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STRONG CONSISTENCY OF LEAST SQUARES ESTIMATES IN
DYNAMIC MODELS!

By T. W. ANDERSON AND JOHN B. TAYLOR
Stanford University and Columbia University

The least squares estimate of the parameter matrix B in the model y, =
B’x, + u,, where u, is an m-component vector of unobservable disturbances and
X, is a p-component vector, converges to B with probability one under certain
conditions on the behavior of x, and u,. When x, is stochastic and the
conditional expectation of u, given x; for s < ¢ and «, for s < ¢ is zero, then the
least squares estimates are strongly consistent if the inverse of A, = 37_x,x/,,
where T is the sample size, converges to the zero matrix and if the ratio of the
largest to the smallest characteristic root of A, is bounded with probability one.

Many statistical problems are concerned with estimating the parameter matrix B
in the model

(1) Yy, =Bx +u,
where u, is an m-component vector of unobservable disturbances and x, is a
p-component vector, ¢ = 1, 2, - - - . The model (1) is a first-order vector autoregres-

sive model when x, =y,_,, and a sequential control or sequential design model
when x, is a function of x; and y, for s < z. In the special case where X, is a set of
nonstochastic regressors and the u,’s are uncorrelated, the model reduces to the
classical linear regression model. The least squares estimate of B based on T
observations is given by B, = A7'S7_ x,y,, where A, = S7_ XX,

Here we prove that ﬁ,—»B with probability one under a specified set of
conditions on the asymptotic behavior of x, which covers many of the dynamic
applications mentioned above. The conditions are that A7' —0 with probability
one and the ratio of the largest to the smallest characteristic root of A; is bounded

with probability one.

THEOREM 1. Lety, = B'x, + u,, where B is a p X m matrix of parameters, X, is a
Pp-component vector, and w, is an m-component (unobservable) stochastic vector,

t=12--- . Let 9, be the o-algebra generated by (u, u,, : - -,
W, X, Xy, 0, X bt =12+, and let %, be the o-algebra generated by x,.

Let A, = 2. \x,X; and suppose that A is nonsingular with probability one and that
& tr A;' < oo for some q > p. Define B, = AT xy,. If
@) 6|%,_)=0and Gu,|F,_)=Z2,t=1,2, - -, with probability one,
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(i) lim,_ A7" = 0 with probability one,

(iii) the ratio of the largest to the smallest characteristic roots of Ay is bounded
uniformly in T with probability one,

then limT_,wﬁT = B with probability one.

ProoF. We want to show that ﬁT — B = A;'3ST_xu, converges to 0 with
probability 1. The proof for p > 1 and m > 1 is based on the scalar case p = 1 and
m = 1. Hence we consider the scalar case first.

The sum z; = 37_ 4, 'x,u, is a martingale because &[4, 'xu|F,_,] =
A '%,6 (4|%,_,) = 0 with probability one since 4, 'x, is bounded with probability
one. The variance of z; — z, (which is a martingale) is

(2) 5(ZT - Zq)2 = 62{s-q+l(ArAs)_lxrx:urus
= 6[2s=q+1A x2u2 + 2r=‘=q+22::=£1+l(ArAs)_l'x‘.r'x‘.st“ru.s‘

+E: =q+2 r=q+1(ArAs) xxsurus]
= 63,147 X2 < 64, 2.

The third equality follows from the fact that, for s <r

©) &(4,4,) 7 X xuu, = 6(4,4,) " %, xu6(u|%,_,) =0

The inequality in (2) follows from Lemma 1 of Taylor (1974). (See also Neveu
(1965), page 150.). Since 5Aq" < o by assumption, the sum z; —z, is a
martingale with a bounded variance, and, by the martingale convergence theorem,
converges with probability one (Feller (1966) page 236). The convergence of
A7 'ST_ x4, to zero with probability one, therefore, follows from Kronecker’s

lemma.
For p > 1 and m > 1 we write the ith column of B —Bas

4) A7'Z X, = [(tr AT)_IA ] [(tf Ar)” 2r=lxr u]
The jth component of the vector (tr A;)™'S7_ x,u, on the right hand side of (5) is
) Zeery

2 2 1 X

whose absolute value is less than the absolute value of =7_,x,u, /2 7-1%7. Since the
reciprocal of the jth diagonal element of A, is less than the jth diagonal element of

A, ~! (Anderson and Taylor (1976a), for example) the assumption & tr 4, < oo
1mp11es & (2 -1x j,) < . Hence, by the case of p = m =1 of the theorem

ST xu, /27 1x; converges to 0 with probability 1 and so does (5).

