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THE SMALL SAMPLE DISTRIBUTION OF A MANN-WHITNEY
TYPE STATISTIC FOR CIRCULAR DATA

By W. J. R. EPLETT
University of the Witwatersrand, Johannesburg

The union-intersection method of test construction can be used to derive
from the Mann-Whitney rank test a test statistic for testing whether two
samples of observations from circular distributions come from the same popula-
tion. The null distribution of this test statistic will be investigated here. The
approach followed is to use the principle of inclusion-exclusion to obtain an
expression for the number of partitions of a positive integer which satisfy
certain conditions. This enables the probabilities for values of the circular
Mann-Whitney test statistic to be expressed explicitly in ferms of the probabili-
ties for values of the usual Mann-Whitney test statistic. Recurrence formulae
enabling computation of the distribution for small sample sizes are given. There
is a clear relationship between our work and results obtained by Steck for the
Kolmogorov and Smirnov statistics. These results can also be derived from the
present approach.

1. Introduction. Some discussion of a Mann-Whitney type test for circular data
and its distribution can be found in Batschelet (1965). Various properties of two
different Mann-Whitney type test statistics have been discussed by the author
(Eplett (1976)) including an expression for the asymptotic null distributions. The
relationships derived in that paper between these Mann-Whitney type statistics and
the Smirnov statistics are central to the present work where the concern is with
small sample sizes.

The results of Section 3 were suggested by the work of Steck (1969, 1971) and
Mohanty (1971) in connection with the Kolmogorov and Smirnov test statistics.
One of the results proved here may be regarded as a generalization of this work,
but is different to the result obtained by Kreweras (1965) from which the distribu-
tions of the Smirnov statistics may also be obtained (Mohanty (1977)). The
generalization arises from using the general form of the principle of inclusion-ex-
clusion as given, for instance, on page 90 of Berge (1971). The main result of
Section 3, Theorem 2, is an application of this generalization towards obtaining the
probabilities for the values of the Mann-Whitney type statistic. Theorem 2 is also
of purely combinatorial interest as it concerns the number of partitions of a
positive integer which satisfy certain conditions.

Section 2 contains preliminaries required for the rest of the paper together with a
result giving the range of possible values for the Mann-Whitney type statistic.
Section 4 discusses recurrence formulae for the null distribution of the test statistic.

Received February 1977; revised September 1977.
AMS 1970 subject classifications. Primary 62G10; Secondary 05A15, 05A17.
Key words and phrases. Mann-Whitney rank test, Smirnov statistics, principle of inclusion-exclusion,

determinant, generating function, recurrence relation.

446

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RINORY

vavv.jstor.oFg



SMALL SAMPLE DISTRIBUTION 447

2. The Mann-Whitney type test. Let X, < - - - < X,, be an ordered sample of
m independent, identically distributed random variables with a continuous distri-
bution function F and Y, < - - - < Y, be an ordered sample of n independent,
identically distributed random variables with a continuous distribution function G
(if the random variables are defined on the circle, then the ordering is by angular
displacement relative to some fixed point on the circumference of the circle). We
shall use R; to denote the rank of X; in the ordered combined sample of
N(= m + n) random variables. Then the usual Mann-Whitney test statistic is

Wy(R) =Z7L,R;  for R=(Ry,---,R,).
Suppose that R = {(r}, - - -, r,,): r,integers, 1l <r, < - <r, <N} and that
§ is the group of transformations of R onto itself generated by the two transfor-
mations

g:(rp---,r)>N+1—-r, - ,N+1-r)
and
g:(rp, - ,r)>r—L--,r,—1) if r >1,
(rp- - r)>(—=1---,r,—1,N) if r =1
Then we shall investigate the distribution of the statistic
(1 év(R) = maxgeg{ WN(g(R))}’

under the assumption that F() = G(*).
If F,(2) and G,(z) are used to denote the empirical distribution functions for the

X’s and Y’s, then the usual Smirnov statistics are defined by
D*(m, n) = sup,{E,(2) — G,(2))
D ~(m, n) = sup,{G,(z) — F,(z)}
D(m, n) = max{D *(m, n), D ~(m, n)}.
One easily verifies (cf. Eplett (1976)) that

(2) & = max{Wy(R) + mnD *(m, n), m(N + 1) — Wy(R) + mnD ~(m, n)},

where £y in this case is a linear transformation of the statistic used in that paper.

