variables.

2, Consistency and asymptotic normality of the least-squares estimators. We
suppose that observations (Y,_,,- - -, Yy, - - -, Y,) are available and estimate «
and B by minimising the sum (over ¢t =1, - -, n) of squared residuals. Let
B, = E[Y,] and o? = V[U,] for ¢t > 1; unweighted least-squares is employed be-
cause the nuisance parameters o? are taken to be unknown. The equations for the
least-squares estimators (B, &) are

~ - ;
(2.1) EJt(B) = (EY’Y'_’)’ where J, = (Yt—lYt—l Y,z );

~ T T
2 ),Izl zlYl— 1 zlzl

all summations are over = 1,- - -, n unless otherwise indicated. Let V, =
E[ZY,_,Y_,), L,=3p,_zl,M, = 32,27, G, = M 'LT (assuming M ! exists),
and D, = E[2J,]; also let m, and e, be respectively the smallest eigenvalues of M,
and E, = V, — L,M; 'L7. We will denote by z, the vector norm |z,| = (2,{z,)2)3,
and by g, the Euclidean matrix norm |G,| = C;{G, }fj)%. We use of = |V[Y,]| and
v, = 3! _A¥e?, where A exceeds the largest of the moduli of the roots of the
polynomial x? — B;x?~!' — ... —B

Our main results on the asymptotic properties of the least-squares estimators are
now summarised, all proofs being relegated to later sections.

THEOREM 1. The following conditions are sufficient for consistency of the least-
squares estimators (&, ﬁ).

@ ¢ 2SN T EII 2 s 20 ) — 0 as 1 —> o0 when 6, = €, ¢,/ g2 and m;

(b) ¢, 22z%02 —>0as n— oo when c, = e,, ¢,/g, and m,;

© ¢ (¥, + Croo\z,_,)*} >0asn— o whenc, =e,and e,/ 3g,;

@) either ¢;2Sat(r,_y + (ST, 2} >0 or ¢ Sy (o, +
21 >0 for ¢, = e, and e,/5,, whére ¥} = E[UY) and o, > E[UZF,_,] is a
constant bound for the conditional error variance;

(e) ¢, '=(U? - 0,2)30 asn— oo whenc, =e,ande,/g,;

® A<l

THEOREM 2. Let X, = U(Y]_,, z)x for a given unit vector x, and write s? =
E[SX?], C, = E[SU2J,]. Suppose that the conditions of Theorem 1 hold, and that
for all x

s, 22X 5,1, 572X (|X,| > es,} —,0 Ve >0,
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where I{A} denotes the indicator function of the set A. Then the asymptotic

distribution of (6) is Np+q((g), D,,"C,,D,,").
a
In Theorems 1 and 2 it is implicit that the z,’s are fixed, or that the inference is
conditional on their observed values. The next result aims to drop this restriction,

i.e., to allow {z,} to be a stochastic process and obtain unconditional asymptotic
results for & and B.

THEOREM 3. Let {z,} be a stochastic process independent of { U,} and suppose that
the conditions of Theorems 1 and 2 each hold “in probability”. Then the conclusions of
those theorems are preserved.

The assumption that {z,} is independent of { U,} means that the z’s are so-called
exogeneous variables; they influence {Y,} but not vice-versa.

Three lemmas are given here because they prove useful in checking the condi-
tions of Theorem 1. The first two lemmas provide bounds for e, and g,, mainly
useful as orders of magnitude. The third gives a criterion for the convergence
required in condition (e) in terms of the “long-distance” correlations of { U?}.

LemMA 1. e, > a="22%6? + inf{f"GTM,G,f)} (inf over |f| = 1) for some a > 0,

where M, = M, — nz,z7, %, = n" '3z,

n“n>
LemMA 2. g, < am 'Sz, 2\\'z,_,_,) for some a < o.

LEMMA 3. Let y, = C[U?, U?] be the covariance between U? and U?, and let

1 -
P = Yst/(‘YssYtt)z‘ If lpstl < ¢|.v—t|’ and c, 2(2‘}',,)(1 + 2¢,) >0 as n— oo then
¢, 'S(U}? = 6)) —>,,0.

