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Let X),- - -, X, be n > 2 positive random variables and G(X) a positive
variable satisfying G(aX) = aG(X) for all @ > 0. Then G is a size variable, and
X/ G is a shape vector. If X}, - - - , X, are independent, tken the independence
of shape and the size variable G(X) characterizes (i) the lognormal distribution
if G(X) = I1X;!/", (ii) the generalized gamma distribution if G(X) = (2X?)!/%,
(iii) the Pareto distribution or its discrete analogue if G(X) = min(X), and (iv)
the power-function distribution or its discrete analogue if G(X) = max(X). It is
shown here that if X, - - - , X, have piecewise continuous density functions
and G is a continuous function then these four size variables are effectively the
only ones for which such independence properties are attainable. A connection
with the theory of sufficient statistics for a scale parameter is also considered.

1. Introduction, size and shape variables. Let X = (X, - - -, X,) be a vector of
n > 2 positive random variables, and suppose G(X) is a random variable with G a
function from P”" into P, where P denotes the set of positive real numbers.
Following Mosimann (1970, 1975a, 1975b) we define G(X) to be a size variable if G
satisfies the homogeneity condition G(ax) = aG(x) for all a € P, x € P". The
shape vector associated with G is defined by Z(X) = X/ G(X), so that Z(aX) = Z(X)
for all a € P. The following important result is given by Mosimann (1970):

THEOREM 1.1. Let G(X) be a size variable and Z,(X) a nondegenerate (at a
point) shape vector, not necessarily associated with G,(X). If G,(X) is independent of
Z,(X), then

(a) any other shape vector Z,(X) must be independent of G(X); and

(b) no shape vector can be independent of any other size variable G,(X) unless
G,(X)/ G,(X) is a degenerate random variable.

In view of (a) we can talk unambiguously about the independence of size G(X)
and shape generally. In later sections it will often be convenient to choose shape
vectors of the form (X,/X,, - - -, X,,/X,) when studying size-shape independence.

Suppose now that X, - - -, X, are mutually independent, and that size G(X) is
independent of shape. Then Mosimann (1970) shows that the lognormal and
generalized gamma distributions are characterized by taking G(X) = (ILX,)!/” and
G(X) = (X?)!/* respectively, where b was taken to be positive, although it is only
necessary that b # 0. In Theorem 3.1 we slightly generalize this result and include
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also the size variables G(X) = max(X,,- - -, X,), and G(X) = min(X}, - - - , X)),
which respectively characterize the power function and Pareto distributions and
their discrete analogues. In the main result of this paper, Theorem 3.2, we show
that, if the X; have piecewise continuous density functions, and G is continuous,
then these four size variables are effectively the only possible ones for which
X+ -+, X, can be independent together with independent shape and size. Theo-
rem 3.2 in a sense generalizes a result of Klebanov (1973), who considers only
identically distributed variables, but then one needs only assume that the homoge-
neous function (size variable) is positive in a neighborhood of x = 1, and that G(X)
is independent of {min(X;/X,, j # 1), max(X;/X,, j # 1)}. As a corollary to
Theorem 3.2 we obtain Klebanov’s result without assuming the differentiability
conditions he imposes upon the size variable, thereby slightly weakening his
restrictions.

The generalized gamma, lognormal, power-function and Pareto distributions
were considered as a family by Ferguson (1962), who showed that the last three are
limiting cases of the generalized gamma. In Section 2 we introduce his convenient
notation and briefly review some properties of the family, before giving the main
characterization results in Section 3. In the final section, alternative characteriza-
tions of the generalized gamma and lognormal distributions are obtained by
showing that if size and shape are independent, then the size variable can be
regarded as a sufficient statistic for a scale parameter.

From the point of view of practical allometric studies the characterizations given
here are unlikely to be important, since measurement variables X,, - - - , X, will
rarely be independent. Nevertheless, in searching for families of multivariate
distributions suitable for the study of size-shape relationships, it is desirable that
the richness of the families be sufficient to include the possibility that size and
shape be independent together with independent X,,- - -, X,, and our results
indicate the limitations imposed. For size variables of the form G(X) = (ILX,)!/",
the multivariate lognormal distribution is both rich and easily handled (Mosimann
(1970, 1975b)), but the natural multivariate analogues of the generalized gamma,
power-function and Pareto distributions are less obvious.