To complete the proof we must show that the elements of [(tr A;) 'A;]~" are
bounded with probability one. Let A; be the ith characteristic root of A, and let A,
and A, be the smallest and largest roots of Az, respectively. Then the ith character-
istic root of [(tr A7) 'A7]™! is equal to A,"'Z2_A; < pA~ '\, < pA;'A,. Hence, by
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assumption (iii) the roots, and therefore the elements, of [(tr A;) 'A;]”! are
bounded with probability one. [J

The following lemma shows that condition (ii) in Theorem 1 can be replaced by
alternative conditions.

LEMMA 1. Let A, A,- - - be a sequence of positive semidefinite matrices such
that A, — A,_, is positive semidefinite and

(6) YAy ©
for every y # 0. Then
™ lim, A7 =0.

Proor. Condition (6) implies A, is nonsingular for sufficiently large ¢ since
A,y # 0 for a linearly independent set of y. Let f,(y) = (YA,y)™' for y'y = 1, Then,
for every v, f,(y) is a non-increasing sequence such that

®) lim,_,, fi(y) = 0.
By Dini’s theorem the convergence (8) is uniform and hence

) max,, ., f,(y) = max,,.,(YAy) "' —>0;
that is, the maximum characteristic root of A, ! (which is the reciprocal of the
minimum characteristic root of A,) converges to 0, which implies (7). []

Lemma 1 and its proof imply that condition (ii) of Theorem 1 can be replaced
by: (iia) YA;y— o for every y # 0 with probability one; (iib) the smallest
characteristic root of A, diverges to infinity with probability one; or (iic) the
largest characteristic root of A;! converges to zero with probability one.

Theorem 1 applies to sequential control or sequential design problems in which
the regressors x, are chosen according to observations on x, and y, for s < ¢. The
primary advantage of Theorem 1 is that x, may be generated by a very general
stochastic structure which does not need to be specified as long as the stated
conditions, or their alternatives, are satisfied. These conditions will certainly be
satisfied if 7~'A, converges to a nonsingular matrix (with probability one), a
frequent assumption for weak consistency in regression models with fixed regres-
sors. However, the conditions will also be satisfied with more general asymptotic
behavior of x,.

Another implication of Theorem 1 is that the least squares estimates in the stable
vector autoregressive model are consistent under more general assumptions than
have been made previously (for example, Anderson (1971), Section 5.5), and
further that these estimates are consistent in the stronger sense. In this case
consistency of least squares follows directly from the strong consistency of the
moment matrix. To see this let x, = y,_, in equation (1). Then the following lemma
shows that conditions (ii) and (iii) of Theorem 1 are satisfied. For convenience we
consider the case where y, has the same first and second moments as the stationary
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distribution of y,. This implies that all of yo, ¥,, ¥, - - - have the same mean
vectors and covariance matrices.

LEMMA 2. Lety, =By, ,+u,t=1,2,-- -, and assume that the characteris-
tic roots of B are less than one in absolute value. Let ¥, be the o-algebra generated by
(upup, s » Uy, 5yt =12, -, and let %, be the o-algebra gener-
ated by y,. Assume that &()%,_,) = 0, &u)|F,_|) = Z, 6y, = 0, and & (y,y,) =
T, where T is the solution of T — BTB = X. Further assume that 32t 26y} <
and 32,t7*6u; < o0, i =1, - -, p, where y, is the ith component of y, and u, is
the ith component of u,. Then limT_,wT‘ I3T_\y.y, = T with probability one.

ProoF. The fourth-order conditions on {w,} imply =52t "2&ufu} < oo (by the
Cauchy-Schwarz inequality). Hence by the law of large numbers for martingales,
(Feller (1966), page 238) =T_,t~ 'u,,uj, converges with probability one and

T3] u,u, — o; with probability one, where g is an element of Z. Alternatively

stated, 7 ~'S7_ u,u, - T with probability one. Further,
(10)
12;-1“:“: T7'Z7..(y, — BY,_ )y, — By,_))
T [Zyy — B2y, — Z_yy-B +BZ_y,_y,_,B]
=T 'S vy, -B(T7 'S yy,)B+ B (T 'ZT_y,_u)

+ (T7'Z1.wy;_1)B — B'T~'(yo¥o — ¥7¥7)B.

