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CALCULATION OF UNIVARIATE AND BIVARIATE NORMAL
PROBABILITY FUNCTIONS

By D. R. Divar
Syracuse University

Mill’s ratio is expressed as a convergent series in orthogonal polynomials.
Truncation of the series provides an approximation for the complemented
normal distribution function Q(x), with its maximum error at a finite value of
x. The analogous approximation for xQ(x) is used to obtain a new method of
calculating the bivariate normal probability function.

1. The univariate normal distribution function. The normal distribution oc-
cupies a central position in statistical theory. Many different expressions are
available for the univariate normal distribution function. These are of four types:
convergent series, continued fractions, asymptotic series, and empirical approxima-
tions. The classical formulae have been brought together by Zelen and Severo
(1964). Only convergent series are convenient for theoretical work requiring in-
tegration of the distribution function. Recently Kerridge and Cook (1976) have
derived a new convergent series. Denoting the standard normal probability density
by

Z(y) = 2m)" 7 exp(—y*/2);
their result is

[6Z(y) dy = (2m) "2 xe ¥ /3 i0,,(x/2)/ 2n + 1)
where 6, is related to the Hermite polynomial H, through the equation

6,(y) = y"H,(y)/n!
and therefore

Opir(¥) = y?[0,(») = 8,.,(»)]/ (n + 1).

While this series converges more rapidly than previous ones, its convergence
becomes slower as x increases. Therefore it cannot be used to approximate the
distribution function in an integrand.

What is needed is a series with its maximum error at some finite value of x. Let
us use an nth degree polynomial to approximate Mill’s ratio Q(x)/Z(x) where

Q(x) = [TZ(y) dy.
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Let

(L.1) Q(x)/ Z(x) = 2 ooy x* x
We choose the coefficients so as to minimize the integral

18] Q(x) = Z(x)=}_oaux*]” dx
= 2m) 7 F[Q(x)/ Z(x) ~ Zogayx*]’e ™ dx.

\%
o

It is well known that the polynomial which minimizes this integral is equal to
2% —obiPi(x) where p,(x) is the kth degree polynomial belonging to an orthonormal
set:

(12) [&p(x)pi(x)e ™™ dx = 8,
and
(1.3) be = [&[Q(x)/ Z(x) ] pi(x)e ™ dx.
(See, e.g., Szegd (1959).)

Let

piu(x) = Ej;ocijj-

There does not seem to be any simple formula or recurrence relation for the ;.
The complexity of the polynomials becomes evident if one seeks a Rodrigues-type
expression of the form

e *p(x) = d*F(x)/ dx*.

Integration by parts shows that, in order to satisfy

[Ex/P(x)e™ dx =0, j=0,1,---,(k—1),
F,(x) and its first (k — 1) derivatives must vanish at x = 0. The required function
is of the form

Fi(x) = Ef=0akjl':j(x)
where Ey(x) = e * and ’

E(x) = [TE_(y) & j>0.
The conditions at x = 0 yield k£ simultaneous equations for the a’s.

The coefficients ¢;; can be found by Schmidt orthogonalization, starting with
k = 0. The inner products needed for this purpose are given by

(1.4) (x', x7) = [Px'x/e™* dx

=1

i+j°
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It is easy to show that

I, = (77)%/2,
I, =

b

N[

and
L= (k= 1DI,_,/2 k

A%
]

The coefficients b, are then given by
(15) be = Q) [£Q(x)e ™/ 2p,(x) d
= Sk_40,(2m)7 [2Q(x)e ™/ dix.
The quantity multiplying ¢;; in this sum is
J, = (2'7r)%f(°,°xje_"z/2 dxfff’(271)_%e"2/2 d.

The region of integration is y > x > 0. Therefore, with r = (x? + yz)% and
@ = arctan(y/x),

(1.6) J, = [gritle=r dr [77%(cos @)’ de.

Integration by parts yields simple recurrence relations for the integrals over r and

Q.
Thus we arrive at the following least squares approximation for Q(x).

Q(x) = Z(x)Z}_oa,;x’ x>0
where
(1.7) a,; = 2= ;Cbi
= 3 oS o

The coefficients were evaluated using a, digital computer. It was found that a
series with n = 10 had a maximum absolute error less than 3 X 10~7. The maxi-
mum error decreased roughly by a factor of 4 with each additional term. The error
curve on using a polynomial of degree » has (n + 1) extrema with extreme values
alternating in sign. The error tends to zero when x — co. For any given ¢ one can
determine a value of » which makes the maximum absolute error less than . Then
the approximation will have the desired accuracy for all x > 0. This makes a series
of this type very useful in theoretical work, as illustrated in the next section.