For a detailed discussion of the present size and shape definitions and the
concept of related sequences of size variables, the reader is referred to the papers of
Mosimann (1970, 1975a, 1975b).

2. Ferguson’s family of distributions. Let Y be a positive random variable with
gamma distribution and let X = Y!/Y, y = 0. Then X has a generalized gamma
distribution with density function

(1) p(x) = [vl/ (T(«)B*)x*""exp(—x7/B), x>0

=0 x<0
where a, 8 > 0. The generalized gamma distribution given by (1) has been dis-
cussed by a number of people, including Ferguson (1962), Stacy (1962), Stacy and
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Mihram (1965) and Hager and Bain (1970). Following Ferguson we define new
positive parameters  and o2 by

2) v log 6 = log af

o%y? = ¥/(a),
where / is the trigamma function, and denote the distribution (1) by L(8, 62 ).
The other members of Ferguson’s family are now obtained as limiting cases of
L(8, 6%, v) as y —> 0, * o0, with 8, o? fixed. Specifically, Ferguson (1962) shows that
the distribution L(#, 62, y) tends to the lognormal distribution with density

3) p(x) = (270%) " 2x 1 exp(— (log(x/8))?/20%), x >0
=0 x<0
as Y — 0; to the Pareto distribution with density
4 p(x) = (80)"'(x/8)"71°, x>
=0 x <48

as Yy — — oo; and to the power-function distribution with density

5) p(x) = (00)"'(x/0)""*"°, 0<x<8
=0 otherwise

as y — + oo. The distributions (3), (4) and (5) may thus be denoted by L(6, o2, 0),
L(#, 6, — 0) and L(#, o% c0), respectively, and Ferguson’s family by L(8, o2, 7)
where y takes any values on the extended real line.

Now let X, - - -, X, be independent random variables with X, ~ L(6,, o2, v),
i=1,---,nwhere y is finite and nonzero, and ~ denotes “distributed as”. Then
the size variable

AX: B, Y) = (21X /B9
is independent of shape, where 8* = §,27_,1/ B;. (The purpose of the normaliza-
tion will become apparent later when we consider limit size variables). Similarly, if

each X; ~ L(6, o2, 0), then the size variable

n o?
M(X; 0) = (IT X,/) /5

is independent of shape; if each X, ~ L(f,,.0?, — ), then the size variable

Min(X; 0) = min(X,/0,,- - -, X, /6,)
is independent of shape; and if each X, ~ L(6;, o7, ), then the size variable
Max(X; 0) = max(X,/0,,- - -, X,/0,)

is independent of shape.

Corresponding to the limit properties in the family L(6, 62 y), one can show,
using the identities (2), that with @ and o? fixed, 4(X; B, y) converges to M(X; 0?)
as y =0, to Min(X; 0) as y - — oo, and to Max(X; 0) as y — oo. Consequently, if
we denote by G(X; 0, 02, y) the size variables 4, M, Min and Max, we see that G is



872 IAN R. JAMES

continuous in y on the extended real line, and we can summarize the above as
follows: if each X; ~ L(8,, o2, y) then size G(X; 0, o?, y) is independent of shape.
However, since M does not depend on 0, and Min and Max do not depend on o?,
it is convenient to retain their separate identities.

If we were to take logs of our variables and assume they were identically
distributed, then the above size variables correspond to the means of order y
defined by Ferguson (1962). A more comprehensive discussion of the family of
L(0, 6%, v) distributions, including a summary of some important characterizations,
is provided by Ferguson.

3. Characterizations by the independence of size and shape. The following
result extends Theorem 4 of Mosimann (1970) to include the size variables
Min(X; 0) and Max(X; 0).