Finally in this section we give a theorem on consistency of (d, 8) whose premises
are implied by those of Theorem 1. Thus Theorem 4 is more general than Theorem
1, but its conditions, involving matrices, are usually more difficult to check. Let
W, = 2(Y,—y — GJz)z{, W, = Z(Y,_,\Y[_, — E[Y,_,\Y[_|], W;, = 2z,U,, and
w4ﬂ = zYt—lljf'

THEOREM 4. The least-squares estimators (&, B) are consistent if the limits L1 to
L4 below hold. If LS also holds then their asymptotic distribution is normal as in
Theorem 2.

L1: E;'W,, -,0, G.E.'W, -0, E;'GIW,, —.0, GE'GIW] —,0, M, 'W[,
-,0;

L2: E;'W,, —,0, G,E~ 'w,, -,0;

L3: E;'GIw,, -,0, G,ES 1GTw,, -,0, M, 'w,, —,0;

L4: E]'W,, —,0, G E]'W,, -,0;

Y

1 -
L5: C, ZEUI( ;‘ l) ~alNp+ 40, 1, ).

(By ~, we mean “is asymptotically distributed as”.)



LEAST-SQUARES IN AUTOREGRESSION 135

3. Discussion and examples. The very interesting paper of Anderson (1959)
treats the case ¢ = 0, p = 1 and is mainly concerned with unstable processes where
A > 1. The examination is extended to vector Y, and where B has all eigenvectors
greater than 1. The case A < 1 is also discussed but Anderson indicates that his
methods will not work for ¢ > 0.

The asymptotic theory as given by Anderson (1971, pages 188-211) is derived
under fairly narrow conditions: (i) the sequence {62} is assumed constant (o2 = o2
for all ¢) and the U,’s are assumed independent and either identically distributed or
with uniformly bounded moments of order 2 + ¢ (E[|U,|>**] < k for all #); (ii) the
sequence {z,} is assumed uniformly bounded (|z,| <z for all ¢), although it is
mentioned that this may be relaxed to Z{°A‘z, < co; (iii) certain convergence
assumptions are made, amounting to n~'M, > M, n”'L, - L, and n~'Spp’ -
H. The condition (i) seems likely to be violated in practice because circumstances,
in particular factors governing the variation of recorded observations, change over
long periods of time. Likewise, (ii) sometimes cannot be guaranteed, for instance, it
fails for the familiar linear regression form with z, = (1, #)”. Condition (iii) also
fails for z, = (1, )T since the elements of M,, for instance, are not all O(n); even
when M, is O(n) the convergence requires some stability over a long period, and
this may not obtain.

In the derivations given in this paper we have worked in terms of mean-square
convergence for one main reason, being the simplification made possible by the
identity E[U,U,] = 0, s # t. This orthogonality follows immediately from the na-
ture of { U,} as a martingale-differences sequence, i.e. E[U,|%,_,] = 0 a.s., which in
turn is a result solely of the definition (1.2). The much stronger property of
independence has not been called upon. Likewise, homoscedasticity has played no
part, either in a strong sense (E[U?|F,_,] = o) or in a weak sense (E[U?] = o?);
only bounds on the moments of {U,} are needed. The conditions we have
employed, such as E[U?|%,_,] < 0?, a.s., have been chosen as much with regard to
their applicability as to their generality. It can be verified that at various points the
arguments go through under a variety of assumptions.

We give now some examples which fall outside one or more of the conditions (i)
to (iii) above, but which are amenable to the present treatment. For brevity they
are simplified versions of situations which may arise in applications, and we
assume A < 1 throughout.

ExampLE 1. We first outline a situation which is more or less the “standard”
case. That is, z, < z, 0? = O(1), v} < v*, v, = 0(1) for all t, and p,, > O as |s — ¢| >
o0; also assume m, = 0(n), i.e., the z,’s are not in the main confined to a subspace
of dimension less than ¢. Then by Lemma 1 ¢, > aS0? = 0(n), and by Lemma 2
g, < 0(1). Also », = 0(1) for all #. We can now check the conditions of Theorem 1
as follows:

@ ¢ 2SN TSIl 2 ) = ¢ 3ZATI0(n — £) = ¢70(m) > 0 for ¢, =
0(n);
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(®) ¢, 2 z%6? = ¢, 20(n) - 0 for ¢, = O(n);

© ¢ Y», + (2?_0)\’2,,_,)2} = c"10(1)—>0 for ¢, = 0(n);

@ & SYASN Gy, + 2,1} = ¢;20(n) >0 for ¢, = 0(n);
© ¢ 'S(U? - 6 —>,0 for ¢, = 0(n) by Lemma 3.

