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ADMISSIBLE DECISION RULES FOR THE COMPOUND
DECISION
PROBLEM: THE TWO-ACTION TWO-STATE CASE

By JaMEs INGLIS
University of Rochester

For the two-action two-state compound decision problem, a class of
decision rules is found that are both asymptotically optimal and admissible at
each stage n. These rules are Bayes rules with respect to appropriate exchange-
able prior distributions.

1. Introduction. Consider simultaneously » decision problems with identical
structure: x the sample space, 2 the parameter space indexing a family of
probability distributions {P,, § € 2} over x, A the action space, and L(a, ) the
loss function defined on 4 X .

If0, = (6,,- - -, 8,) is a set of parameter values, where 0, is the parameter value

in the ith problem, and a, = (a,,- - -, a,) is a corresponding set of actions, the
overall loss is defined to be the average loss

L(a,, 8,) = (1/n)2}.,L(a; 0,).
Let ¢,(x,) be a (nonrandomized) compound decision rule specifying action y(x,)
for the ith component problem when x, = (x;, x5,* * - , X,) is observed, where
x; € x. Then

Ry, 0,) = (1/m)Z7 . R(Y;, 6) = (1/ )2}, Eg L(Yi(x,), 6).

The rule y,,(-) is called simple if Y,(x,) = Y;(x,) and simple symmetric if, in addition,
¥, (x;) = Y(x;). If §,(+) is simple symmetric, then
(l'l) R(‘l’m on) = (l/n)z’:-lR(‘!/’ oi)’

which is also the Bayes risk of the decision rule  in the single component case with
respect to the prior that puts probability 1/n at each of the values 8,, - - - , 8,. This
empirical probability density function will be called 4,. For a prior density function
g on Q, R(g) denotes the risk of the Bayes rule with respect to g. If 4, were known
and ¥, were required to be a simple symmetric rule, (1.1) would have minimum
value R(h,).

Now consider an infinite sequence of such decision problems with an infinite
sequence of parameter values 0.

DEFINITION. A sequence of decision rules, {y,}r.,, is called asymptotically
optimal (hereafter abbreviated AO) if R(Y,, 8,) — R(h,) — O uniformly in 6. That
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1128 JAMES INGLIS

is, given € > 0, there exists N(¢) such that for all n > N(e), |R¥,, 0,) — R(h,)| <&,
and the choice of N does not depend on 0.

Repeatedly assertions will be made that limits are approached ‘“uniformly in
0...” As above, this will mean that the choice of N, or §, etc., does not depend on
0.

(Note: there is some variation in the notation and terminology for the compound
decision problem. For more complete discussions, see Copas [1969] or Oaten
[1972].)

Most compound decision rules that have been proposed were developed mainly
on consideration of the AO criterion. For example, Robbins [1951] mentioned that
the rule he proposed as AO is not admissible. He mentioned a possible competitor
that is admissible, but stated that its risk function “seems difficult to compute.”
Hannan and Robbins [1955] mentioned that the rules they found in the solution to
the two-action two-state problem are clearly not admissible. Samuel [1961, 1963]
mentioned one admissible solution for the two-action two-state problem but gave
an incomplete proof of the AO criterion. In a later paper [1967], Samuel gave a
proof of asymptotic optimality for an admissible rule for a specific two-action
two-state case, the uniform (0, 8,) vs. uniform (0, §,). Copas [1970] also mentioned
the question of admissibility briefly.

In this paper admissible Bayes rules with respect to suifably defined exchange-
able priors will be defined. The proof of the AO criterion will involve a modifica-
tion of techniques developed by Berk [1966].

2. Preliminaries. Here £ = {0, 1}. P, and P, are known probability distribu-
tion functions (P, # P;) with associated probability measures p, and p,. Consider
their associated probability density functions fy(x) and fi(x) with respect to
A = p, + p,. Without loss of generality, assume f(x) > 0 for all x in x, i = 1, 2.
Also assume P,, P, nonatomic and

(2.1) J,fi(x)|log f(x)| dA(x) < o0 for i,j=1,2.

Assume 0 — 1 loss; ie, 4 ={0,1} and L(0,0)= L(1,1)=0 and L(1,0) =
L(0, 1) = 1. (Modifications to what follows are straightforward for the case L(0, 1)
= g and L(1, 0) = b).

