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SIGNAL EXTRACTION ERROR
IN NONSTATIONARY TIME SERIES

By DAvID A. PIERCE

Federal Reserve Board

It is supposed that an observable time series {x,} is representable as the
sum of a “signal” s, and a “noise” n,, and that it is desired to extract the signal
s, i.e., to obtain an estimate s, of s5,. Corresponding to any such estimate is a
signal extraction error, §, =s, — 5, which for nondeterministic stochastic
processes possesses a nonzero mean square. For the class of homogeneously
nonstationary processes, characterizations of the extraction error process are
given, and it is shown that the mean square of the error does not exist unless the
nonstationary autoregressive operators in the s- and n-processes have distinct
roots. The MSE, autocorrelations and spectrum of the error, when it is
stationary, are illustrated for some special cases, including two stochastic-model
approximations to the Census X-11 seasonal adjustment procedure.

1. Introduction. The resolution of an observed time series into unobserved
components has been a topic of interest in several disciplines for at least a century
(see Nerlove (1967) for a review). Applications include seasonal adjustment of
economic series, estimation of variables subject to measurement error, the forma-
tion of expectations, and signal extraction problems in engineering and other areas.
An appropriately specified and estimated component series is generally more easily
interpreted, being relatively freer from other, perhaps extraneous, influences.
Alternatively, as in the case of seasonal adjustment, a given component series may
itself be regarded as extraneous, its successful extraction facilitating a more
meaningful study of the remainder of the series. Thus it is supposed that the
observable series {x,, —oo < ¢ < oo} is representable in the form
(1.1) x, =5, + n,
where s, is the “signal” and n, the “noise” (equivalent mnemonics, if the context is
appropriate, are that s, is the “seasonal” component of x, and n, the “nonseasonal”
component). The two components are assumed to be mutually independent.

The estimation of the unobserved components s, and n,, given a realization of the
observable series {x,, —o0 <t < o0} (or'a segment of such a realization), is the
goal of signal extraction. (Generally one will want to utilize for this purpose
whatever relevant information that exists, including relationships of s, and n, with
other variables (e.g., Box, Hillmer and Tiao (1976), Granger (1976), Porter (1975),
Wallis (1976)) as well as the obvious relationships between s, or n, and the
observable series {x,}. However, since for many situations such information may
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1304 DAVID A. PIERCE

be unknown, unreliable or disputed, or may be of only marginal value (e.g., Pierce
(1977)), “univariate” approaches such as analyzed here will doubtless remain
important.) For a large class of situations, knowledge of the model or generating
mechanism of the series s, and n, enables a perfect separation of them to be
attained; these component series can be estimated without error. This class in-
cludes regression functions and other deterministic mechanisms. For others, how-
ever, including most situations where the components are stochastic, complete
knowledge of the model does not make possible an exact determination of the
component series even given an infinite realization of the observable series. Any
estimate §, of s, is necessarily inf error by an amount

(1.2) 8,=s,—38="~H —n

with a nonzero mean square.

For stationary time series the estimate §, which minimizes the mean square of the
extraction error §,, and the resulting variance and spectrum of §,, were given by
Kolmogorov (1941) and Wiener (1949) and are also described in Whittle (1963) and
Grether and Nerlove (1970). This estimate, which is the conditional expectation of
s, given the realization {x,}, was extended to nonstationary time series by Cleve-
land and Tiao (1976). However, the properties of the estimation error (1.2) for
nonstationary series, including even the question of whether its mean square is
finite, have evidently not been investigated.

This paper examines the stochastic structure of the error (1.2) induced by signal
extraction procedures for the class of homogeneously nonstationary time series, i.e.,
those whose suitable differences and /or sums are linear, stationary, nondeterminis-
tic processes. In the following section the class of estimation procedures, which
includes all the “optimal” ones later considered, is described, and a general
expression (valid irrespective of whether the series are stationary) for the extraction
error process is given. The general nonstationary model for (1.1) is then set forth.

Section 3 examines the estimation error for optimal signal extraction where both
the future and the past of the observable series are available, and Section 4
considers the cases where only current, recent, or past data are given. In all these
situations it is found that the mean square of the error does not exist unless the
nonstationary autoregressive operators in the s-process and in the n-process have
distinct roots. The MSE, auto-correlations and spectrum of the extraction error,
when they do exist, are illustrated for some special cases.