ExAMPLE 2. The first nonstandard situation which we consider is when 62 — oo,
i.e.,, the mechanism deteriorates and runs out of control eventually. To be specific
take E[U?|F,_,]1=0(:") for 0 <7 < 1; then o? = 0(z"), », = O(:"), and ¢, >
0(n"*') by Lemma 1. Suppose that z, = (1), m, = O(n), so g, < 0(1) by Lemma 2.
Then conditions (a), (b), (c) and (d) of Theorem 1 can be verified as in Example 1;
condition (e) holds if |p,| < ¢,_, and n72@*D(Zy, }1 + Z¢,) >0, which is
achieved, for instance, with 2{°¢, < oo and y,, = 0(z>1*1).

ExaMPLE 3. Suppose that the effect of z, fades with time, then the question
arises as to whether the information about a provided by observing {Y,} dries up
too qulckly for consistent estimation to be possible. For illustration take g = 1, z,
= (t77), o, =0(1) and v, = 0(1). Then m, = S¢~! ~In n, e, > O(n) by Lemma 1,
g, < 0(n2 / In n) by Lemma 2, », = 0(1) and conditions (a) to (d) of Theorem 1 may
be verified as before. The additional assumption n~'(In n)~%Zy,)(1 + =¢,) - 0
suffices for (e), using Lemma 3. On the other hand, if z, were (¢~!) then
m, = 2t~% 4 oo and the conditions of Theorem 1 cannot be met. Since M ! =
(Et‘z)_ +> 0, L1 and L3 of Theorem 4 fail too, and it seems likely that consistent
estimation of a is impossible in this case.

ExAMPLE 4. We now give an illustration of how Theorem 4 can be brought to
the rescue when the conditions of Theorem 1 fail. We take as our model E[ Y,|%,_,]
= BY,_, + a, + a,t, simple linear regression on time with z, = (1, #); also ol =
0(1) and y, = 0(1). It turns out that m, '|W],| > co whereas M; 'W” — 0, the
discrepancy arising from the reduction of matrix limits to scalar ones. Proceeding
as before, we find that e, > aZo? = 0(n), », = 0(1), m, = 0(n) and g, < 0(n?). The
expressions involved in Theorem 1 turn out as follows: (a) is ¢, 20(n%), (b) is

¢, 20(n%), (¢) is ¢, '0(n?) and (d) is ¢ 20(n%). Thus the conditions fail. We can
retrleve those involving e, and g, by more careful calculations, but since this work
depends on formulae to be developed later we just quote the results here: we find

=0(1), and use Lemma 1 to show e, > GTM,G, = 0(n%). Thus only the
conditions involving m, are outstanding and for those we have to attack the
corresponding ones involving M, in Theorem 4, i.e., M, 'W], — 0 and M, 'W,,
—ms0. The verifications of these limits are also given later in the Appendix. We
note that such a discrepancy, as between m, 'W{, and M, 'W”  cannot occur
when the eigenvalues of M,, are of comparable ordcrs for then m, 'M, is positive
definite with eigenvalues lying between 1 and m < oo, so M;'WT =
(m;'™M,) " (m,'WT,) - 0 iff m'WT 0.
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4. Theorem 4: Proof and discussion. A necessary and sufficient condition for
consistency of @ and B would be, from (2.1),

4 2ZYY,_ B
J)! Xy _
(23, ( svo e
(If 2J, were singular (2.1) would have no unique solution anyway.) However, such
t

a condition would be of little practical value, so we have chosen to multiply (2.1)
by D, !, and confine attention to cases where D, !ZJ, — I We have

pP+q
E—l —E- lGT
D—l = n n n ,
? -G,E;' M;!'+G,E;'GT

D_IEJ - En_l(zYt—lYtT—l - G:EZIYIT—I)

T IMy'S YL, - GEJEY, YL, — GlEY] )

