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EXPECTED INFORMATION AS EXPECTED UTILITY

By Jost M. BERNARDO
Universidad de Valencia

The normative procedure for the design of an experiment is to select a
utility function, assess the probabilities, and to choose that design of maximum
expected utility. One difficulty with this view is that a scientist typically does
not have, nor can be normally expected to have, a clear idea of the utility of his
results. An alternative is to design an experiment to maximize the expected
information to be gained from it. In this paper we show that the latter view is a
special case of the former with an appropriate choice of the decision space and
a reasonable constraint on the utility function. In particular, the Shannon
concept of information is seen to play a more important role in experimental
design than was hitherto thought possible.

1. Introduction and notation. Maximization of the expected Shannon informa-
tion was proposed by Lindley (1956) as a sensible, but ad hoc, criterion for the
design of experiments “where the object of experimentation is not to reach
decisions but rather to gain knowledge about the world”. Stone (1959) and Fedorov
(1972, Ch. 7) have investigated the design of regression experiments using such a
criterion. By recognising the decision problem underlying a problem of statistical
inference, we intend to show that such a procedure is, in fact, another instance of
the general principle of maximizing expected utility. The argument lies entirely
within the Bayesian framework.

Indeed, let E be an experiment which consists of the observation of a random
variable X whose probability measure belongs to a family indexed by a parameter
0, and let ¥ = ¥(O) be some function of ® in whose value we are interested.
Moreover, let Pg be a probability measure which describes the personal opinions of
the scientist about ® before E is performed. After £ has been performed and x
obtained, the scientist’s opinions about ® should be described by the corresponding
posterior density pg(.|x). We have assumed, however, that the purpose of the
research is to make inferences about the value of ¥ = ¥(®) rather than about ©
itself; thus, the corresponding ‘marginal’ distribution p¢(.|x) describes the scien-
tist’s final opinions about the quantity of interest and constitutes, therefore, the
final product of the investigation.

Consequently, we claim, statistical inference about a quantity ¥ may be seen as a
decision problem, in the presence of uncertainty about ¥, in which the decision space is
the class of (final) distributions of V. This is by no means a generally accepted view.
For a nonBayesian approach see Blyth (1970).
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2. Expected useful information. The net result of performing E and obtaining
x with regard to the parameter of interest is to modify the scientist’s opinions from
Py(.) to py(.|x); the expected usefulness of the experiment could then be measured
by some appropriate expected ‘distance’ between these densities. Along the lines of
previous work by Lindley (1956), the expected information about ¥ = ¥(®) to be
provided by £ when the initial density is py(.) could be defined as

¥ _ x x p‘?(‘l’lx)
(M I*{E, pe(.)} = /px(x)/pe(¥]x) log Du(y) B

provided the integral exists. Clearly, in information theoretical terms, ¥ is a
‘garbling’ of ® and, as one would expect,

TueoReM 1. I'Y < I®, with equality if ¥ is a one-to-one transformation of ©.

Proor. Without loss of generality, one may assume 6 = {y, w} where w is some
nuisance parameter and indeed

P'PQ(‘P’ ""l x)

Pea(¥s @) Hds

I®{E, pe()} — I*{E, pe(.)} = fpx(x){f /Pga(¥, w|x) log

e 1o PE)
Tpu(y1x) log 2 d¢}dx

= [pe(¥) {HpX(xl‘P)Pg(wlx[/, x) log Palwly, x)

pa(wl¥)

since the double integral in brackets is the (conditional to /) expected information
about © which is known (Lindley, 1956, Thm. 1) to be nonnegative. Moreover, if ¥
is a one-to-one transform of ®, then I¥ = I®; for, clearly, (1) is invariant under
one-to-one transformations of the parameter space.

One way of describing the content of this paper is as a demonstration of how (1)
arises naturally in inference.

dwdx}dn[z >0

3. Proper utility functions. We have argued that the task of performing in-
ferences about y is a decision problem whose decision space is D = { py(.); py(¥) >
0, [py(¥)dy = 1}. To complete the specification of the problem, a utility function u
measuring the desirability of each pair {pe(.), ¥} must be defined.

Consider a scientist about to perform an experiment E in order to make
inferences about ¥. Furthermore, let # be the real function which describes the
utility u{ p}(.), ¢} obtained by the scientist if he reports the density function p}(.) as
his final conclusions after E has been performed, when y is the true (unknown)
value of the quantity of interest. (The superindex T in p}(.) identifies the reported
density). ,

After the experiment has been performed and x obtained, the scientist’s opinions
about 4, if coherently updated, will be described by the Bayes’ posterior density
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Py(.|x). Thus, if he decides to report p}(.) his expected utility will be
) Ju{ PY(), ¥} Po(¥]x)dy.