In the single component case, if ¢ is a decision rule, then
(22) R(¥, 0) = (1 = 20)E(Y(x)|0) + 6.
If there is a prior distribution on & with P(§ = 1) = =, then a Bayes rule, ,,, with
respect to that prior is
(23) L(x)=1 if E@|x) >3

=0 otherwise,

where E(8|x) = 7f,(x){nf,(x) + (1 — m)fy(x)} ~". This rule has Bayes risk R(¢,, 7)
= R(w).
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In the compound decision (multicomponent) case, 8, is an infinite sequence of
0’s and I's. Let r be the number of I's in 0,, the first n terms of 0. (The
dependence of r on # is suppressed.) For 8,, h, puts probability mass 7/n on 1. If r
is known, a best simple symmetric rule is

Q4 wx) =1 i (r/mAC{(r/mi(x) + (1= r/mfyx)} " >4
=0 otherwise.

This is just (2.3) with 7 replaced by r/n. The best simple symmetric decision rule,
¥, then, has risk R(r/n), and this is the criterion with which compound decision
rules are compared. In addressing this problem, Hannan and Robbins [1955]
suggested estimating r/n from x,, and then using a Bayes rule with respect to that
estimate in each component problem. They proved the following theorem (Theo-
rem 4, page 46, Hannan and Robbins [1955]), presented here in slightly different
notation.

THEOREM 1. If 0 < p,(x,) < 1, and |p,(x,) — (r/n)| =0 a.e. [0,] uniformly in
0., then Y, , (the rule described above) is AO.

Hannan and Robbins [1955] proposed estimators of r/n that satisfy the theorem;
they are averages of bounded unbiased estimators of the 6,. (Note: the bounded-
ness is not necessary. Appendix A, Inglis [1973] applied to this case, shows that
only the unbiasedness is required.)

A Bayes estimator for 8, will be developed. The prior density for each 0, will be
exchangeable. Here there is a slight notational difficulty to be overcome. Later the
properties of the Bayes estimator of @, will be examined with respect to the true,
but unknown, 0,. To differentiate between the real 8, and the ones in the Bayes
model, call the parameter values in the model y,. Then consider the following
prior: P(y; =1)= g =1 — P(y, = 0), where g is a random variable taking values
in [0, 1] according to a probability measure p, which has an absolutely continuous
probability density function greater than zero for all g in (0, 1).

Denote expectation for this Bayes prior model by E’. Straightforward calculation
using (2.2) yields a Bayes rule with ith component

(2’5) ‘Ili(xn) =1 if E,(yilxn) >%

- =0 otherwise.
The expression E’(y,;|x,) can be rewritten

E/(yilxn) =
Fi(x)fo81 i 8fi(%) + (1 — 8)fo(x))) du(g)

LD S8 8/1(%) + (1 = &)folx)) du(g)
+ £ 161 — &I 8fi(x) + (1 — 8)fo(x))) du(g)

(2.6)

Let a superscript (i) on a vector signify that vector with the ith element deleted.
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The right hand side of (2.6) can be rewritten as

H()E'(g|x)
HGDE(8xP) + folx)(1 — E'(glx))
where
168lLi(g fi(x) + (1 — g)fo(x)) du(g)

’ )) = ¢
@7 (&) = i (ehe) + (= o) d(s)

The Bayes rule y,, then, is as follows: for each component problem use the other
n — 1 observations to estimate g (by E’(g|x?)) and then use the single component
Bayes rule (2.3) with respect to that estimated g. From the conditions on u stated at
the beginning of this section, for each n this exchangeable prior for y,, puts positive
probability on every possible y,, and so ¥, is admissible.

3. Establishing asymptotic optimality. The estimates of g, E'(g[x?), are always
in the unit interval. By a generalization of Theorem 1, if max;,|E’(g|x?) — (r/n)|
—0 a.e. [0,.] uniformly in 0, then the above Bayes rule ¢, will be AO. (Note that
the above statement involves the two probability structures. The conditional
expectation E’(-| -) is for the Bayes model with prior density. The convergence,
however, is with respect to the true compound decision structure.)

The method of proof is to first establish that |E’(g|x,) — (r/n)| >0 a.e. [0,]
uniformly in 0. Then established results about the behavior of certain maximum
partial sums with respect to the strong law of large numbers will apply to verify
that max;,|E’(g|x?) — (r/n)| - 0 a.e. [0,] uniformly in 0.

Refer to (2.7), delete the superscript (i), and consider the full expression for
E’(g|x,) and the associated posterior probability measure pu,(g) for g. For C, a
measurable subset of [0, 1],

Jellia (8fi(x) + (1 — 8)fy(x)) du(g) .
Sl (gfi(x) + (1 — 8)fo(x)) du(g)

(3-2) Jc du,(8) =

Consider the behavior of this posterior probability distribution. What follows is a
modification in two directions of an approach used by Berk [1966]: (i) to indepen-
dent, nonidentically distributed random variables; (ii) to uniformity over all 0
sequences.