Section 5 focuses on seasonal adjustment, particularly seasonal adjustment based
on two models for the Census X-11 procedure (Shiskin, Young and Musgrave,
1967), given by Cleveland (1972) and by Cleveland and Tiao (1976). The seasonal
adjustment error spectrum and mean square error are obtained for the first of
these, where 5, and n, have distinct unit-modulus autoregressive roots. The error
process is found to be mildly seasonal, as expected from the theory. Section 6
briefly considers some generalizations of the procedures and model employed.
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2. Error process and component series models. All of the extraction/adjust-
ment procedures considered in this paper consist of estimating the signal /seasonal
s, as a linear combination of {x,},

2.1 §, = Zvyx,_; = v(B)x,
where
(22) v,(B) = Zv;B’

is a polynomial in the lag operator B such that »(z) is absolutely convergent in a
neighborhood of |z| = 1. The limits of summation are deliberately left unspecified
as they vary within the paper. Then

(2.3) A, =x,—§ =[1 - VS(B)]X‘ = »,(B)x,

is the corresponding estimate of n,. This class of procedures includes both the
“optimal” ones discussed in Sections 3 and 4 and others with a rich tradition such
as the Census X-11 program.

It is actually the linear-filter approximation [16], [21] to the “additive” Census
X-11 procedure that is of the form (2.1), as the procedure itself [14] includes
additional features such as adjustments for outliers. Moreover there is also a
“multiplicative” version of the X-11 procedure, which, however, is closely ap-
proximated by applying the additive version to the series’ logarithms and then
exponentiating.

The error process §, = s, — §, can be usefully expressed in terms of the extrac-
tion filters »,(B) and »,(B) and the two component series. Since

§, = v(B)(s, + ny),
we have, from (1.2) and (2.3), the following
PROPOSITION.  For any unobserved-component time series x, = s, + n, and any
estimate $, of the form (2.1) for s,, the estimation error 8, = s, — §, is given by
(24) 8: = Vn(B)St - vS(B)n,.
The two components of 8, are mutually independent if and only if the components of x,
are mutually independent.

The nature of the error §, thus depeﬁds on both the chosen estimation or
extraction procedure »(B) and on the models for s, and n,. Concerning the latter, it
will be assumed that {s,} and {n,} are mutually independent and each represent-
able in the form

(23) A(B)s, = ¢, (B)e,
(2.6) A,(B)n, = 4,(B)n,

where ¢ and 7, are orthogonal white noise sequences with finite variances o2 and
o?; the one-sided polynomials

¥ (2) = = sy‘zj’ ¥, (2) = zgotpnjzj
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are absolutely convergent and nonzero for |z| < 1; and A(B) and A,(B) are
“differencing operators” such that the zeroes of A/(z) and A,(z) are on the unit
circle. Examples of such operators are the ordinary and “seasonal” differencing
operators, 1 — B and 1 — B'? respectively, and the summation operator S,,(B) in
(5.2). It is also assumed that suitable initial conditions (see, e.g., Box and Jenkins
(1970), pages 114—119) are given for s, and n,.

The models (2.5) and (2.6) for s, and n, are known to imply a model for the
observable series x, of the same form,

2.7 A(B)x, = Y(B)a,

so that A(B)x, is a linear, stationary, nondeterministic time series, as are A (B)s,
and A,(B)n,. If all differencing and summing operators are identically unity the
series x,, s, and n, are stationary; if A(z) £ 1 then x,, and at least one of s, and n,,
are nonstationary.

In general, A(z) is the least common multiple of A (z) and A,(z). Let A.(z) denote
the factors common to A (z) and A,(2), and let A¥(z) = A,(2)/A(2), with A*(z)
being similarly defined. Then

(2.8) A(z2) = A (2)A¥(2)A7%(2),

and the stationary observable series is, in terms of its components,
(29) A(B)x, = AY(B)Y,(B)e, + AY(B)Y,(B)m,

or

(2.10) X, =8, + n,,.

The following points are of interest:
(i) s,, and n;, may be noninvertible, but
(ii) since the zeroes of A} and A} are distinct, their sum x,, is invertible if y(z)
and y,(z) are invertible.
(iii) If A.(z) = 1 then s, and n, have no common root of unit modulus. Whether
this is so is important to the behavior of §, in Sections 3 and 4.