THEOREM 3.1. Let X,,- - -, X, be n > 2 nondegenerate, positive, independent
random variables. Then all shape vectors Z(X) are independent of the size variable
G(X) equal to

(a) AX; B, y) if and only if each X; ~ L(k0, 6%, v) for some constant k > 0,
where 0, and o? are related to B; through (2);

(b) M(X; 6?) if and only if each X, ~ L(8, ko?, 0) for some 6, > 0 and k > 0;

(¢c) Min(X; 0) if and only if each X, ~ L(k8,, o7, — o0) for some k >0, o} > 0, or
each X; is discrete with mass function
6) Pr[ X; = kB, exp(cn)] = (1 —p)p/, n=0,1,2---

= (0 otherwise

for some ¢ >0,k >0,0<p, <1;

(d) Max(X; 0) if and only if each X; ~ L(k0,, o2, o) for some k > 0, o? >0, or
each X, is discrete with mass function

(7 Pr[ X, = kb, exp(—cn)] =(1 —p)p/, n=0,1,2---
=0 otherwise,
for some ¢ >0,k >0,0<p, <1

Proor. The “if” results are easily checked, and have already been mentioned
for continuous variables in the previous section. We need only consider the “only
if” parts. Parts (a) and (b) are trivial generalizations of Theorem 4 of Mosimann
(1970), and are also mentioned in the two variate case by Ferguson (1962).
Consider (c). For n = 2 the result follows immediately from Crawford (1966) by
taking logs of our variables and taking shape to be X,/ X,. For n > 2 we see from
our assumptions and Theorem 1.1 that

(X,/6,)/Min(X; ) and Min(X; 0)
are independent, i =1, - -, n. Now since Min(X; 0) = min(X, /6, min(X/6;;
j # 1)), it follows from the result for n = 2 that for each i, X; ~ L(k8,, af, — 0)
and min(X;/8;; j # i) ~ L(k, b}, — o) for some k, of, b} (that k does not depend

i 1
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on i follows by considering the distribution of Min(X; 8)), or X; is discrete with
mass function (6) and min(X;/8;; j # i) is discrete with mass function of the same
form. It readily follows that the X,’s are either all continuous, or all discrete, which
completes the proof of (c). Part (d) follows from (c) simply by noting that

max(X,/0,,- - -, X,/0,) = 1/min(0,/X,,- - -,0,/X,). [
As noted by Mosimann (1970), for n > 2 only the properties that X;/G(X) be
independent of G(X) for each i = 1, - - - , n are used in the proof of Theorem 3.1,

rather than the stronger assumption of independence of size and shape.

~ The distributions given by (6) and (7) are the discrete analogues of the Pareto
and power-function distributions, log X, having a geometric distribution if X; has
distribution (6). Note that if ¢ — 0, and p; — 1 such that (1 — p,)/c - 1/0;, then
the law (6) tends to L(k6, 67, —oo0), while law (7) tends to L(k6,, o?, o) (cf.
Johnson and Kotz (1969) page 123).

It is natural now to ask whether other size variables might characterize different
distributions from those given in Theorem 3.1 under the same conditions. In the
remainder of this section we show that if X, - - - , X, have piecewise continuous
densities and the size variable G is continuous, then 4, M, Min and Max are the
only size variables for which the independence properties can hold. We hope to
consider the case of discrete variables separately.

THEOREM 3.2. Let X, - -, X,, be n > 2 positive, independent random variables
with piecewise continuous density functions. Let G(X) be a size variable with G(-)
continuous as a function from P" into P, and suppose that G(X) is independent of
shape. Then each X; ~ L(6,, o7, v) for some 8, > 0, o7 > 0, and y on the extended
real line.

Klebanov (1973) proves a result very similar to Theorem 3.2 when X, - - - , X,
are assumed identically distributed, but then it is only necessary to assume the
homogeneous function (size variable) is positive at x = 1, and that G(X) is
independent of {min(X;/X,, j # 1), max(X;/X,, j # 1)}. His proof does not
appear to carry over to the nonidentically distributed case. In proving Theorem 3.2
we shall obtain Klebanov’s result as a corollary, under weaker conditions than he
assumed.

