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MINIMAX ESTIMATION OF A NORMAL MEAN VECTOR WHEN
THE COVARIANCE MATRIX IS UNKNOWN!'

By LEON JAY GLESER
Purdue University

Let X be an observation from a p-variate normal distribution (p > 3) with
mean vector § and unknown positive definite covariance matrix . We wish to
estimate § under the quadratic loss L(8; 8, ) = [tr(QZ)]~ (8 — 0Y Q(8 — 9),
where Q is a known positive definite matrix. Estimators of the following form
are considered:

8 (X, W) = [I — kh(X'W~IX)A\(QW/n*)Q ~'W ~']X,

where W : p X p is observed independently of X and has a Wishart distribution
with n degrees of freedom and parameter 2, A;(4) denotes the minimum
characteristic root of 4, and A(¢) : [0, 00) — [0, o0) is absolutely continuous
with respect to Lebesgue measure, is nonincreasing, and satisfies the additional
requirements that th(f) is nondecreasing and sup,,oth(¢) = 1. With A(¢) = ¢~ !
the class §, , specializes to that considered by Berger, Bock, Brown, Casella
and Gleser (1977). For the more general class considered in the present papér; it
is shown that there is an interval [0, k, ,] of values of k (which may be
degenerate for small values of n — p) for which §, , is minimax and dominates
the usual estimator §, = X in risk.

1. Introduction. Assume that X is a p-dimensional random column vector
which is normally distributed with mean vector # and unknown positive definite
covariance matrix =. We observe X, and also independently observe the p X p
random matrix W, which has a Wishart distribution with n degrees of freedom and
parameter = = n~'E(W). It is desired to estimate § by an estimator (X, W) under
the quadratic loss

1 ,

(1.1) L(6(X,W);0,2) = m[(é‘(X, W) —0)Q(s(Xx, W) —8)]

where Q is a known p X p positive definite matrix. For this problem it is known
that the classical least squares, maximum likelihood estimator §y(X, W) = X is
minimax. It has often been conjectured that X is not admissible if p > 3. Recently,
Berger, Bock, Brown, Casella and Gleser (1977) provided the first explicit examples
of estimators which dominate X in risk in this context. These estimators have the
form

(1.2) 8.(X, W) =[1p - (M

X'W-x )Q—IW_I]X
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where n* = n — p — 1, A,(4) denotes the minimum characteristic root of a matrix
4, and ¢ > 0 is a nonnegative constant. A certain constant ¢, , depending on the
dimension p of X and on the degrees of freedom »n of W is analytically defined in
Berger, et al, [1977], Equation (2.18), page 768, and it is shown that if ¢, , > 0,
then for any ¢, 0 < ¢ <¢, p, the estimator 8.(X, W) dominates X in risk. However,
it is extremely difficult to evaluate ¢, , for any finite n and p, so Berger, et al,
resort to Monte Carlo simulation to evaluate ¢, , and find values of n and p for
which this constant is positive. Ignoring the very small probability that an extreme
error in the Monte Carlo simulations may have occurred, their work shows that X
is inadmissible for p > 3 and n — p large enough (usually n» — p > 5 is enough).

As noted in Berger, et al, (1977), the class (1.2) contains no admissible proce-
dures, since every member of the class (except §,(X, W) = X) has a singularity at
X = 0. Both for analytic reasons and based on risk simulations, they conjectured
that an estimator of the form

_ min(e, n*X' W X)A(QW/n*) 0

1.3 X, W) =|1
(13)  &(x, W) =|1, .

“wollx

would dominate §,(X, W) in risk. However, they were not able to prove that
8X(X, W) is minimax.

In an earlier paper, the present author [Gleser (1976)] showed that when a lower
bound, K, for A,(QZ) is known, estimators of the form

(1.4) 8,(X, W) =[1, — ch(X’W~'X)Q~'W~']X,

where A(f) : [0, 0) — [0, c0) is absolutely continuous with respect to Lebesgue
measure, th(t) is nondecreasing in ¢, sup,,oth(f) = 1,and 0 < ¢ < 2(p — 2)(n — p)
K/(n — 1) dominate 8,(X, W) = X in risk. In that paper it was also shown that if
no lower bound to A(QZX) is known, then no estimator of the form (1.4) can
dominate 8y,(X, W) = X in risk.

In the present paper, the methods of Gleser (1976) and Berger, et al, (1977) are
combined to prove the following result:

THEOREM 1.1. Consider the class of estimators
(1.5) 8 (X, W) =[1, — kh(X' WX\ (QW/n*)Q ~'W ' | X
where h(?) : [0, 00) —> [0, 00) is absolutely continuous with respect to Lebesgue
measure, and
(1) th(?) is nondecreasing in t;

(i) sup,5oth(?) = 1;

(iii) A(?) is nonincreasing in t.
Let k, , be defined by Equation (2.27). If k, , > O, then for any k,0 <k <k, , the
estimator 8, ,(X, W) dominates X = 8y(X, W) in risk, and hence, is minimax.