3. Estimation error of two-sided procedures. This section examines the error §,
in signal extraction/seasonal adjustment on the basis of a complete realization
{x, —o <t < c0}. In practice this is relevant for the estimation of s, in “histori-
cal” data where a sufficiently large number of observations on either side of the
given s, are available to provide a good approximation to the doubly infinite
situation. The stationary case is first considered, followed by the nonstationary
model of Section 2.

3.1 Observable series stationary. Suppose first that all differencing operators
in (2.5)—(2.7) are unity, so that x, has the representation

(3.1 x, = Y(B)e, + ‘I’n(B)TIx = x[/(B)a,.
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For this model it is shown in Whittle (1963, page 57) that the estimate §, which
minimizes E(87?) is given by (2.1) with

_ @ _ £

32 v(2) = =

(3-2) (2 = O~ T
where, e.g.,

(3.3) £(2) = oy, (2)?

and where the convention
|h(2)* = h(z)h(z"")

is employed. Thus the filter is symmetric, v; = v_,, as expected from the reversibil-
ity of the x-process. The numerator and denominator of (3.2) are the autocovari-
ance generating functions (acgf’s), or spectra at z = e”, of the component and
over-all processes {s,} and {x,}.

Whether »,(z) is given by (3.2) or not, the stationarity of s, and n, implies that the
estimation error §, = 5, — §, is also stationary. From (2.4), §, follows the process

(34) &, = v,(B)Y,(B)e, — v,(B)Y,(B)m,
with acgf /spectrum
(3.5) 55(2) = (D (2) + v (2)y, (2
Specializing to the optimal case (3.2), and letting f(z) = o2|y,(2)], etc.,
_ ) @) D)
(36) Be) = S )+ ) = B
¥ (2) - oyl (2
3.7 = .
¢ o(2)!

The result (3.6) is derived in Whittle (1963, page 58) using a different method; the
present method will be seen to extend directly to the case of nonstationary series.
The error spectrum is simply the ratio of the product and the sum of the
component spectra. The coefficient of z* in (3.6) is the lag-k autocovariance of 8,
the mean square error of the signal extraction is thus the coefficient of z° or
equivalently the integral of fy(e™®) over w.

By factoring f;(z), the error §, can be expressed as y;(B)¢, where (£} is a white
noise sequence and y; is one-sided (see Theorem 2).

3.2 Nonstationary models. Consider now the model (2.5)-(2.7) where x, is
stationary only after application of the operator A(B) 1. Cleveland and Tiao
(1976) have shown that the conditional expectation of s, given {x,, —o0 <s < o0}
is again of the form (2.1), where now, referring to (2.9)-(2.10),

_ oA (@) L ful(2)

(3.8) v(2) 03'4’(2)'2 - - Foea(2) )
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This filter applied to x, gives, when the MSE exists, the minimum MSE estimate of
S,; MOTeover,

(3.9) $ic = A(B)S, = »,(B)x,,

is the minimum MSE estimate of s,,.

The estimate §, of s, is clearly nonstationary whenever s, is nonstationary.
However, the difference s, — §, = §, may or may not be nonstationary in this case.
From (3.8) and (2.9) it follows that
A(B)S, = sy, — §), = v.(B)sy, — v(B)ny,

_ 51N B)Y,(B)I
a;l¥(B)?

_ o183 (B)Y,(B)P
o;l¥(B)|?

Now for 6, to be stationary, it is necessary and sufficient (the latter since §, has no

deterministic components) that the function A(z), corresponding to the noninvert-

ible operator on the left hand side of (3.10), be a factor of AX(z)A¥(z), the

analogous function for the right hand side of (3.10). But this can occur if and only

if A.(z) = 1in (2.8), that is, A, (z) and A,(z) have no common roots. We thus have
proved

(3.10)

A% (B)Y,(B)e,

AY(B)Y,(B)m;.

THEOREM 1.  In the model (2.5)-(2.7), if 5, is the conditional expectation of s, given
{x;, —00 <5 < 0}, 1e., if § = v(B)x, with v(z) given by (3.8), then the estimation
error 8, = s, — §, is stationary (and has finite mean square) if and only if the
difference / summation operators A(B) and A,(B) in the component processes of x,
have no common roots of unit modulus.

COROLLARY. If A(z) denotes the common factors of A,(z) and A(z), then the
process A (B)S, is stationary; and no proper factor of A(B) renders 8, stationary.