Before proving Theorem 3.2 we require some preliminary results. The first,
Lemma 3.1, is a generalization of Theorem 4.1 of Brown (1964) to the case of
unequal functions r; and r,. While the result is not needed in its full generality, it is
stated completely analogously to Brown’s theorem and can be proved by following
the same steps with only obvious minor changes necessary to account for the
different functions. Lemma 3.2 is a special case of Theorem 3 of Ferguson (1962)
and is stated for reference.

In the following Lemma 3.1 and its corollary we denote by I, - - - , I, intervals
of the real line and by V a subset of the real line. For each j =1,- - -, n and
v €V, r(-,v) and u(-, ») are continuous functions from /; into the one-point



874 IAN R. JAMES

compactification of the real line, and we assume that both r,(-, ») and u(-, ») are
equivalent to Lebesgue measure on I,. Furthermore, we shall suppose that ar least
two of the u cannot be factored as u(x, ») = f(x)d(v) for any f»a.

LEmMA 3.1. Let B C I, be a set containing a limit point and ¢ a continuous
Junction from B X I, into the real line. Then, if, for some function w,
(®) ri(xy, )ry(xy v) = w(d(x,, x,), »)
for all (x|, x,) € B X I,, v € V, we have either r,(x,, v) = d(v) for some function d,
or there exist functions s, and s, and an interval K C I, with K N B nonempty, such
that

)] ri(xy, v) = s;(»)(r(xy Vo))szm
forall x, € KN B,v €V, where vy € V is fixed.

COROLLARY. Let ¢ be a continuous function from I, X - - - X1, n > 2, into the
real line, such that, for some function w,
(10) I (%, v) = (T2 (x5 o)) w((xy, - - - 5 x,), ),
vEV, (X, ,x,)EI X+ XI.Then,foreachj=1,-- -, n,
(11) u(x, v) = G(v)H(x)exp(Q;(») T)(x))

for some functions C.H,Q, T,xel,veV.
Proor. Following the proof of Theorem 4.2 of Brown (1964), put

ri(x;, v) = u(x;, v)/u(x;, vy),
so, from (10), we have ~ *’ A A

(12) H;’=1'_‘,(XJ, V) = W((I)(Xl, T, x,,)9 V)'

For any j = 1,- - -, n, there is an i # such that #(x;, ») cannot be factored as
J(x)d(»), so that for some » € V, r(x, ») is not constant for x; € I. Fix x;
k #1i, j in (12), then, for any point x € I, it follows from Lemma 3.1 that r, has the

form (9) on an interval containing x, and it is readily seen that it must have the
form (9) on I.. The form (11) then follows immediately for eachj = 1,- - - , n. []

A family {u(-, »); v € V} satisfying (11) is a one-parameter exponential family.
Let {p(-,v); v € V} be a family of probability density functions. Then the
family is a scale parameter family if p(x, v) = vg(xv) for some g.

Lemma 3.2. (Ferguson (1962)). A scale parameter family of densities { p(-, v);
v € V}, with p(x,v) =0 for x <0, v €V, is also a one-parameter exponential
family of distributions in v if and only if for fixed v = v, say, p(-, v,) is an L(0, 6?, v)
distribution for finite v.

PROOF OF THEOREM 3.2. We begin by using initial steps similar to those of
Klebanov (1973). Let s = (s, - - -, 5,) and As = (As,, - - -, As,) where the s, are
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positive and the As; are positive increments. Then for # > 0, Az > 0 we have
(13) Pr[r <X,G(l, Xy/X,, -+, X,/X))
t+A1,s;<X/X, <s;+As,i=2,---,n]

= [othedy, [t dy, (R T (v )P (013 - - P (D YT

where G* = G(1,y,, - - - ,»,) and p; is a piecewise continuous density function of
X,j=1,---,n Dividing (13) by AtAs, - - - As, and letting As — 0, then Az — 0,
we obtain using the independence of G(X) and {X,/X,; j # 1},

(14) pl(tGl(s))H;-ij(tSle(s)) = f()h*(s)

for some functions f and A*, where G,(s) =1/G(l,s, - - -,s,). Now change
variables to x = tG(s), y; = t5;G,(s) and choose ¢, - - - , ¢, such that g(y) = IT}_,

p(¥y) is piecewise continuous and positive on some interval. Let ¢(x,y) =
G(x, Y.y, - - -, ¥,»). Then we have, from (14), on putting y; = y;y for each j,

(15) i(x)q(y) = f(e(x, y)h(y/x), x>0, y>0.