Let w,(g) = (1/n)27., log(gfi(x;) + (1 — 8)fy(x), for g in [0, 1]. Then w,() is
a random variable defined on x, taking values in the separable Banach space,
C[0, 1] with the sup norm. The distribution of w,(-) depends, of course, on 8,, but
that dependence is not explicit in' the notation. Let v,(g) = sE,(log(gf(x) +
(1 = &)fo(¥)) + (1 — 5)Eolog(gfi(x) + (1 — g)fe(x))) for all 5, g in [0, 1], where E;
means expectation with respect to the corresponding f. Assumption (2.1) guaran-
tees that v (g) always exists.
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Lemma 1. C

(i) For fixed s € [0, 1], v,(-) is in C[0, 1].

(i) Eq (Wa(-)) = 0,/s(*), With expectation here being the Bochner integral in the
separable Banach space C[0, 1]. (Equivalent to the statement Eq (W,(8)) = v,/,(8)
Jor all g €10, 1].)

(iii) For each s € [0, 1], v,(8) < v,(s), with equality only when g = s.

(iv) The function v/(s) is in C[0, 1] and is bounded away from — 0.

ProOF. The lemma is a straightforward consequence of the definitions. See
page 13, Inglis [1973] for details.

If u(g) is a function in C[0, 1] and B a measurable subset of [0, 1], then define
B||u||, as the L” norm of u over B; ie.,

Bllull, =[/slu(g)l" du(g)]"".

The sup norm over B is B||u||, = sup,c|u(g)|. If B =[0, 1], vsimply write ||u/|,
and ||ul|,,, respectively. Given & > 0 and g €0, 1], let Uy(g) = {g’ : &' €[0, 1]
and v,(g") > v,(g) — 6}

LEMMA 2.

(1) The element g € Uy(g).

(i) The set {g} = Ns~oUs(8)-

(iii) For fixed 8 > 0, p(Uy(g)) is a continuous function of g.

(iv) For € > 0, there exists 8 > 0 such that g' € Uy(g) implies g — gl <e
uniformly in g.

PrOOF. Part (i) holds because v,(g’) is a concave function of g’. (Establishing
the concavity is straightforward.) Thus v,(g’) is increasing on the interval [0, g] and
decreasing on the interval [g, 1]. (ii) is a consequence of Lemma 1 (iii). From (i),
Uy(g) is an interval with upper and lower endpoints e;(g) and es(g). The upper
endpoint e¥(g) satisfies two conditions: (i) e;(g) > g and (ii) v,(es'( 9) =
max(v,(8) — §, infy 5, {( g)}). The lower endpoint el(g) satisfies two similar
conditions. (Note: The conditions are a bit complicated because, for g close to 1
(or 0), Us(g) will include 1 (or 0) and thus be half-open.) Because of the continuity
of v,(g) in g for each s and the continuity of v,(s) (Lemma 1 (i) and (iv)), it is easy
to see that ¢j(g) and ej( g) are continuous functions of g. Because of the absolute
continuity of p, p(Us(g)) = p{[0, &'(2)} — r{[0, el(g))}, and each of the terms on
the right is continuous in g. Therefore (iii) holds. The function e5(g) — g is also
continuous in g. For each g, it is monotone decreasing in & to zero by (iii) above.
Because a monotone decreasing sequence of continuous functions, converging
pointwise to a continuous function on a compact set, converges uniformly; for
e > 0, there exists 8(x) such that, for g’ > g, v,(g) — 0v,(g") < &(u) implies g’ — g
< e54,(8) — & < ¢ uniformly in g. An analogous chain of reasoning shows there
exists a 8(/) such that for g’ — g, v,(8) — v,(8) <8() implies g — g’ <g —
es’(,)( g) < & uniformly in g. Now let 8 = min(8(x), 6(/)) and (iv) is proved.
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Hereafter v, ,(-) is written as v,(:). In this notation Lemma 1 (ii) becomes
Ey (w,(-)) = v,(*) and Lemma 1 (iii) implies Supy ;< 10,(8) = 0,(r/n).

THEOREM 2. Fix 8 > 0. Consider the sequence of intervals Us(r/n), henceforth
simply called Uy(n). (Note that r/n € Ug(n) for all n.) Then p,(Us(n)) —> 1 a.e. [0,]
uniformly in 0.