In common usage the term “optimal” estimation (signal extraction, seasonal
adjustment) has usually referred to minimum mean square error estimation of s,. If
A.(z) # 1 then §, cannot be a minimum MSE estimator of s, since in this case the
MSE of §, does not exist. Thus the notion of optimality needs to be extended to
cover this case. Note that the estimate §, is well defined if only the conditional
expectation E(s,|{x,}) exists, which is so even when the MSE is infinite. Note also
that if §, = E(s,|{x,}) and if A.(z) is common to A(z) and A,(z), then (see the
corollary above and the discussion following (3.9)) the series

A/(B)S, = »(B)A.(B)x, .
is the minimum MSE estimate of A.(B)s,. These considerations motivate the
following

DEFINITION. By an optimal estimate of s, in the model (2.5)—(2.7) is meant the
conditional expectation of s, given {x,} whether or not the mean square error of
this conditional expectation exists.



SIGNAL EXTRACTION ERROR 1309

Specific results on the structure of §, can be obtained from (3.10), from which it
follows that

oZA$(F)|¢,(B) [, (B)
a2ly(B)

_ GZAX(F)|4(B)A.(B)
oZ|y(B)]

(3.11) A,(B)8, =

&

-
Thus the acgf/spectrum of A (B)§, is

o202 2( G2IA* 2 4 g2A* )
(312) an(Z) — eanI‘Pn(Z)‘Ps(z)l{ 1,| ;Elzjfzn)(li)l + del n(Z)lIJS(Z)I }

_ ()P - gl ()
aZly(2)?

since the bracketed quantity is the spectrum of s,, + n,, or of x,,.

The result (3.12) is important in determining an explicit expression for the
generation of §, in terms of its innovations, say §,, which, as in Section 3.1 for the
stationary case, exists by virtue of the spectral factorization (e.g., Hannan, 1970,
page 129). We summarize this result as

THEOREM 2. The estimation error 8, follows the stochastic process
(3.13) A.(B)6, = ys(B)¢,

where

¥s(2) = ¥n(2)¥:(2) /¥(2),
o} = 0303 /a2,
¢ is white noise and yg(z) is one-sided. The acgf /spectrum of A (B)S, is given by
(3.12).

If §, is stationary then A.(z) = 1 and asterisks are removed in the right hand side
of (3.11), but otherwise the foregoing is unchanged.

Equation (3.12) is formally identical to (3.7) for the stationary case; however,
note that the two factors of the numerator of (3.10) are the spectra of A (B)s, and
A,(B)n,, and the denominator is the spectrum of the sum of A(B)s, and A(B)n,. It
is of interest that the error §, itself in (3.11) is the sum of two generally noninvert-
ible components (containing A¥(F) and A¥(F) respectively), but that the spectrum
of A.(B)é, is strictly positive as the zeroes of A¥(z) and A¥(z) are distinct.
Analogous features are characteristic of A(B)x, itself, as noted following (2.10).

3.3 Illustrations. To illustrate these results, three examples are now consid-
ered, each involving component processes which sum to a first order integrated
moving average process. A more complex example concerning seasonality is
discussed in Section 5.
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ExaMmpPLE 3.1. Suppose the signal s, is the random walk
(3.149) (1 = B)s, = ¢

and the noise n, = n, is white. Then x, follows the first order integrated moving
average

(3.15) (1= B)x,=(1 - 6B)a,.
From (3.8)
. o
T 21— 6BE "

and since A(z) = A(z) = 1 — z and A, (2) = 1, §, is stationary.
From (3.12) and (3.13),

o’a?
(3.16) fi(z) = m
and §, follows the first order autoregressive process
(1-6B)s, =¢&,.

Thus, for this example, the mean square error of the optimal signal extraction
procedure is

020

o2(1 - 0%

EXAMPLE 3.2. A “canonical” decomposition. (The idea of this decomposition,
which is to choose, from among the component model specifications consistent
with the overall model, the one which minimizes the variance of s, is due
independently to Pierce (1976) and to Box, Hillmer and Tiao (1976). The term
“canonical” is taken from Tiao and Hillmer (1977); in Pierce (1976) it is referred to
as the “principle of minimum extraction.”) The models for s, and n, are in general
unidentified given only {x,} and its model. If x, follows the first order IMA process
(3.15), the most general signal-plus-white-noise model for s, and n, consistent with
this is

(3.17) E(8%) =

(1 - B)s, = (1 -~ OB)g, n o=,

and for any © value —1 < © < 4 there exist values of 67 and o? such that s, + n,
yields (3.15). It is shown by Pierce (1976), Box, Hillmer and Tiao (1976), and
Wecker (1976) that the value ® = — 1 minimizes the variance of s, and e,
Choosing this value, y,(B) = 1 + B, and

o[l + BJ?