E"—I(EY’_IZ’T - GZEZ,Z:T)
lq - GnEn_l(EYt—lth - G:ZZ,Z,T)

-1 2Yth—l — En_l(2 Yth—l - GZE Ytzl)

" b Ytzt Mn_]2 Ytzt - GnEn_](2 Yth—l - sz Y,Z,)
But

2Yt—lYtT—l - szthtT—l = (wzn + Vn) - GszthtT—l
=W,, + (E, + GIL]) - GI=z,)Y]_|
=W,, +E, - GI(2z,Y]_, - 222]G,)
=W,, +E, - GITW[,
and
M; 'Sz Y, - G, = M;'W]
S0

- Ip + E; l(‘VZn - sz{;) En_ lwln
(41) D;'ZJ, = .
M;'W! + G,E; I(Wz,l - GTwT I, - GE; 'w,,
Also
4.2) D—I(EYth—-l) _ D_l( ZY,_ (YL .B+z/a+ Ux))
' "\ =y "\ Sz(YLB+2a+ U)

= D;‘EJ,(B) + D;‘(ZY"‘U’) = D;'EJ,(B)
a 2z,U, a

. E;'W,, — E; 'GIW,,
—GnEn- lw4n + M; lw3n + GnE; lG:wC!n .
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From (4.1) and (4.2) it will be seen that the limits L1 to L4 of Theorem 4 imply that
D, '3J, -1, and D;'C YY"}, 2Yz)" - ,(B", a”)’, and hence that § and &
are consistent.

For L5 of Theorem 4 we first note that a matrix version of a theorem of Cramér

(1946, Section 20.6) may be used to imply that

ﬁ -1 2Yth—l B -1 EYt—IU;‘
(&)~”D" ( 3 gz, )~‘(a)+D" s2,U, |

using L1 to L4 and (4.2). The import of LS is now made clear by noting that

2Yz—1Uz _ EYt—lU; _ 2 _
E[( Sa.U, )]-o, V[( Sa.U, )]—E[EU,J,]—C,,.

An estimate of the parameter covariance matrix is usually required in order to
calculate confidence regions or perform hypothesis tests. These may be based on
asymptotic normality if this estimator is consistent. The obvious estimator for
D, !C,D;! is the sample analogue, V,, = (ZJ,) 'S UXN)ZJ,)"!, and, since
D;'2J, -,1,,, under L1 to L4, V,, ~, D, 'C,D; ' whenever

D, 'S(UA, — E[UA,]) -,0.

This holds, for instance, in the case of strong homoscedasticity, when E[U?|F,_,]
= o7, for then E[U2J,] = ¢’E[J], and the assertion reduces to D;'(ZJ, — D,)
—,0. However, in such special circumstances alternative estimators may be more
convenient. Let V,, = (2J,)~'n~!S U?, then, under L1 to L4 and (e) of Theorem 1,
Vo ~pn'1D,,' 1362 so V,, provides consistent estimation for less computation
whenever

E[D;'SUN] + E[n'2U2] > I;
strong homoscedasticity is one case in which this obtains.
5. Theorems 1 and 2. First we need to develop some basic formulae and this is

facilitated by writing the model in the following matrix form (see Anderson, 1971,
Section 5.3): let

Y T
o e
B, A, U, being respectively p X p,p X g, p X 1. Then (1.1) and (1.2) become
(5.1) Y,=BY,_,+Az, +U,t>1,
(5.2) E[U,I?f,_l] =0.

It follows from (5.1) that
(5.3) Y, =33B(U,_, + Az,_,) + B **lY |, 1<s <y,
(54) po=Z0BAz,_, + BTl 1 <s <y,
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and from (5.2) that

(5.5) E[UUT] =0, E[U, YT] =0, s<t.
Subtract (5.4) from (5.3), postmultiply by Y7_,, and take expectations:
(5:6)

CYo Youi] = E[(Y, = )(Yooy = )] = B=*W[Y, ],  1<s<1
Similarly, using (5.3) and (5.4) with s = 1,
(5.7) ViY,] = ELZLB’( 0,0_, 0 O)(BT)’ + BV[Y,](BT)
= ZiZbo? bbT + BV[Y,](BT), r>1,

where b, is the first column of B’. The eigenvalues of B are the roots of the
polynomial x? — B;x?~!' — ... — B, (see Anderson, 1971, Section 5.3), and all
have moduli less than or equal to A. The elements of B” are then bounded above in
modulus by A" for some b < oo; for convenience take b > 1. It follows that
[B’| < pbA’, and