Proor. Referring to (3.2), consider the ratio
m(Us(m) _ Sugenlli=i(8hitx) + (1 — 2)fo(x7)) dp(8)
1, (Us(n)) fu.,d(n)m-l(gfl(xx) +(1- 8)fo(x;)) du(g) ’

where U° means the complement of U. If this ratio converges to zero in an
appropriate manner, the theorem will hold. The integrand for the numerator and
denominator can be rewritten as

[exp{(1/n)=]-log(&fi(x) + (1 — &)fo(x))}]" =[exp{w,}]".

The nth roots of the integrals are L" norms over Uy(n) and Us(n). So (3.3) can be
expressed as

(3.3)

(34) p(Us(n)) [ Us(n)|lexp w,||, ]".

1(Us(n)) | Us(n)llexp w, |,

Consider the denominator in the brackets first. Note that

Us(”)”exP wn”n - Us(”)"exP vn”oo = (Us(”)”exP Wn”n - UG(n)”exp Un”n)
(3.5)
+ (Us(n)llexp v,ll,, = Us(n)llexp v,l0)-
Several lemmas are needed.

LEMMA 3. Suppose U,eo{{a,(9)}n=1} and U ,col{{b.($)}7-1} are two sets of
sequences of elements belonging to an L™ space which satisfy (i) ||a,() — b,($)|l —
0 uniformly in ¢ as n — oo, and (i) sup,, ,||a,($)ll, < © or sup,, ,116,(9)ll o < 00.
(Note that (i) and either one of the boundedness conditions implies the other.) Then

llexp{a,(¢)} — exp{b,(®)}|l., = O uniformly in ¢.

PrOOF. Exp(-) is a uniformly continuous function on any bounded subset of
the real line. Hence if C is a set of uniformly bounded elements of the L™ space,
for any € > 0, there exists 8§ > 0 such that ¢, ¢, € C and |¢; — ¢,||,, <& imply
llexp ¢; — exp ¢;||,, < & Assumption (ii) shows that U, ,{a,(9), b,($)} is a set of
uniformly bounded elements. Assumption (i) then shows that for the above § there
exists N such that for all n > N and for all ¢ in @, ||a,(¢) — b,(®)||,, <. Then for
all n > N, ||lexp a,(¢) — exp b,(¢)||, <& and the lemma is proved.

LeMMa 4. Us(n)|lexp w,|l, — Us(n)llexp v,||, — O a.e. [0,,] uniformly in @,
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PrOOF. Note that
(3'6) IUS(n)”exp wn"n - US(”)”exp vn“nl < Us(”)"exP W, — €Xp On”n
< Us(n)llexp w, — exp v,]l,, < [lexp W, — €Xp 0, |-
First consider ||w, — v,||,. By Lemma 1 (ii) v, = E(w,) so set
Z(g) = log(gfi(x) + (1 — g)fp(x) — EQ(IOg(gfl(xi) + (1 = &)fo(x)))
Z,(+) is a random variable in C[0, 1]. Then w, — v, = (1/n)2}_,Z,. E(Z,) = 0 (the
zero function), and (2.1) implies that E(||Z,||) < oo for all i. Then Theorem 2,
Appendix A, Inglis [1973], a uniform strong law of large numbers on separable
Banach spaces, applies; and ||w, — v,|, —0 a.e. [0,] uniformly in 0_. Now
applying Lemma 3 to ||w, — v,]||,, completes the proof.

LeMMA 5. Us(n)||exp v,||, — Us(n)|lexp v,||., = O uniformly in @,. (Note that
this lemma does not involve probabilities.)

PrOOF. A straightforward generalization of a standard proof on the conver-
gence of L” norms to L* norms; e.g. page 91, Taylor [1958]. See page 19, Inglis
[1973] for details.

Combining (3.5) and Lemmas 4 and 5 establishes that

(3.7)  Us(n)llexp w,|l, — Us(n)llexp v,l, = O a.e. [0, ] uniformly in @,
Next consider the numerator within the brackets of (3.4), which can be written as
Us(n)|lexp w,||,,. The same argument as in Lemma 4 yields
(3.8)  Us(n)llexp w,|l, — Us(n)llexp v, , — 0 a.e. [0, ] uniformly in 0.
On Uj(n), by definition, v,(g) < v,(r/n) — 8. In addition, Ug(n)|lexp v,||, <
Us(n)|lexp v,]|, for all n, so
(39) Us(n)llexp v,ll, < exp{v,(r/n) — 8}.
Combining (3.8) and (3.9) establishes that
(3.10) limsup, Us(n)lexp w,||, < exp{v,(r/n) — 8} a.e. [0,,] uniformly in @,.