§ = _e—_—fxt’
o3|l — 6B|

aZo?|l + z|?

ol — 6,

fs(2) =
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and
(3.18) (1 —6B)8, = (1 + B)E,.

The extraction error process is thus noninvertible, reflecting the noninvertibility of
S,

ExampPLE 3.3. Also consistent with the IMA model (3.15) for x, is the sum of
two random walks, or more generally the sum of two IMA’s

(1 — B)s, = (1 — 6,B)g, (1- B)nt =(1- 0,,3)11,.

The case where sufficient a priori information to identify these component models
is available is probably unrealistic; but if the models were known, the optimal
estimate (a la Definition 1) is

. _ o1 — 6Bp

X,
‘o1 -6BP "

with infinite mean square error; in fact from Theorem 2 §, follows the integrated
“ARIMA (1, 1, 2)” process

(1 - B)(l - 0B)81 =(1- onB)(l - BsB)gt'

4. Estimation error of one-sided procedures. In the preceding section it was
assumed that in estimating s,, the future as well as the past of {x,} was available. In
many situations it is necessary to estimate s, given only data on x, up through
s =t — m, for finite m. This includes the problems of signal extraction/seasonal
adjustment based either on current data (m = 0) or on recent data (m < 0), and
the problem of forecasting the signal /seasonal (m > 0). This section examines the
nature of the error introduced by the optimal estimation/extraction of s, given a
semi-infinite realization {x,, s < ¢ — m}. The development parallels Section 3 in
considering in turn the stationary and nonstationary cases and examples.

4.1 Stationary observable series. Referring to equation (3.1), let
(4.1) 5™ = »(™(B)x,

be the minimum MSE estimate of x, given {x,, ¢ <¢ — m}. Then (Whittle, 1963,
pages 66—67).

(42) ym(z) = — 1 [ oIy (2) ]

omp(z) | w(z™h)
= 1 - ¥(2)
where, for any m and h(z) = 2% _h;z/,
[4(@)],, = Z52h
and |A(z)|* = h(z)h(z ") as in Section 3.
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The estimation error is now denoted by
(43) 8 =5, — 5™
and the series 8™ is a stationary stochastic process given by (3.4), with

acgf /spectrum given by (3.5) (with the superscript (m) adjoined to »(B) and
v,(B)). For the MMSE form (4.2), the latter becomes

ol (2)l oaly(2))?
mM(z) = =——=N"(z) + ——= 8"z
) afly(2) @)+ ol (2)? ®
where
Ay (P [
SUM(z) =|| =2
) [ Yz L

and analogously N “(z). Note that the simplification (3.6) for the two-sided case
does not occur here.

4.2 Nonstationary observable series. Returning to the general model (2.5)-
(2.7), the form of (4.2) for nonstationary series is

1 {dfl‘Ps(Z)lz]
aX¥(z)| ¥(z7) |,

(4.4) " (z) =

where, e.g.,

¥(2) = A7 (2)¥(2) = (A*(2)AX(2)A3(2) ™' ¥(2)
is the (nonconvergent) infinite moving average representation of x,. To show that
the formal expression (4.4) is, in fact, a well defined stable filter, it is necessary
(and sufficient) to show that after cancellation of common factors in (4.4) no forms
such as A~!(z) remain. Using (2.8), (4.4) can be rewritten

A%(2) a2 AX(2)| A2 (D)
(45) ¥™(2) = [—}{A:(z)Ac(z)} . }
oi(2) (8*(z )ALz =Y |,

= «k(2)- A(2)-[ m(2)],,

where k(z) and A(z) correspond to the quantities in braces and, simplifying further,

()], =[ %Ai(z ()] (A:(z))“(uz))“]

Yz

(The operator k(z) will be used later to combine with the n,-process in the second
term of the error process as in (2.4)). The present task is to show that the product

(4.6) H(z) = M2)[ m(2)],,

is stable. This will be done by showing that this product differs by a finite amount
in a finite number of terms from the operator

47) h(z) = [M)u(2)],, =[N~ HAE (P ],

m
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which is clearly stable. (For the case m = 0 and A(z) = (1 — z)? an equivalent
result is derived in Whittle (1963 page 93).) The coefficient of z* in (4.7) is

hk = ;-1_0}\!-[.1,,(_], k > m

and 0 for k& < m. This is a finite sum because A(z) is finite (assumed to be of degree
d). Further, in (4.6)

H, = EjD=0>‘jp'k—j’ k>m
where
D = min(d, k — m);
thus
(4.8) h — H, =0, k<m
=E;'1-D+l>‘j""k—j’ m<k<m+d
=0,k>m+d

and thus H(z), and therefore »(™(z), are absolutely convergent.