It is not difficult to show that the class of rules (1.5) includes both the class of
rules (1.2) and the class (1.3).



840 LEON JAY GLESER

2. Proof of Theorem 1. Let
(21) A=A(6, =) =[tr(QZ)|EX Y[ L(§ 1(X, W); 0, Z) — L(X; 6, Z)].

As in Berger, et al, (1977), superscripts on the expected value operator indicate the
random variable with respect to which the expectation is to be computed. The
quantity A = A(#, ) is the difference in risks between §; ,(X, W) and §y(X, W) =
X, weighted by the positive quantity tr(Q2). If A = A(d, 2) < 0 for all § and Z,
then §, ,(X, W) dominates 8y(X, W) in risk.

The initial steps of our proof closely follow those of Berger, et al, (1977). We
expand the quadratic loss of 8, ,, take expected values in the order E¥E¥, and use
the familiar technique of integration by parts [Berger (1976)] to obtain

EX[h(X'WX)X - 0)W ™ 'X] = EX[W(X' W~ 'X) tr SW ™!
+2hO(X' WX X WTIEW X,
where h)(f) = dh(f)/dt exists almost surely. These steps yield the result:
(2.2)
A= EXY{N[KNPA(X'WTIX)X'WTIQ WX = 2h(X' W IX) r SW !
—4nO(X'wTIX)X' W Ew X},
where A, = A\,(QW/n*). Next we note that
’ ~1
(2.3) xwalo 'wx <%V7%,
and thus, since th(?) < 1,
KA (QW /n*)RA(X'W ~'X)X'W™'Q "W =X < kh(X'W ~'X)/n*.

Also, since th(?) is nondecreasing,

0< %(th(t)) = h(t) + th®O(z),

so that
’ -1
(2.4) h(l)(X'W_lX) > _h_(X_.U_)_.
X'w-x
Substituting these results into (2.2), we' conclude that
(2.5)

’ -1 -1
A< EX'W{k?\l(QW/n*)h(X’W_'X) n—k,, —2uIWl+ 425_@’__2"_1”

X'w-x
For any square root -1 of 2, let
(2.6) Y=3"1X U=3"iWs":

and 1 1 1
'n=2_50 ¢=2§QE§_
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Then Y and U are statistically independent, Y has a p-variate normal distribution
with mean vector  and covariance matrix I,, and U has a Wishart distribution
with n degrees of freedom and parameter Ip. In terms of Y and U,

(27) A< EYE”{ ;,'%AI@U)h(Y’ | -2wUT 4 47%’”
Finally, let T'y be an orthogonal p X p matrix satisfying

(2.8) YTy = ((Y'Y)3,0,0,- - -, 0)

and let

(2.9 V=T,UT%, ¢y = T'yol'y.

Then the conditional distribution of V given Y is a Wishart distribution with n
degrees of freedom and parameter I,, independent of Y. Also

(2.10)

trt U '=trv~}, YUY =YYV Y, Y'UTY = Y'Y(V )
Let
(2.11) o= Dy o=0F)

It follows that
rpv| k / k -1 02
(2.12) A< E'E F)q(#)yV)h(Y Yv,) e 2t VT 4+ 4—0— .
1
Let r(¢) = th(¢). Then from (2.12), we obtain

2.13) A<n—’iEY{(Y‘Y)EV[ (YY,)A@)YV)(” —2uv- +4v1)”'

Let
B = A(oy) = M(Tyol'y) = Ai(¢) = A(QZ),

and let
1
* = 'B'¢Y
Then A ((Z*) = 1, and
(2.19)
kB L e A(E*V) 1_ga Kk
a<-2E {(—Y,Y)E [r(Y o) (2T et |

Hence to show that A = A(8, =) < 0 for all 4, =, it suffices to show that for all =*
with A;(Z*) = 1 and all values of Y'Y the following inequality holds:

(2.15) 7=EV{r(Y’ I)A(Z* )(ZtrV-‘—4—v—2—ni)}>0

U
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Except for the term r(Y’ Yv,), this inequality is precisely the inequality in Equation
(2.7) of Berger, et al, (1977). (For the class of estimators considered in Berger, et al,
(1977), r(¢) = 1 for all ¢.) Our problem is to account for the 7(Y” Yv,) term in (2.15).
To do so, we make use of a distributional representation previously utilized in
Gleser (1976).