Note that ¢(x, y) = x¢(l,y/x) = y¢(k /y, 1). We shall break the rest of the proof
into a number of steps so that they can be referenced.

(i) Suppose that p,(x) = 0 for some x € (0, o). Then, using piecewise continuity
of p,, we may assume that x, € (0, o0) is a point such that p,(x,) = 0 but p,(x) > 0
for x € K, where K is one of the intervals (xq, x, + 8) or (x, — 8, x,) for some
6 > 0. Let L be an open interval on which g(y) > 0. Then for x € K,y € L, both
Sf((x, y)) and h(y/x) are positive, and so fory € L, h(y/x,) > 0. Thus, from (15)
we have, fory € L

(16) Sf(xop(1, /%)) =0
f(x¢(l,y/x)) >0  for x € K.

Suppose that ¢(1, y/x,) is not constant for y € L. Then, since ¢ is continuous,
there exist points y;, ¥, € L and x’ € K such that xop(1, y,/xo) = x'¢(1, y,/x).
But then substitution into (16) provides a contradiction. Thus we must have
(1, y/x,) constant for y € L, and, using a similar argument, we see that either
q(y) > 0 for all y € (0, o) or ¢(z, 1) is constant on an interval.

(ii) Let intervals K and L be as defined in (i). Let y* be any point in L, and
suppose that there exist points y,, ¥, € (0, o0) such that y, is the first zero of g to
the left of y*, and y, the first zero to the riéht of y*. We may redefine L = (y,, y,).
Now from (i) we have ¢(l,y/x,) = ¢, (constant) for y € L, and, by similar
arguments, we have both ¢(x/yq, 1) = ¢, and ¢(x/y,, 1) = ¢, for x € K. Thus for
all x € K,y € L, ¢(x, ) = €1 X0, ¢(X, ¥g) = €3¢ and ¢(x, y,) = c3y,. Since ¢ is
continuous, we then have

lim, (xp, ) = (X0, ¥o) = €1 %

and
limx—»to (X, yo) = ¢(xp, ¥o) = 2V0
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so that ¢;xy = ¢,y,, and we find similarly that ¢,x, = ¢;y,. Thus, for all x, x, €
K, we have ¢(x,, yo) = ¢(x,, ¥;) = ¢ (constant), and it follows that for § small
enough and x € K,

o(x,y) =cy/y, for y, <y <y,+ 9,
and

o(x,y) =cy/y; for y, =8 <y <y,

So, for any x € K, ¢(x, ) is an increasing function at both y; and y;” and takes
the same value at these points. It follows, by continuity of ¢, that there must be a
point y’ € L = (y,, y,) such that ¢(x, y') = ¢(x, y,) = ¢(x, y,). But then we must
have f(¢(x, ")) simultaneously zero and positive, so that the points y, and y, as
defined cannot exist. We conclude, therefore, that if p,(x) =0 for some x €
(0, o0), then either g(y) > 0 for all y € (0, o), or g(y) > 0 fory € (0, y,), q(»¥) =
0 for y € [y, ), or g(y) > 0 for y € (yy, ), g(y) = 0 for y € (0, y,), for some
Yo € (0, ©). An analogous conclusion is reached for p, if ¢ takes a zero value.