It remains to investigate whether the mean square error exists, i.e., whether the
estimation error 8™, as defined in (4.3) except that s, and §, are now nonstationary,
is stationary. From (2.4) the second term in 8 is, formally,

(4.9) v{"(B)n, = N(B)[ u(B)],x(B)[ (A3(B)A(B)) ™ 'v,(B)]n.

Now from (4.5), (4.7) and (4.8) the only differencing/summing operator contained
in »)(z) is A¥(z). But »"(B)n, is stationary if and only if [A*(z)A,(2)] is a factor
of »(B), which, therefore, occurs if and only if A (z) is identically 1. Analogous
derivations show this is also necessary and sufficient for stationarity of »™(B)s,,
and thus of §. Otherwise only A (B)8™ is stationary. We thus have proved

THEOREM 3. In the model (2.5)—(2.7), if §™ = v™(B)x, with v""(z) given by
(4.4) or (4.5), the estimation error §™ = s, — §™ is stationary (and has finite mean
square) if and only if the difference / summation operators A(B) and A,(B) in (2.5)
and (2.6) have no common roots. If A (z) is the common factor of A,(z) and A,(2),
then the process A(B)8™ is stationary and no proper factor of A(B) renders 6™
Stationary.

The generalization of the notion of optimality which was given in the definition
of Section 3 can be extended to the present case: §™ = »™)(B)x, denotes the
optimal estimate of s,, given x,, t' < t — m, whether its MSE is infinite or finite. A
caution is in order though, for, unlike the two-sided case, this conditional expecta-
tion is not preserved under filtering, since the conditioning set changes. For
example,

(] - B)E[S,IX‘,, r<t— m] = s'f"') - fST)l
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whereas
E[(1 — B)s|x,t <t—m]=§m — §m7V.

The difference disappears as m — — oo.
The acgf /spectrum of the estimation error §™, when it is stationary, is (omitting
the argument)

| ol [ o280 P |[ Bl ] [
4. m)y _ _&°" el=nTs s|¥'n A_l
19 s { mi
a"ﬂAs‘I’nlz [ Anl‘l’slz A—l ’
lyf? v,

where A(z) = h(z "), which apparently does not simplify as in the two-sided case
(3.12), making the error stochastic process more difficult to characterize. (With
common roots in A, and A,, (4.10) gives the spectrum of A, (B)8{™, provided
asterisks are adjoined to A, and A,). The mean square error of the procedure (of the
estimate §™) can be found by integrating (4.10), evaluated at z = e’, over w. In
practice one would make repeated use of the fast Fourier transform and sum the
computed fi™(e*’) over the Fourier frequencies w;.

4.3 Illustration. It is informative to analyze the estimated signal and its error
for the random-walk-plus-white-noise example in which the signal is estimated with
a one-sided projection. Given the model (3.14)—(3.15), from (4.4) the optimal
estimate of s, given {x,, ' <t — m} is

ffm) — { 052(1 B B) {(1 — B)_l
h(z) ={(1 - Z)(—I:L] =[z5027],,

o2(1 — 6B)| (1 — 6F)
In the notation of Section 4.2, A(z) = 1 — z and
(1-0z7Y

=0, m>0
=30z, m<0
and thus, from (4.8) or directly,

H(z) = (1 —z)[(ll—__;;)-__—l}

Zm

= — >
T— o m>0

o~ "z" 0 ~k,—k
=1_0+2m+10 Z N m<0.
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Thus
(4.11) v"™(z) = o2H(z)/0X(1 — 6z)
022m
= ————3&(82)", >0
(1 — 0) o’ (02) m
e 02" wof gk 1 —m—1gk, —k
(4.12) =40 mzo (02) + 1= 0220 9%z ~",

m<O.