LEMMA 2.1. Let V have a Wishart distribution with degrees of freedom n and
parameter 1,, and let V be partitioned as

%
(2.16) V=(':,‘} V‘Z),v“ XL Vg (p=1) % (p—1)
12 22

Let I’ = V12V2;7l for any square root sz% of V. Then v, = (V™Y),,, | and Vy, are
mutually statistically independent, v] ' has a xf_p +1 distribution, | has a (p — 1)-
variate standard multivariate normal distribution, and V,, has a Wishart distribution
with n degrees of freedom and parameter I,_,.

Proor. This is a well-known result easily proved by making the indicated
changes of variables in the density of V. []
Let ¥ ~! be partitioned as

e ol 12 _[w y12
( Vv 12)/ V22 ( V12)/ V22

similar to ¥ in (2.16). Using the well-known relationships between the block
elements of ¥ and of ¥ ! it can be shown that
(2.17) v, = vf(1 + l’szll), tr V=t Vy'+ o1 + l’V2;‘l)
and that
o'+ I IV
(I'Va) Vy
Note from (2.18) that, for fixed values of / and V,,, V is decreasing in v, in the

sense of positive definiteness, and that v,V is increasing in v;. Thus, for fixed
values of / and V,,

(2.18) V=

(2.19) M(Z*V)  isdecreasingin v, v,A(Z*V)  isincreasingin v;.
It follows from (2.15), (2.17), (2.18) and Lemma 2.1 that

ANE*Y k
(220) r=E" VZZE”'{r(Y’le)—'(D—)[2 tr Vo' — 20,(1 + rvy'l) — F”
1
Since r(Y'Yv,) is an increasing function of v;, we could try to use the following
well-known lemma to pull E*'[r(Y’ Yv,)] out of the expected value in (2.20).

LEMMA 2.2. Let g,(s) and g,(s) map the real line into the real line and let S be
any random variable. Then if g,(s) and g,(s) are either both nonincreasing in s or both
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nondecreasing in s,

Es[ gl(S)gz(S)] > Es[ gl(S)]ES[ gz(S)]-
Proor. This lemma follows by direct application of Lemma 1, (i) and (iii), and
Lemma 3 of Lehmann (1966). []

Unfortunately A, (Z*V)/v, times the quantity in square brackets in (2.20) is
neither a nondecreasing nor a nonincreasing function of v,. We thus try a more
indirect attack, attempting to pull E”'[A(Y"’Yv,)] out of the expected value in (2.20).
(Note that neither #(Y’Yv,) nor h(Y’Yv,) depend upon / and V,.)

Let g,(v) = Y'Yh(Y'Yv)), g(v)) = 2ME*Mtr V5;', and gy(v)) =
— 2\, (C* V) (1 + I’V '1). Each of these functions is nonincreasing in v, : g, is
nonincreasing since A(¢) is nonincreasing in ¢ and Y'Y > 0; g, is nonincreasing
because A,(Z*V) is nonincreasing in v, (see (2.19)); g; is nonincreasing because
0,A(Z* V) is nondecreasing in v, (again, see (2.19)). Now

AMNE*Y)

E”'{r(Y'le) .
1

[2tr V' = 20/(1 + l’Vzgll)]}

E*{Y' YR(Y' Yo\ (C*V)[2tr Vo' = 20,(1 + I'V3 1) ]}
E*[ gi(v))ga(vy)] + EV[ g1(v))8s(vy) ]
(2.21) > EU'[ 81(01)]E°'[ gz(vl)] + Ev'[ gl(vl)]Ev'[ 83(01)]

= Ev'[ 81(01)]{Ev'[ 8 (v)) + 33(01)]}

1

where the inequality follows from two applications of Lemma 2.2. The final
equality in (2.21) results by substituting the values of g,(v,), i = 1, 2, 3, and then
applying (2.17).

Similarly, using (2.19), the fact that r(#) is nondecreasing in ¢ while A(¢) is
nonincreasing in ¢, and twice applying Lemma 2.2, we find that

E"'(r(Y’le)Z\E*—V)(— k )]

| n*
» R EY)
s b gy - A )
1
— kA (S*V
(2.22) = E{Y'YA(Y’ le)vl}E"'{ _—nl*(?_l]
1

g E"'{Y'Yh<Y'Yv1>}E°-{v,}E"'{ -M}

n*v,

= Eo.{ Y’ Yh(Y/ YDI)}E"I{ _ k>\1(2* V) }’

(”*)201
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since

v 1 1
E*[v)] = E[1/X}, psi] =~ —

Hence,

Y'Yh(Y'Y MYV
I e s L E LU

1

where
(2:24) R(V) = n*(20, tr V™! — 4v,).