(iii) Again suppose that p;(x) = O for some x € (0, o). Then from (i) there
exists an interval (a, B8), say, such that ¢(1,z) = ¢ and A(z) > 0 for z € (a, B).
Now from (15) we have

(17) pi(x)q(xz) = f(xo(1, 2))h(2), x,z € (0, )
and so, for z € (a, B) and x in some interval on which f(cx) > 0,
(18) q(xz) = h(z) f(xc)/p\(x).
Hence for such x, z,
(19) q(xz) = ab(xz)*
f(ex)/pi(x) = ax?
h(z) = bz*

for some constants a, b,d. It can be seen from (i) that if g(y) >0 for all
y € (0, 0), then the interval (a, 8) can be taken as (0, o), so from (19), ¢(y) =
ky? for all y € (0, ). But recalling that g(y) = IT_,pi(y;»), where the p’s are
density functions, it follows from Holder’s inequality that g(»)'/”~" must be
integrable over (0, o), so we have a contradiction. Hence ¢(y) = 0 for some
y € (0, ) and from (i), ¢(z, 1) = r (constant) for z € (r, §) say. Then analogously
to (19) we obtain for z € (1, §) and y in any interval on which f(ry) > 0,

(20) pi(yz) = tu(yz)*
f()/q9(y) = v»*
h(z) = uz®, for some constants ¢, u, v.

Furthermore, from (ii) it follows that p,(x) > 0 for x € I, p,(x) = 0 for x & I,
where I, = (0, x,) or (x4, ), x, > 0, and g(y) > Ofory € I,,q(y) = Ofory & I,,
where I, = (0, yo) or (yg, ), ¥o > 0. It is then easily checked from (17) that
pi(x) = 0 if and only if f(cx) = 0, and g(y) = 0 if and only if f(ry) = 0. From (19)
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and (20) it then follows that

pi(x) = ¢\ x%, x €1,
= O, X e Il
q(») = ¢, yEIL
= O, )’ e 12’

where I, = (0, x,), I, = (0, y,), or I, = (x4, ®), I, = (¥o, ). By an analogous
argument the same conclusion is reached if we begin by assuming g(y) = 0 for
some y € (0, o).

(iv) The remaining case to be considered is when both p,(x) > 0 and ¢(y) > 0
for all x, y € (0, o). Suppose also that p, is discontinuous at x, € (0, o), and let
(a, B) be any interval for which g(x,z) is continuous, z € (a, ). From (17) it
follows that f(-) is discontinuous at the point x¢(1, z) for each z € (a, B), so that
if ¢(1, z) is not constant for z € (a, B), the continuity of ¢ ensures that f is
discontinuous everywhere on some interval. But by fixing z in (17) we see that f
must be piecewise continuous, therefore providing a contradiction. Hence p,(x) is
continuous for x € (0, o) or ¢(1, z) = ¢ (constant) for z € («, 8). But in the latter
case we obtain (18) and then (19) for all x € (0, «), and again, by Hoélder’s
inequality, this is not possible. Thus p,(x) is continuous. Similarly we see that g(y)
is continuous for y € (0, o). Then from (15) we have for u > 0,

pi(px)q(w) = f(ud(x, y))h(y /%), x,y € (0, 0)

pi(mx)a(wy) = pi(pox)a( o y) f(uo(x, )/ f( pod(x, ¥))-
It is easily checked that the conditions of the corollary to Lemma 3.1 are satisfied
by p;, ¢ and ¢, so that the families { up,(px); p > 0} and {pg(wy); p > 0} are
one-parameter exponential families in the scale parameter u. Hence from Lemma
3.2, p, is an L(8,, o}, v,) distribution for some positive 8,, o7, and finite v,.
(v) By repeating all of the above arguments with the subscripts 1 and / inter-

so that

changed i = 2, - - -, n, we see from (iii) and (iv) that either;
@ X, ~ L, 0% —0),i=1,---,n

or :
() X, ~ LB, 0}, ), i=1-"-,n

or
© ‘Xi~L(0i’oi2’ Yi)’ i=1---,n,

y; finite, for some 6, 62 > 0. It remains to show that the v/’s in (c) are all equal.
Suppose that m > 1 of the X,’s are lognormals. Without loss of generality we may