(5.8) v € pbaZi_\z,_, + pbA'|mo| = pbaS'_\'z,_,, t>0,
where a = |A| = |a|, zy = |po|/@; also
(59 {V[Y.1},l < IV[Y.]l < PS50 ¥a, + pB2AH|V]Y, ]| = pob¥,
and
(5.10) E[|Y,?] = 2020(V[ Y,oi] + w2,) = trace V[Y,] + |p,?
< pb%, + pzbzaz(E',_o}\’z,_,)z.

The ¢ X ¢ matrix M, is symmetric, positive semidefinite and has smallest
eigenvalue m,. Thus

= inf f'M,f = inf Z|f’z|> (inf over unit vectors f),

and m, ., > m,. If m, = 0 there exists f % 0 such that f’z, =0fort=1,---,n
and z;, - - -, z, are linearly dependent. As a result any multiple of f may be added
to a in (1.1) without any detectable change in the model, i.e., a is unidentifiable.
We assume throughout that m, > 0 for some n, and hence for all subsequent n,
justifying the definitions in Section 2 of G, and E,,. In fact we need m, — co, which
means that {z,} must continue indefinitely to probe all g dimensions.

The proof of Theorem 1 is now given; we show that conditions (a) to (f) imply
L1 to L4 of Theorem 4.

PROOF THAT (a) = L1. We have

wln = 2Yr—lth - G:EZ,Z,T = 2Yr—lth - Ln = 2(Yt—l - l-"r—l)th’
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)
E[|W,,] = E[trace(W,,W},)] = trace 3 2,C[Y,_, Y, ]
= 3,z trace V[Y,_,] + 25,_ 2]z, trace(B" V[ Y,_,]).
Hence, using (5.9), and recalling that [{B"} ;| < bA" for 1 < b < oo,
E[IWI,,IZ] < pB°E 2y, | + 2p0°S, 2Tz Y,
<2p°T, 22N T,y = 2p4b32}\‘~l(2'::‘vrzf+lzr+t)'
Now the elements of E; ' are bounded above in modulus by e, so
E[|E;'W, ] < [E7'PE[|W,, ] < pPe; E[[Wy,[*].
Thus the condition
e N (Sl 2,) >0
in (a) of Theorem 1 is sufficient for E; 'W,, —,.0 which implies E; 'W,, —,0 in
L1 of Theorem 4. Likewise, the other conditions in (a) imply the limits in L1.

ProoF THAT (a) To (f) = L2. The approach is based on that of Anderson (1971,
Section 5.5.6). We first seek conditions under which e, 'W,, —,0 since this implies
E,'W,, —,0. From (5.1)

YY" =BY,_ Y+ Az YT + U,Y],
and
BY,_,Y7 = BY,_ (Y ,B” + z]AT + UT),
SO
Y, Y7 - BY,_,Y7_ BT = Az, YT + BY,_;zTA” + U,Y + BY,_,UT
= (AerxT— IBT)+T + Azz[AT + (AZ1U1T)+T + (UszT— IBT)+T + U, U],

using (C),r to denote C + C7, the sum of the matrix and its transpose, for
convenience. Sum over 1 < ¢ < n and subtract expectations:

oy (Vor ~BWaB) = (40 = E[YO]) - (VY] - E[% )
5.11
+ (AWLBT), ;. + (AS2UT) , ; + (BEY,_,UT), , + S(UUT - E[UUT)).