For n = 10 the coefficients a,; to ten significant digits are as follows. (The
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redundant subscript n = 10 has been omitted.)

ay = 1.2533 13402 a, = —0.99996 73043
a, = 0.62629 72801 a; = —0.3316218430
a, = 0.15227 23563 as = —5.9828 34993 x 1072
ag = 1.9156 49350 x 1072 a; = —4.6449 60579 x 1073
ag = 7.7710 88713 x 10~* a, = —7.8308 23677 x 1073

ay, = 3.5342 44658 X 107°

2. The bivariate normal probability function. The bivariate normal probability
function is defined by

2.1 L(h, k; p) = [ [ f(x, y; p) dy dx

where

-1
22 fxyp)= ~(2W)—lexp[ — (X2 +y* = 2xpp)/2(1 = p?) .
(1-9)?

Various methods have been proposed for approximate evaluation of the function
L. These have been reviewed by Gupta (1963). The approach which has attracted
the most attention in recent years is that of Owen (1956). He expressed the
bivariate probability in terms of the univariate distribution function and the
function T defined by

(2.3) T(h,a) = 2m)~'[§ exp[ —*(1 + y?) /2] &/ (1 + »?).

If x’ and y’ are independent standard normal variables and a > 0, T(h, a) equals
the probability in the region

’

x' > h; ax’ 2y 2 0.
y

Owen evaluated the integral in equation (2.3) by expanding the exponential in a
power series and integrating term by term.

Recent papers by Borth (1973), Daley (1974), and Young and Minder (1974)
have all concentrated on more efficient computation of Owen’s T function. While
the others evaluate the integral by quadrature, Borth uses a Chebyshev approxima-
tion for 1/(1 + y?) when h > 1.6 and a > 0.3. This reduces the computation
required for given accuracy because Owen’s series converges slowly when both 4
and a are large.

It is possible to obtain a more efficient procedure by using a different reduction
of L(h, k; p) to functions of one and two arguments. Let x’ = x and

¥ = (k= px)/ (1= p)1.

Then x’ and y’ are independent standard normal variables. The lines x = A and
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y = k are mapped into x’ = A and
1
y = (k= px)/(1 - p)?
respectively. Their point of intersection is (4’, k) where &' = h and
1
k"= (k — ph)/ (1 — p?)>.
The polar coordinates (R’, 8) of (&', k') # (0, 0) are given by
R™? = (h? + k* — 2hkp)/ (1 — p?)
sin(w/2 — 0) = h/R’
and
1
cos(m/2 — ) = (k — ph)/[R’(l - p?)? ]
L(h, k; p) equals the probability in the region
(2.4) X SH; Y K+ —x)) (1= p2).
The angle from the x’ axis to the boundary defined by the second inequality will be
denoted by ¢. (See Figure 1, where the value of ¢ is negative.)
tanp = —p/ (1 - p?).
Therefore
sin(@ — ¢) = k/R’
and
1
cos(8 — ¢) = (h — pk)/[R'(1 — p))*].
The angles (7/2 — 6) and (§ — o) are taken to lie in (—7, 7). If ' = k' =0,
1
tan(7/2 — 0) = tan(d — @) =[(1 + p)/ (1 — p)]*.

FiG. 1. Angles used in Equation (2.7).

The probability in the region defined by the inequalities (2.4) can be expressed in
terms of a modification of the W function introduced by Ruben (1961). For
7 >y > 0, the function W(R, ¢) is defined as the probability in the sector

x'>R; (X —R)tany >y > 0.
(See Figure 2.) As x’ and y’ are independent, the probability density in the (x’, y’)
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plane is circularly symmetric. Therefore the probability in the sector does not
change if the sector is rotated about the origin. For < 0 we define the function
by

(2.3) W(R, ) = — W(R, |{|).

This part of the definition differs from Ruben’s, and leads to simpler formulae.
From Figure 2 we see that when ¢ > 0,

(26) W(R, ¥) + W(R, 7 — ¥) = O(R sin ).
The desired probability is given by
2.7 L(h, k;p) = W(R',m/2—-0)+ W(R,0 — @)+ C

where C = 1if h <0, k < 0; and C = 0 otherwise. In the former case, the origin
lies inside the region of integration.

YI

Y

Pl

F1G. 2. Region of integration for W(R, {).

[0W(R, {)/0y]8) is the probability in the infinitesimal triangular wedge with
apex at (R, 0) and boundaries making angles ¢ and ¢ + &) with the x’ axis. Let s
be the distance of a point in the wedge from (R, 0). Then
(2.8) AW(R, ) /oy = (27) ' [Pe~ "% ds
where

r?=x?+y?=R%?+ 5%+ 2Rs cos |.