assume that X, ~ L(#,0%0), i=1,---,m, and X, ~ L(0, o,.z, v), v; =0 for
i=m+1,---,n. Then from (1), (3) and (15), with ¢, = - - - = ¢, = 1 we find
that

o((x, 7)) = a%logf( 16 e

= k (constant) — log x/o} — log y27.,1/07
_2_’;—m+]ijYl/Bj'
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Similarly
n(9(x,)) = (3/9m)p(ue(x, »))|,=1
= r(constant) — =7_, . vy?/B.
Since the right-side is a function only of y, while the left-side is a function of
yo(x/y, 1), and ¢(z, 1) is not constant on any interval, by (iv), it follows that each

side must be constant, and thus m = n. Hence the X;’s are all lognormals or all
generalized gammas. In the latter case we find that

p(¢(x, y)) = k (constant) — y;x"'/ B, — Z7_,v,¥V/ B,
and
n(e(x, »)) = —vix"/By = Z}-2y v/ B,
Thus v,0(¢(x, y)) — 0(¢(x, y)) = ky; — Zj_,v,(v; — v)¥ ¥/ B, and again each side
must be constant, from which we see that y, =y, for j =2, - -, n. This now
completes the proof of Theorem 3.2. []

CoroLLARY. (Klebanov (1973)). Let X,,-- -, X, be positive, independent,
identically distributed random variables with piecewise continuous density function
p(x). Let H be a continuous, homogeneous function from P" into the real line, and
suppose that H(1,- - - , 1) > 0. If H(X,, - - -, X,,) is independent of the pair {Y =
min(X,/X,, j=2,---,n), Z = max(X;/X,, j=2,---,n)}, then each X, ~
L(0, 62, ) for some 0, 6> > 0 and y on the extended real line.

Proor. If p(x) = 0 for some x € (0, ), then from Corollaries 2 and 3 of
Klebanov (1973) it follows that each X; ~ L(#, 6%, — ) or each X, ~ L(6, 0*, ).
Further, (15) holds for all x,y such that y/x is sufficiently close to 1, where
¢(x,y) = H(x,y, - - ,y). By following the argument in (iv) of the proof of
Theorem 3.2, we see that if p(x) > 0 for all x € (0, o), then it must be continuous.
It will therefore suffice to show that ¢(1, z) > 0 for all z, since then all of our
arguments in (iv) are valid. Now from equation (3) in Klebanov (1973), we have

(21) p(2/9(1, 2))q(2z/9(1, 2))/ { p(a/¥(1, 2))q(az/ (1, 2))}

= dp"(ct), t € (0, ), znearl,
where a, d, ¢ are positive constants. Suppose that z, 7 0, co is the first zero of
¢(1, z) to the right or left of z = 1. Then, using (21) and taking the limit as z — z,
in the direction away from z = 1, we obtain

p"(ctity) = dp"(ct))p"(cty),
(cf. Feller (1966) page 268), from which we see p”(f) = c*t*" for some c*, d*, t €

(0, o). But then p is not integrable on (0, ). Hence no such z, exists and
o(1, z) > O for all z, proving the corollary. []

We may note here that Theorem 3.2 remains valid if G is replaced by any
homogeneous, positive function H of degree k 0, for then H'/* is a size variable
and is independent of shape.
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4. Size, shape and sufficient statistics for scale parameters. In Theorem 3.2
continuity assumptions were made about both the size variable and the density
functions. Some different regularity conditions are assumed in this section; in
particular in Theorem 4.1 we assume nothing about G other than it be positive and
measurable, but we place stronger conditions on the densities. In so doing we
characterize the generalized gamma and lognormal distributions. Other possible
sets of regularity conditions will be mentioned later.

Lemma 4.1. Let X, - -, X,, be positive random variables, not necessarily inde-
pendent nor identically distributed, and suppose that size G(X) is independent of shape.
Let Y, = X;/ w,j=1,---,n, where p > 0. Then G(Y) is sufficient for the scale

parameter Ji.
ProoF. Consider the conditional characteristic function
(22) E[exp(iZ). 1 log Y))|G(Y) = g]
= E[exp(i{=]_,t(log ¥, — log Y,) + (¢, — £]_,¢)log Y, })|G(Y) = g].