If ¢, > o, as required in (b) for example, e, (YY) — E[Y,Y5]) —,0 (assuming
that Y,YJ has finite expectation), and under (a) e, '(AWT, B7), . —,..0. Also, by (e)

e, |=(UUT — E[UUT])| = ' |2(U? = 67)| =m0
We must further consider
(b") e, '=z,U] -0,
(c) e, (Y, Y] — E[Y,Y]]) >0 in first mean,
(d) e 'Y, ,UT > 0,
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where the labels correspond to those in Theorem 1. Taking (b’) first we have
E[|Z2,U] ] = trace 3, 2[z,E[U, U] ] = Zz}o?,
so (b) is implied by (b). For (¢’) note that from (5.10)
E[IY,¥71] < E[|V,P] < p%, + p%(Z} Az, ),
and so (c) ensures (¢’). For (d’) we calculate
E[|2Y,_,\U[}] = trace 3, ,E[Y,_,UTU,Y]_,]
= trace SE[ U?Y,_,Y[_,] = SE[U2]Y,_*].

The two alternative possibilities considered in (d) work out as follows. First, if
E[U?|F,_,] < 0}, as. then, using (5.10),
E[U2Y,_\P] < oL E[IY,_ '] < pbed{v,_, + X (ZL2iNZ,,,)")

and so (d’) obtains if
en_zzaft{"t—l + (zt’:l rzt—l—r)z} -0.
Second, if the U,’s have finite fourth moments y;' then
E[UAY, ] = E[UPIZ, 3B (U, _, + Az,_,_,) + B'7'Y,[]
= trace E[Er,sBr(Ut—l—r + Azt—l—r)(Ut—l-s + Azt—l—a-)T(BT).y
P2 B(U,_,_, + Az,_,_ )YI(BT) ™' + BV ¥ (BT) ]
< zr,spzbz}‘h‘.s{%zyt—l—rYI—l—s + 2antzot—l—th—l—: + qzazotzzt—l—rzt—l—s}
1 1
+22rP2b2}\’+'+1{'Y¢2'Y¢—1—rE[ IY0|4] ‘+ anIZZt—I—sE[ |Y0|2] : }

1
+p N HIE[ Y, Y5 P]?

Bl

2
< POV{ETN (o, + gez,_ i) + MBIV}
It follows that (d’) holds if
_ s ' 2
€ 22712{2:-1 (Yt—l—r + zt—l—r)} -0

where y, = E [IYOI"]%.
Returning now to (5.11) we have shown that (a) to (¢) imply that

e, '(W,, — BW,,B7) -0 in first mean.

Premultiply this equation by B, postmultiply by (B”), and add the results over
i=1,---,r— 1. Then for each r

e, '(W,, — B'W,,(B7)) -0 in first mean.
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It follows that for each ¢ > 0 there exists N(e) such that
e > E[ en—l|w2n - BrWZn(BT)rI] > E[ en_l|w2n|](l - IBrlz)

for n > N(e). Under (f) A <1 and we can choose r sufficiently large so that
|B"]> < p?A%* < 1 independently of n, whence E[e, !|W,,|] <& for n > N(e) and
e, 'W,, — 0 in first mean.

For the other half of L2 it is sufficient that g e, 'W,, — 0 in first mean, so each
of the conditions above are also required to hold when multiplied by g,.

Proor THAT (b) = L3 AND (d) = L4. These have essentially been covered in the
treatment of (b’) and (d’) above.

PrOOF OF THEOREM 2. We verify that the extra conditions in Theorem 2,
additional to those in Theorem 1, are sufficient for L5 of Theorem 4. Let X, be
defined as in Theorem 2 and S, = 3X,. Since E[X,|¥%,_,]=0 as. S, is a
martingale. Write

st = E[S?] = SE[X?] = SX"E[ U}, ]x = x"C,x.
Various sets of conditions are given in Brown (1971) and Scott (1973) under which
S,/ s, »4N(0, 1). Scott’s set (A), comprising two limit conditions on the process
{X?}, is given in Theorem 2. The first limit is a stability requirement and the
second is a Lindeberg-type condition. It follows by application of the Cramér-
Wold device (1936) that in large samples the distribution of 3(Y”_,, z/)7U, is
approximately normal with mean 0 and covariance matrix C,.