After changing the variable of integration to s’ = s + R cos ¥ one obtains

(2.9) IW(R,Y)/ = e R/2/27 — (277)_le‘R25i“2"/2(27r)%R cos YQ(R cos y);
W(R, ¢) is the integral of the right har;d side from O to y. Ruben (1961) gave a
continued fraction for the function

K(R,¥) = ye /2 /20 — W(R, ).
As the continued fraction was not suitable for practical computations, the W
function seemed to be of academic interest only. However, it is possible to

approximate the second term on the right in equation (2.9) with a series analogous
to that in Section 1. We write

(2.10) xQ(x) = xZ(x)Z} _od x* x>0
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and minimize
[ [%Q(x) — xZ(x)Z)_odyx*]" dx

= 2m) 5[ Q(x)/Z(x) = Zhaodux*]'(x%e™) dx.
The problem is similar to that in Section 1 with the weight function x%~* instead
of e ~*. The orthogonal polynomials and then the coefficients d,, can be calculated
using the same families of integrals, /,, and J,,.
A series of 11 terms was again found adequate for an accuracy of the order of
10~7. A maximum absolute error of 1.24 X 1077 in xQ(x) was obtained with the
approximation

(2.11) xQ(x)/ Z(x) = xZ1°_od, x* x>0
where

dy = 1.2532 98042 d, = —0.99973 16607

d, = 0.62501 92459 d; = —0.32819 15667

d, = 0.14703 31965 d; = —5.4948 56177 x 10~2

dg = 1.6298 27794 x 1072 d, = —3.5912 57830 x 1073

dy = 5.4066 19903 X 10~* dy = —4.8902 54061 x 1073

d,, = 1.9847 41031 X 1075,

When we use this approximation in the integrand for W(R, ) given by equation
(2.9), the error in the integrand will not exceed 1.24 X 1077/ (277)%. We have

IW(R, Y) /0y =e R'72/2q — (2m) e RS ¥/2R cos e =R c05* ¥/2
X 310 od, (R cos )~ cosy > 0.

Therefore
(212)  W(R ) = @m) e ®2[y - SI0_d R** ' fi(cos )"+ ']

W <m/2.
Equations (2.12), (2.5) and (2.6) together suffice for all calculations.

We now have a new method for calculating the bivariate normal probability
function L(h, k; p). One can reduce the.error by using more terms in the poly-
nomial in equation (2.10). Limitations on accuracy arise only from roundoff errors
in computation of the coefficients d,. The present algorithm was coded as a
Fortran subroutine using single precision arithmetic on an IBM 370/155 computer.
Accuracy was checked by comparison with a similar subroutine using » = 12 and
double precision arithmetic. The new algorithm was found to be more accurate and
considerably faster than the Owen—Borth algorithm.

Acknowledgment. It is a pleasure to thank Mr. K. V. Subba Rao for helpful
discussions and his careful reading of the manuscript.



910 D. R. DIVGI

REFERENCES

[1] BorTH, DAVID M. (1973). A modification of Owen’s method for computing the bi-variate normal
integral. Appl. Statist. 22 82-85.

[2] DALEY, D. J. (1974). Computation of bi- and tri-variate normal integrals. Appl. Statist. 23 435-438.

[3] GupTta, S. S. (1963). Probability integrals of multivariate normal and multivariate ¢. Ann. Math.
Statist. 34 792-828.

[4] KERRIDGE, D. F. and Cook, G. W. (1976). Yet another series for the normal integral. Biometrika 63
401-403.

[S] OweN, D. B. (1956). Tables for computing bi-variate normal probabilities. Ann. Math. Statist. 27
1075-1090.

[6] RUBEN, HAROLD. (1961). Probability contents of regions under spherical normal distributions, III:
The bivariate normal integral. Ann. Math. Statist. 32 171-186.

[7] SzeGO, GABOR. (1959). Orthogonal Polynomials. American Mathematical Society, New York.

[8] Young, J. C. and MINDER, C. E. (1974). Algorithm AS 76. An integral useful in calculating
noncentral ¢ and bivariate normal probabilities. Appl. Statist. 23 455-457.

[9] ZeLEN, MARVIN and SEVERO, NORMAN C. (1964). Probability functions. In Handbook of Mathemati-
cal Functions. (Milton Abramowitz and Irene A. Stegun, eds.), U.S. National Bureau of
Standards, Washington, D.C.

TEST SCORING & EVALUATION SERVICES
SYRACUSE UNIVERSITY
SYRACUSE, N.Y. 13210