Since Y, = GY)/G(, Y,/Y,,---,Y,/Y) and G(Y) is independent of
(Yy/Yy, -+, Y,/ Y)), (22) equals
exp(i(t, — £_,1)log g) E[ exp(i{ £_,t; log(X;/ X,)
- (4 - 2?=2tj)10g G, X,/ Xy, - - - Xn/Xl)})]‘

Thus (22) does not depend on u, which proves the sufficiency of G(Y) for u. (Rao
(1973) page 130). [

THEOREM 4.1. Let X,,- - -, X, be positive, independent random variables with
densities p;, j = 1, - - -, n. Suppose that each p; is positive and continuously differen-
tiable on (0, ). Then, if size G(X) is independent of shape, X, ~ L(6, o7, ),
j=1,---,n for some 0j,¢rj-2 > 0 and v finite.

PrROOF. Let Y, =X /p, j=1,---,n p>0, so, by Lemma 4.1, G(Y) is
sufficient for u. By Corollary 3 to Theorem 3 of Zhuravlev (1966) we see that for
each j, { up,(wy); p > 0} is a one-parameter exponential family of distributions in
the scale parameter u, and the proof is completed using Lemma 3.2 and (v) in the
proof of Theorem 3.2. []

Note that Theorem 4.1 shows there exist multivariate distributions for which no
size variable is independent of shape; for example, X,, X, independent with X,
gamma and X, lognormal.

Zhuravlev (1966) assumes slightly less than continuous differentiability of each
p;» but his results generalize those of Dynkin (1951), and Brown (1964) has pointed
out that the stronger conditions are necessary.

The only regularity conditions imposed in Theorem 4.1 are those used to
conclude, from the existence of a single sufficient statistic, that the densities belong
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to one-parameter exponential families. Many such results under different condi-
tions are available when X, - - -, X, are identically distributed; e.g. Dynkin
(1951), Brown (1964), Denny (1970) and Hipp (1974). Hipp, for example, requires
the probability measure to be equivalent to Lebesgu: measure and the sufficient
statistic to be a locally Lipschitz function, while Brown, Theorem 2.1, places some
rather nonintuitive restrictions on the sufficient statistic. The incorporation of such
results into a modification of Theorem 4.1 is obvious. Both Brown (1964) and
Denny (1969) show that some regularity conditions of the type mentioned here are
necessary to deduce exponential families from the existence of a sufficient statistic.

For nonidentically distributed variables X, - -, X,, the results connecting
sufficient statistics and exponential families are fewer, and, apart from Zhuravlev
(1966), we mention Barankin and Maitra (1963), who place harsher differentiability
conditions on the density functions. It seems likely that some of the results
mentioned above for identically distributed variables could be generalized to the
nonidentically distributed case (cf. Lemma 3.1 and its corollary above) and, if so,
the appropriate changes in regularity conditions in Theorem 4.1 can be made.

If X}, -, X, are assumed to be identically distributed then Theorem 4.1 can
be extended to include the distributions L(, 6%, * o) by assuming p(x) > 0 for
x € I, p(x) = 0 for x & I, where [ is an interval. This follows from Theorem 9 of
Dynkin (1951). Again it seems likely that a generalization of this result to the case
of nonidentically distributed variables, along the lines of Zhuravlev (1966), may be
possible. However, we shall not pursue the matter here.

Finally, we note that Ferguson (1962) conjectured that the existence of a
complete sufficient statistic for a scale parameter for any n > 2, when X, - - - , X,
are identically distributed, positive and dominated by a o-finite measure, would
characterize the distributions L(#, 62, y) for y on the extended real line. The truth
or otherwise of this, without further assumptions, appears still to be unknown.

Acknowledgments. I am grateful to Professor E. J. Williams for bringing the
paper by Ferguson to my attention, thereby stimulating the work reported here,
and to Dr. J. E. Mosimann and Professor J. N. Darroch for many helpful
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