Each element in the third and fourth terms on the right-hand side of (10) is a linear
combination of terms of the form 7~'X]_,y, ,_ u;,. Under the conditions of the
lemma =7_,¢~Y, ,_,u, is a martingale with varlance equal to v;0,=7_ 172, where
v; 1s the ith dlagonal element of I. Therefore 37_,¢7Y, ,_ 14, converges with
probability one, and, by Kronecker’s lemma, 7'~ 'Z =1Yi, 114, converges to zero
with probablhty one. The condition =%,z 2&y; implies S ¢~ 2E«Symyj,, and hence
DT ymyj, converges with probability one and y,y; /¢ converges to zero with
probability one. These results imply that the last three terms in (10) converge to
zero with probability one. Thus

(11) (limy, o T~ '270y,y:) — B(limp, ,T7'S7yy,)B =2
with probability one. Hence, lim,_ 7 ~'37_,y,y, = T with probability one. []

If T is positive definite, Lemma 2 implies that lim,. 7 ~'S7_,yy, is positive
definite, and therefore B, — B = (T~'S7_y,_,y,_)~'T " 'S7_,y,_u, converges
to 0 with probability one. The matrix I" will be positive definite if X is positive
definite or if model (1) represents a pth order scalar stochastic difference equation
(see Anderson (1971), pages 196-197). The conclusions for the scalar process of
arbitrary order also follow from the results of Hannan and Heyde (1972). Note that
Lemma 2 holds if the fourth-order moments of y, and u, exist and do not depend
on .
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For p = 1, Theorem 1 was implicit in Taylor (1974). Drygas (1976) proved the
strong convergence of ﬁT in the multivariate regression model by assuming that
A;'DT is bounded with probability one, where D, is a diagonal matrix with
SI_x%i=1,---,p,on the diagonal. Scalar theorems can then be used to prove
that D7 'S7_ x,u, — 0 with probability one, if D; — oo with probability one. With
A7'D; bounded with probability one, BT must therefore converge to B with
probability one.

Anderson and Taylor (1976a) showed that if x, is nonstochastic and the u, are
independently normally distributed with zero mean, then A;! — 0 is necessary and
sufficient for the strong consistency of flT. Lai and Robbins (1977) showed that
normality could be replaced by the boundedness of &[u?(log(l + |u,])'] for some
r > 1 as a sufficient condition for the case where p = 2 and x,, = 1. An unsettled
question is whether conditions (i) and (ii) are sufficient for Theorem 1.

Alternative conditions on the sequences {u,} and {x,} when x, is nonstochastic
yield other results.

THEOREM 2. Lety, =B'x, +u,t=1,2,- -, where B is an m X p matrix of
parameters, the X,’s are p-component nonstochastic vectors, and the u,’s are m-compo-
nent independently and identically distributed stochastic vectors with zero mean and
finite covariance matrix. If the smallest characteristic root of T ~'ST_ x,x, is bounded
away from zero, then ﬁ = (ST x,x))"'2T_ x,y, — B with probability one.

The theorem follows from a result of Chow (1966), pages 1484-1485, to the

effect that if u,, u2, - .- are indcpcndently and identically distributed with bu, =
0 and &u? = 0 < oo, t—l 2, . andaT,,t=1,---,Tis an array of real
numbers such that £7_,a%, =1, T=1,2,- - -, then

(12) limg,,, T~ "/?Z]_\azu, =0

with probability one. Gleser (1966) used this result to show that the usual estimate
of a diagonal element of X is strongly consistent.

THEOREM 3. Lety, = B'x, + u,, where B’ is an m X p matrix of parameters, X, is
a p-component nonstochastic vector and w, is an m-component stochastic vector which
is independently and tdenttcally dzstrtbuted and whose _components are generalized
Gaussian. If tf(S7_ x,x))"! = o(log™! T), then hmT_,a<> = B with probability one.

A random variable u is said to be generalized Gaussian if there exists an a > 0
such that for every real number r, &e™ < e*”/2 Theorem 3 follows from Chow’s
result (1966), page 1484, that if {u,} is a sequence of independent generalized
Gaussian random variables with bu, = 0, w,, t = 1,- - - , T, form an array such
that S7_,w?, = o(log™' T), T=1,2,- - -, then lim,_ 37_,wyu, = 0 with prob-
ability one. These two theorems were proved by Anderson and Taylor (1976b).
They and other similar results are also consequences of theorems in Stout (1974).

Acknowledgment. We thank the referee for suggesting the proof of Theorem 1
reported above. An alternative proof appears in Anderson and Taylor (1976b). The
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alternative proof is based on a multivariate generalization of Kronecker’s lemma
which was proved and shown, through a counter-example, to depend on a special
multivariate condition by Anderson and Taylor (1974) and, independently, by B.
D. O. Anderson and J. B. Moore (1976).
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