Consider first the problems of estimating s, for the current time period (m = 0) and
of forecasting s,(m > 0). Equation (4.11) shows that for either case one applies an
exponentially weighted moving average to the observed series, beginning with the
most recent data available, but not otherwise depending on the value of m. In other
words, the forecast of s,,,, at origin ¢ is a constant, just as in the case of an
observable random walk; but this constant is the current estimated (rather than
observed) value, a value determined from the entire record {x,, s < ¢}. A further
analogy is that forecasts of both x and s are EWMA’s of present and past x.

For m < 0, that is for estimating s, based on some but not all of the relevant
future of x, the filter as above is applied to the furthest forward observation but
with a declining weight (§ ~™), with the second term in (4.12) playing a stronger
role.

From (4.10) the error 8™ is stationary and posseses acgf /spectrum

-z a-2"1I
[1—02" 1—-6:7"' |

which approaches (3.16), and its integral (3.17), as m —» — o0.

5. Two seasonal adjustment models. Many seasonal adjustment procedures
currently in use, including the widespread Census X-11 program (Shiskin, Young
and Musgrave, 1967), estimate the seasonal component s, of an observed series
(1.1) as a symmetric filter (or moving average) of the form (2.1). The historical
development of such filters has apparently occured without conscious reference to
the class of time series models (2.5)—(2.7) for which they are optimal; but it is
probably more than coincidence that the particular models for which they are
optimal are fairly well approximated by models fitted to many of the economic and
social time series on which they are used.

In particular the linear filter approximation to X-11 (Young, 1968; Wallis, 1974)
has been studied by Cleveland (1972) and Cleveland and Tiao (1976). In each work
a stochastic model of the form (2.5)-(2.7) is presented which implies a seasonal
adjustment filter »,(z) close to that used in X-11. In one of these models (Cleveland,
1972; here referred to as the “C” model) the roots of A,(z) and A,(z) are distinct,
and in the other (Cleveland and Tiao, 1976; the “CT” model) the factor (1 — z) is

2

olo
+ol|l — z

m) z - tn 02
413) f§7(2) o:“_ozlz{e

2.2
n

m



1316 DAVID A. PIERCE

common, so that the two models provide a good illustration of the possible
behavior of the seasonal adjustment error §,. In addition, insofar as observed time
series are generated by models similar to these, a study of 8, can increase our
understanding of the X-11 procedure.

The C and CT models, in common with the X-11 procedure itself, regard the
nonseasonal (n,) component as being the sum of trend (p,) and white noise
irregular (e,) components, so that the observable series is

(5.1) x,=s +p +e,.

Both decompositions imply overall models for x, of the form (2.7) with

(5:2) A(B) = (1 - B)’Sy(B) = (1 - B)(1 - BY)
where S,(B) = S¥2JB‘. Additionally y(B), though of degree 14 in C and 25 in CT,
is numerically similar in each model. Thus the models for the observable series are
very much alike; the essential difference is rather in the nature of the decomposi-
tion.

Consider first the C model. The trend is taken to be of the form

(1 - B)’p, = y,(B)m, = (1 + 26B + 30B> — .32B%n,

so that

(53) (1= B)’n, = 4,(B)m, + (1 — B)’e, = 4,(B)n,
with ¢, (B) of degree 3. The seasonal component is of the form
(5.4) S12(B)s, = Y,(B)e, = (1 + .26 B'%)e,.

Thus A (z) = S)5(z) and A, (z) = (1 — z)% so that their roots are distinct. The
mean square of the error §, for the C model is therefore finite, and moreover S,
obeys the stochastic process (3.11).

The spectrum of §, was computed based on the particular parameter values given
in Cleveland (1972), and it is graphed in Figure 1. Note that the seasonal
adjustment error is itself seasonal (peaks at the seasonal frequencies). This is to be
expected, as the apparent “overadjustment” from an optimal procedure (Grether
and Nerlove, 1970) results in an “underadjustment” in the error of that procedure.
(For stationary component series the spectrum of the nonseasonal series 7, is the
sum of the spectra of the SA series 7, and the error series §,). The mean square
error, relative to that of the differenced series x,,, was found to be

B _ (oasy,
5Gd)

For example, for the log of the money supply M1, (E(6,2))% = .00084, so that
assuming that the overall model for M1 is approximately the one given in
Cleveland (1972), the standard error of seasonally adjusted monthly M, is about
.09% of its current level (or 1.1% for an annualized growth rate).
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F1G. 1. Error spectrum for Cleveland (1972) model of Census X-1I seasonal adjustment procedure.