6. Theorem 3: Stochastic explanatory variables. The results so far have been
proved for a fixed sequence {z,}. If {z,} is a stochastic process, and the conditions
of Theorems 1 and 2 hold for all realizations which are likely to occur, it seems
reasonable to expect the results to retain their validity in the wider context. The
basic formulae of Section 5 have to be reinterpreted. All expectations are now
taken conditionally on the z-process, and the working goes through as before
provided we may use such properties as

E[Ul{z}] = 0, E[U,U[{z,} ] = 8,0({z,}) fors < 1.
For instance, (5.4) becomes

"’t({zt}) = E[Ytl{zt}] = 2’ri_-s()BrAzt-r + Bt_s+ll"s—l({zz})°
It is sufficient to make the rather natural assumption that the process {z,} ‘is
independent of {U,}. The limit results L1 and L4 persevere, now conditionally on
{z,}, and we wish to make them unconditional. To take a specific example, we have
shown in Section 5 that

e, A (2 2iv,2l, 12,,,) > 0=p,(e) >0 Ve >0

where p,(¢) = P[|E; 'W,,| > €|{z,}]. Thus if

-2 t—1 —t T
€n 2}\ (2¢=0Vr1r+ lzr+t) —)PO
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then p,(e) —,0. But this implies that the unconditional probability

P[|E;'Wy,| > e] = E[ p,(e)] >0,
by the dominated convergence theorem. Thus if {z,} satisfies the condition “in
probability” the limit result holds unconditionally. A similar argument applies to
each of the results L1 to L4, and so, if the various limits hold in probability, the
least-squares estimators are weakly consistent.

The argument leading to asymptotic normality requires no further modification.
The martingale property, E[X,|%,_,] = 0 a.s., is preserved because

E[Uz|%,_,] =0as.

7. Lemmas 1, 2, and 3.
PrOOF OF LEMMA 1. First note that E[S(Y,_, — Glz)z[] = E[2Y,_z] — L,]
= 0. Therefore
E,=V,— LML= E[SY,_ Y] - G Zzp
T
= E[E(Yr—l - Gz)(Y,_, - GJz,) ]’
so E, is the residual inner product matrix of {Y,_,} after orthogonal projection
onto {z,}. Thus
e, = inf f"E,f = inf SE[|f7(Y,_, — Glz,)I*] (inf over |f| = 1).

Let
Yo, -1 = E[Y,_1|%] = S/%B'Az,_,_, + B'7Y,, : t>2,
Uy o1 =Y,y = Yo, =3BV, =220,U__, t>2,
then
E[Uy,_1|%] = 0a.s., E[Uy Y5 ,-1] =0,
and

E[f"(Y,_, — GIz)P] = E[f"U, ,_,] + E[If"(Yo,.—1 — G7z)I*]-
Now for ¢ > 2,
E[|fTUo,:—1|2] = E[(E‘r;zole”rL,t—l ) ] = alel
where a, = fb,, so
2';_2E[|fTU0’,_1|2] 27-22"00: 1- rar = 2':-2012—1(2"0‘1)
Also
E[|fT(Yo,z-1 - szt)|2] = 2|fTG:(zr - in)|2 + 2E[|fT(Y0’ -1 E[YO,I—I])Iz]s
and
SITGI(z, — z,)]* = "GIM,G,f.
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Thus we have
= inf{ E[|f"(Y, — Glz,)*] + 27,072 ,(2724a?) + TGIM,G, f

+SE[7(Yo, -1 — E[Yo,—1])P]}-

Now
220 1(2r-oa2) > 228 1(2r-oa )
and, setting a(f) = S2ZJa? the proof will be completed by showing that a =
inf a(f) > O (inf over |f| = 1). Let " = (f}, - - - , £). Then ay = f;, a; = f, B, + £,
and generally we find that
a=f , +2bf,1<r<p-1,
where b, is a sum of products of B, - - - , B, of maximum degree s. Suppose that
af) <&>. The |a| <efor0<r<p—1,andso |f)| <eand|fy| <e(l +|B))=
c,¢, say. By induction, if |f,| < c,e fors <,
Lfsal < lal + Ziai|bf] < e+ Zioilblce = c,pp8
say. Hence
11> = =2_, f2 < (1 + =2_,c2).
But |f|? = 1, so ¢? cannot be smaller than (1 + =2_,c?)~, thus

a =infa(f) > (1 + 2,_2c2) > 0.