Now refer to (3.4). Combine (3.7) and (3.10) and note that Lemma 1 (iv) ensures
that exp{v,(r/n)} is bounded away from zero. Then it follows that

, Us(m)llexp w,ll, _ exp{u,(r/n) — 8}
h .
PG lexp wl, " exp(o,(r/m)
= exp{ — 4} a.e. [0, ] uniformly in 0.

Therefore, from (3.4),
. tn(Us (1)) : .
3.11) limsup,————= < exp{—nd} —>0a.e. [0, | uniformly in 0 _.
G0 w(Uy(m) < P70} = 0ae (0]
For any series {a,}7.,, 0<a, <1 for all n, lim, (1 —a,)/a, =0 implies
lim, , a, = 1. Then (3.11) implies u,(Us(n)) > 1 a.e. [0,] uniformly in 0, and

Theorem 2 is proved.
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THEOREM 3.  With the conditions as previously prescribed for p. and the assumption
that f(x) and f)(x) satisfy (2.1), |E'(g|x,) — (r/n)| = 0 a.e. [0,.] uniformly in €.

Proor. Note that
E'(glx,) = [u,8a(8) + [ ysm8aa( ).
Then
|E"(g]%,) = (/)| < |f vym8ita(8) — (r/ )| + |f yeemgdna ().

For any & > 0, from Lemma 2 (iv) there exists 8 so that |g — r/n| <e for all
g € Us(n). Hence

|E(glx,) = r/n| < [ymlg = r/nl du,(8) + [y &l ditn(8)

< en,(Us(n)) + p(Us(n)) > e
a.e. [0,] uniformly in 6, by Theorem 2. The theorem is proved.

THEOREM 4. With the conditions as described in Theorem 3, max; ,|E'(gx¥) —
(r/n)| - 0 ae. [0,] uniformly in 0,.

SKETCH OF THE PROOF. It is a modification of the material leading up to
Theorem 3. The desired result will follow if max, ., u(Us(n))/pP(Us(n)) = 0 a.e.
[0,,] uniformly in 8, where the superscript (i) indicates, as before, that the ith
observation is deleted. (cf. (3.3)). The previously stated arguments holds with
straightforward changes. The crucial step is verifying that max;,[|[w® — v,]|,, — 0
a.e. [0,] uniformly in 0 for modifying Lemma 4. This result is a consequence of
the Banach space version of the following easily verified fact (equivalent to the
SLLN) for i.i.d. real random variables with mean p: max,.<,,(S,f‘) /(n — 1)) > pae.

THEOREM 5. ), with y(x,) defined by (2.5) for each i is admissible at each stage n
and is AO.

Proor. That ¢, is admissible at each stage n is implied by its definition.
Combining Theorem 4 with the generalized Theorem 1 establishes the proof.

4. Some remarks. (1) In seeking admissible AO rules, Robbins [1951] and
Samuel [1963, 1967] also developed Bayes rules with respect to a certain prior
distribution. (See the introduction above.) The prior they used was the following:
put prior probability 1/ [(n + 1)( Z)] on each 0,, where k is the number of 1’s in

0,. In the notation of this paper, this’is the case when the prior p for g is uniform
over [0, 1]. Theorem 5 proves that this admissible (at each stage ») rule is indeed
AO for f, and f, satisfying (2.1). Thus the rules Robbins and Samuel proposed are
indeed AO and admissible (at each stage n). And in addition there is an entire class
of admissible (at each stage n) AO decision rules; one for each possible prior p on
©, 1).

(2) Huang [1972] considered the original problem investigated by Robbins [1951]
where P, = Normal (—1, 1) and P, = Normal (1, 1). Using Robbins’ notation,
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Huang demonstrated that, for n = 2, the “average of unbiased estimators” rule that
Robbins suggested as AO was not dominated by the admissible rule Robbins
mentioned (see Remark 1 above) as a possible better one.

Huang considered the following symmetric priors on ©2 For ; < A <3,

P,{0,} =Afor@,=(1,1),(—1,1)
= (1) — Afor6, = (1, 1), (—1, 1).

When A =1, the result is Robbins’ prior. Huang added, however, that { P,[A" < A
< A"} for some X', A” with 3 <X < A” <3 is a set of priors on @, for which the
corresponding (Bayes) admissible rules will dominate the “average of unbiased
estimators” rule. It is easy to see that for any A € (3, 3), there exists a p that yields
a prior on y, equal to p,. Thus for this special case and*sample size, the class of
admissible AO rules does contain rules that dominate the usual one.

(3) Gilliland, et al., [1974] have also considered this two-action two-state com-
pound decision problem and in several cases have some bounds on the rates of

convergence of R(Y{,, ¥,) — R(h,).
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