It now follows from (2.15), (2.20) and (2.23) that A < 0 if for all =* with
ME®) =1,

(2.25) EV["—'(?—V)(R(V) - ni)} > 0.

This requirement closely resembles Equation (2.7) of Berger, et al, (1977), except
that, in place of their p(V) =2tr V™! — 4v,/v,, we have R(V) = n*v,o(V).
Using the arguments above it can be shown that for every =*,

(2.26) EV{M( (V) - )} > EV{}\'—(?;-Q(R(V) —ni)}

1

so that k, , obtained from (2.25) will be less than or equal to the value of ¢, »
obtained in Berger, et al, (1977).

Since R(V) shares with p(V") the necessary invariance properties under orthogo-
nal rotation of ¥ by a matrix of the form

((1) 2)’ A:(p—1) X (p — 1) orthogonal,

the arguments of Berger, et al, (1977), can be applied to show that (2.25) holds if

0 < k <k, ,, where k, , is the solution to

| To(k) + Ti(k)  To(K) }
2.27 k = min , =
22D Eorrole
and where

To(k) = EV{R(V)o; [ 0p1g, (V) + (V) I5,(V)]},
(k) = EV{R(V)Dl—l(Du - bzz)lﬂk(V)},
To(k) = EV {07 [0, (V) + NM(W) g, (V) + MM, (V)]},
(k) = EV{Dl_l(vll - Dzz)lszk(V)}’
v,, is the first diagonal element of V,,, and
L,(V)=1-IL(V)=1 if R(V)<k/n*,

=0 otherwise.
This completes the proof of Theorem 1. []
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With the help of Dr. George Casella, the identical computer program, modified
only by replacing p(¥) by R(V), used in Berger, et al, (1977), to calculate the
values of their ¢, , was used to calculate values of k, , by means of simulation. The
resulting values of k, , appear in Table 1. Where k, , > 0, assuming that the
Monte Carlo simulation did not produce a gross error in accuracy (an event of very
small probability), Theorem 1 shows that X can be dominated in risk by any
8, (X, W) for which 0 < k <k, ,.

TABLE 1
Values of k, .

n

12 14 16 18 20 25 30
- 07 41 58 75 .87 120 126
- 100 145 179 202 225 278 285
1.46 211 278 3.10 339 4.15 428
- 138 258 347 398 437 525 558
36 287 393 470 527 6.51 692
- 244 419 512 574 741 814
122 386 556 628 864 9.16

[ -]
-
(=]

O 0NV HE WY
)
—

10 - 366 517 680 9.07 10.22
11 128 5.18 7.10 995 11.14
12 - 421 6.52 1044 12.06
13 94 6.25 1094 13.11
14 ---- 458 11.14 13.62
15 - 1073 14.19
16 - 1091 14.71
17 10.45 1423
18 9.30 15.29
19 14.84
20 14.52

3. Remarks. When compared with the corresponding values of ¢, , in Berger,
et al, (1977), the values of k, , are admittedly disappointingly small (being, at best,
90% of the values of c, ,). However, these values, even when applied in connection
with rules of the form (1.2) or (1.3), produce substantial improvements in risk when
compared to §y(X, W) = X, especially when 6’6 is small. In addition, since (1.5) is
a far broader class than (1.2) or (1.3), these constants allow for flexibility in the
form of the estimator of #. In the case when X is known, certain rules of the form
(1.5) with = replacing (n*)~'W are known to be generalized Bayes and admissible.
It is doubtful whether the same assertion can be made about the rules (1.5) when 3
is unknown, largely because of the use of A(QW/n*) in the formula for the
estimator.

Several very gross inequalities were used to obtain the results of this paper. The
use of inequality (2.3) probably does not lose us much, particularly since the
inequality is also used in Berger, et al, (1977). The inequality (2.4) is more serious,
amounting to adding the quantity

3.1 4EX YN (QW/n*)r (X' WX X' WIS W X ]
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to the risk of § ,(X, W). Note that r')(¢) = dr(#)/dt is positive, so that there is a
chance that a substantial improvement in risk for §, ,(X, W) over 8,(X, W) has
been ignored in using the inequality (2.4). Finally, the inequalities leading from
(2.20) to (2.25) add an additional inaccuracy to the assessment of risk of
O (X, W), as can be seen from (2.26). However, unless we want to make use of
more detailed information about the form of A(¢), these inequalities are unavoid-
able.

The principal accomplishment of this paper lies in demonstrating that a wide and
functionally flexible class of estimators can be used to dominate the usual estima-
tor 8y(X, W) = X in risk when = is unknown (and p > 3). Whether any particular
one of these rules, or any other rule, can be recommended for practical application
is still an open question.
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