Proor oF LEMMA 2. This follows immediately from (5.8):

&M, 'Ly| < gm. 2z |u,_,| < pgbam, 'Sz(ZAZ,,_1)-

Lastly we discuss Lemma 3 which involves a stability property of the sequence
{U?}. Such laws of large numbers tend to hold when the sequence possesses a
mixing property, i.e., dependence between terms diminishes with increasing dis-
tance. There are many convergence theorems for such cases, see e.g., Révész (1967,
Section 8.2), Billingsley (1968, Section 20), Iosifescu and Theodorescu (1969,
Section 1.1.3.2). However, the following result does not seem to have been placed
on record previously. It should be more easily appreciated in applied work since
the criterion involves correlations and deals with mean-square convergence, unlike
most of the available theorems.

LEMMA. Constder the sequence {§,} of random variables and let v, = C[&, &),
= Yo/ (YY) Then
IV[2¢] - =V[E]l < (a, + b=V,
where a, = max1<i<n2;-i+1|Pyl’ b, = max1<i<n2;:11|l’y|~
Note. This formula, involving correlations, is an analogue of Theorem 1.1.10

of Iosifescu and Theodorescu (1969) which employs the more restrictive “depen-
dence coefficient.”
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PrROOF. We have
|V[2£t] - 2V[£,]| = 2|2s<t7st| < 2s<tlpst|(7ss + 'Yn)
= 2::}Yss(2’tl-s+l|pstl) + 2 =2Ytt(2s=l|pst|) < a 2" ; S8 + b 2271! < (an + b,,)Ey,,.

COROLLARY. If |py| < ¢,_, and ¢, (1 + )2, — 0 then
¢ '2(& — E[4]) om0
Proor. First
a, < MK G 2)mir1®y—; = MKy 22y = =Zle,  and b, < 201,
Therefore
IV[Z£] — ZV[&]l < 2(2¢)(Zv)s
so
V[Z¢] < (1 +22¢)27,,

and the result follows immediately.

For Lemma 3 the corollary is to be applied with § = U? and many practical
situations will be covered by the following:

(a) o? = 0(1), so that e, > O(n) by Lemma 1;

®) v, = 0(1), so 2, = 0(n);

(© oyl < ¢p5— and ¢, —> 0 as j —> o0, s0 n”'S¢p, —> 0.
Such cases satisfy the condition of Lemma 3.

APPENDIX

We give here an outline of the calculations for Example 4 of Section 2. We have
to justify e, = 0(n’), g, = 0(1), M, 'W], —,0 and M, 'W,, —,0. From (5.4), with
p=1landz =(1,97,

m =2 [al +ay(t = D]+ Blto = B + 75 (1= )

—=—[«1-p8) - B(1-B")]

(1 B)

We can now evaluate 37, 37y, and hence L, = (gg + 27 ', po + 7712 +
1)p,). Then, after some further algebra, G, = M, 'L is found to have both
elements of 0(1), so g, = 0(1). Also

0 0
M, =M, — nz,z’ =
n = Vn T Moty (0 n(nz—l)/12)

and so, by Lemma 1,

e, > GIM,G, = L n(n* — 1){G,) 2 = 0(n?).
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Now

-1 —

n 3n =

0(n~HZU, + 0(n~H)21U,
(O(n AU, + 0(n~3)Zey, )
and
E[(SU)] = S0 = 0(n), E[(StU,)*] = =32 = 0(n?)
so M, 'W,, —, 0. Finally we consider M 'W7, —,0. We have
E[IM,'W].] = trace(M; 'E[WI,W,,|M,"),
and, using similar calculations to those in Section 5 based on (5.6) and 5.7,
0(n) 0(n?
0(n?)  O(n) ) ‘
It can now be verified that M, 'E[W{,W,,IM; ! — 0, whereas m, 2E[|W,, 2] - oo.

E[WLW,] =%, 227l Y, . ¥,_,] = (

Ackaowledgments. I would like to thank the referee for constructive comments
on the first draft of this paper.

Note. Since this paper was accepted I have been shown one by Anderson and
Taylor (1979), shortly to appear, which has some degree of overlap with the
material here. The main differences are that they (i) treat the multivariate case (Y,
a vector in (1.1)), (ii) consider strong consistency but not asymptotic normality of
the least-squares estimate, and (jii) make assumptions of (a) strong homoscedastic-
ity on the error sequence, and (b) comparability of the orders of magnitude of the
eigenvalues of M,,.
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