To maximize his expected utility, the scientist should report that density maximiz-
ing in D the integral (2), which will not necessarily be py(.|x), the one describing
his final opinions. Hence to be honest, the scientist’s (posterior) expected utility (2)
must be maximized at, and only at, py(.|x). For, otherwise, his optimal policy could
be to lie.

DEFINITION 2. A real function u, defined on D X ¥ is a proper utility function
if, for each density py(.),

SuPp;,(.)eDfu{P:i/(-): *P)Pw(‘l’)d‘l/ = fu{Pwp(-), ‘P}P\If(‘l’)d‘l/

and the supremum is only attained at p,(.).

Mostly in their discrete version, proper utility functions have been used, under
the name of proper scoring rules, to elicit personal opinions (Winkler, 1969; Savage,
1971). Recent survey articles of the area are Hogarth (1975) and Spetzler and Stael
von Holstein (1975). We prefer to use utility rather than score in order to underline
that we are just following the general Bayesian principle of maximizing the
expected utility.

Buehler (1971) and Good (1971) mention a number of examples of proper utility
functions. We shall next provide an argument which suggests that the logarithmic
proper utility function,

3) u{ PY(), ¥} = A log pl(¥) + B(¥)

where A4 is an arbitrary constant and B(.) an arbitrary function of ¢ is often the
more appropriate description for the preferences of a scientist facing an inference
problem.

4. A characterization of the utility function. A property of the utility function
(3) consists of the fact that the utility of reporting p}() only depends on the
probability density attached to the true value.

DerINITION 3. The function u is a local utility function if u{p}(), ¢} =
u{ p{(¢), ¢} for all values of y.

A referee pointed out to me that the requirement of locality could be viewed as a
likelihood principle for utility functions in that it requires the utility of the
probabilistic influence to depend only upon the probability density of the true state
and not upon the density of the states which could have obtained but did not.

Locality reduces the first variable of the utility function to a real variable. A
standard calculus of variations argument will be used to prove that, if u is smooth
enough for such an argument to apply (for precise conditions see e.g., Jeffreys and
Jeffreys, 1972, Ch. 10), the logarithmic is the only proper, local utility function.



EXPECTED INFORMATION AS EXPECTED UTILITY 689

To avoid difficulties owing to the fact that a density is only defined up to a set of
measure zero, we shall assume that given Pg and an underlying measure p with
respect to which Pg is absolutely continuous, the unique version of the probability
density at the point § is defined as pg(f) = lim, ,Pe{S,(8)}/n{S,(8)} where
S,(8) is a sphere of radius p centered on 4.

THEOREM 2. If u is a smooth, proper, local utility function and pl,() is a density in
L, then, for some constant A and function B,

u{ p}(), ¥} = 4 log pi(¥) + B(Y).
ProoF. Since u is local, u{p}(), ¥} = u{p}{(¥), ¥}. Thus, to maximize
Ju{p}(), ¥} po(¥)d} subject to the condition [p{(¥)dy = 1, one must obtain an
extreme of *

4) F{pY()} = [u{p¥(¥), ¥} pe(W)dy — A[ [pi(¥)dp — 1].
Moreover, for p}(.) to make (4) stationary, it is necessary that

‘aa;F {(PLO) + ay()}amo = 0

for any function 74(.) of sufficiently small norm. This reduces to the differential
equation

Dyu{ pi(¥), ¥} pe(¥) — 4 =0
where D,u denotes the first partial derivative of u. But, by definition, if  is proper
then the maximum of (4) must be attained precisely at py(.), so that a proper local
utility function # must satisfy the partial differential equation

Dyu{py(¥), ¥} pe(¥) —A =0
whose solution is (3) as stated.

The discrete version of Theorem 2 was proved by Good (1952) for the binomial
case, mentioned by McCarthy (1956) and proved by Aczel and Pfanzagl (1966) in a
different context. It may be argued that the preferences of a scientist faced with a
‘pure’ inference problem should be described by a local utility function. For, in
such a situation, one is only interested in the true value of y so that, when assessing
the worthiness of a scientist’s final conclusions, only the probability he attaches to
a small interval containing the true value should be taken into account. For
nonpathological posteriors, such probability mainly depends on the probability
density attached to the true value of .

We finally turn to the problem of selecting the best available experiment. The
utility one may expect from a coherent choice of a decision d € D in the presence
of uncertainty about ¢ is sup,fu(d, Y)p4(¥)d}. If an experiment E were performed
and x obtained, one could similarly expect to obtain a utility sup,
Ju(d, Y)py(Y|x)dy. Thus, the increase in utility to be expected if one performs the
experiment, the expected utility of the experiment, u*(E), is the expected value,
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over x, of the difference between these two expressions. Thus, using Theorem 2 we
have that, if preferences are described by a proper, local utility function then the
expected utility of an experiment E intended to make inferences about ¥ is u*(E) =
gl ¥{E, pe(.)}, where g is the expected utility of one unit of information about ¥.
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