The CT model differs from the C model in that the seasonal component s, is
assumed to be generated according to

(5.5) (1= B)”s, = y,(B)e,

and thus, since (1 — z'%) = (1 — z)8,,(2), the 5, and n, models have the factor
(1 — z) in common. It follows that the mean square error is infinite, and that the
error itself obeys a model of the form

(1= B)8 =[v.(B)(B)/¥(B) ¢

6. Discussion. One can no more observe the extraction error in an unobserved
components estimation procedure than one can observe the unobserved compo-
nents. It is nevertheless important to know something about the probabilistic
structure of that error, to understand what can be expected of these procedures.
Insofar as many time series in practice are evidently nonstationary but well
approximated by linear stationary models after suitable differencing, the results of
this paper should serve as a useful step in this direction. For example, they can be
used to construct confidence intervals for the signal s,, or for a “true” seasonally
adjusted series. They are only a first step, however, for such reasons as: (i) we
almost never know the true model; (ii) for this and other reasons we almost never
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employ “optimal” procedures; and (iii) the model (2.5)-(2.7) probably does not
encompass some of the important time series occurring. We conclude by discussing
possible generalizations in each of these three directions.

6.1 Knowledge of the model. “Knowing” the true model implies knowing (a)
the model for x and (b) given this, the models for s and n. Exact knowledge of the
model for x is almost never available. However, given a sufficient length T of the
observable time series, several methodologies are available for estimating this
model to a degree of accuracy, roughly speaking, of order n_%, compared with an
accuracy only of order 1 for estimating s,. Thus, while work is clearly needed on
the effects of imperfect estimation of the x-process (perhaps along the lines of
Section 6.2), these effects can probably be neglected, except in short series, in a first
approximation.

A separate problem is the determination of the decomposition of the observable
series x, into the components s, and n,, i.e., the specification of the component
models (2.5) and (2.6), given the overall model (2.7). When, as is usually the case,
the component models are unidentified from (2.7) alone, additional information
such as subject-matter knowledge and the purpose and goals of the decomposition
must be considered. The minimal extraction principle (“canonical decomposition™)
mentioned in connection with Example 2, Section 3.2, is an example of this.
Certainly a strong case can be made, from this paper’s results, for requiring that the
components have distinct unit-modulus autoregressive roots.

6.2 Nonoptimal procedures. Failure to know the true model means that the
signal extraction procedure employed (based on an estimated model) will differ
from the optimal procedure. Moreover, when a large number of time series need to
be seasonally adjusted or otherwise smoothed, it may be infeasible to conduct a
thorough investigation into the stochastic structure of each. The Census X-11
procedure, for example, consists of a very limited set of filters used on a wide
variety of economic data series. In these situations the extraction procedure
employed will deviate from the optimal one, and the resulting mean square error of
§, will be increased by model specification /estimation error.

Perhaps equation (2.4) provides a starting point for analyzing the (mean square)
error in such situations, though even there, while »,(2) and »,(z) will be known
exactly, something must be assumed about s, and n,. But a study of the effects of
plausible alternative assumptions may add to our understanding of the robustness
of the procedure employed. And concerning stationarity of 8§, for nonoptimal
procedures, a generalization of Theorems 1 and 3 is

THEOREM 4. For the estimation error of a (possibly nonoptimal) procedure to be
stationary, it is necessary and sufficient that in equation (2.4) A(z) be a factor of v,(2)
and A,(z) be a factor of v(z). In this case the acgf/spectrum of §, is given by

v,(2) v(2)
A(2) 4,(2)

2 2

¥a(2)| -

(6.1) fo(z) = o} ¥(2)

2
n
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6.3 Other models. In Section 1 reasons were given for concentrating on
expectations given {x,} only; however, provided that viable specifications exist, the
case where x,, s, and n, are vectors should be amenable to treatment along the lines
of this paper.

Another extension is to allow for deterministic effects in the model so that

X = (slr + nlt) + (s2t + n2t)
=D, + S

is the sum of a deterministic component D, and a stochastic component S,. This
model was treated by Pierce (1976) in the context of seasonal adjustment. If the
model (6.2) is known, all the results of this paper extend to x, and are identical to
those obtaining for S,. However, the more complex the model the more difficult it
is to elucidate and the larger the estimation/specification error is likely to be
(entering into both D, and S§,) so that this effect may be harder to ignore for
moderate-length series.
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related to those of the Federal Reserve System.
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