The largest value which £, may assume is clearly the same as the largest value
which W), may assume. The least value which £, may assume seems less obvious
and is derived using elementary number theory.

PROPOSITION 1. The largest value attained by £y is m(N + n + 1)/2 and the
smallest value attained by &y is (N(m + 1) + m — d)/2 where d = (m, n) is the
g.c.d. of m and n.

PrOOF. It is required to show that
(€) ming cgmax,eo{ Wy(g(R))} = (N(m + 1) + m — d)/2.
Without loss of generality the problem may be reduced to finding the least possible
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value of & for those R € R for which Wy(R) > Wy(g(R)) for all g € §. Form
(2) this last condition is equivalent to

mnD*(m,n) <0 and mnD ~(m,n) < 237_,R, — m(N + 1),

which, using Theorems 2.1 and 2.2 of Steck (1969) to express mnD *(m, n) and
mnD ~(m, n) in terms of the R;, becomes

@) Ni < mR; <237 \R, — N(m+ 1) + Ni i=1--,m

This suggests considering R, =< Ni/m >, i=1,---,m, where <x > de-
notes the smallest integer greater than or equal to x(—[— x] in standard notation).
Then =™ R, = N + ="' < Ni/m > . An argument often used in studying the
Dedekind sum is employed in order to obtain an expression for the last term on the
right-hand side. )

Put ((x)) =<x > — x, so that ((x)) is periodic with period 1, and consider
=m - ((Ni/m)). Then, since (m, n) = d implies that (m, N) = d, it follows that in
the set of residue classes {Ni: i =1,---,m — 1} each nonzero multiple of d
appears d times and O appears d — 1 times (page 32 of Le Veque (1965)). Thus

ST ((Ni/m)) = dzlkk<m—1,d|k((k/m))
=(m—d)/2.
In consequence,
m V< Ni/m >= (N(m—1))/2 + (m — d)/2

i=1
and hence
"R =(Nm+1)+m—d)/2

The upper bound on mR; from (4) then becomes (m — d) + Ni for i =
1, - -,m and since R, = < Ni/m > does satisfy this upper bound, it gives the
minimum value for £, over R (and is unique up to orbits of §). This result is
intuitively acceptable, since the smallest value of £, occurs when the ranks of the
X’s in the combined sample are evenly spaced.

From (2) it follows that

5) P(¢y <e) =3,P(Wy(R) = t,mnD *(m, n)
<e—t,mnD (myn)<e+t—m(N+1)),

where the range of summation is given by m(N + 1) — e <t <e. Using the
theorems from Steck mentioned previously, (5) may be written as

(6) Py <e)=Z2,P(Wy(R)=1t;

(iN—-(e—t)/m<R<(e+t—(m+1—-—i)N)/mi=1---,m).
This last expression suggests determining W(b, c, ¢) which equals the number of
ways the event {37_ R, = #; b, <R, <¢,i=1,- - -, m} can occur in the ordered
combined sample, where b = (b;,- - - ,b,)and ¢ = (¢}, - -+, ¢,,) are two increas-

ing sequences of integers such that i — 1 < b, <¢ <n+ i+ 1. The numbers
W(b, c, t) count the number of partitions of ¢ subject to the restrictions we have
imposed.
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3. A generating function for W(b, c,?). If T, =R, —i,u;=b, — i+ 1,0, = ¢

—i—=Li=1---,mandw =1t — (m(m + 1))/2, then

{ZLiR=t5,<R <c,i=1,---,m)
if and only if

(ZrTi=wiu <T,<v,i=1---,m)
and 0 < 7, < - - - =T, < n. The number of vectors of integers which satisfy the
second of these conditions will for convenience be denoted by N,,(u, v, w) (Where
u=(up, - u,)andov = (v, - -, v,).

The main result is stated in terms of the generating functions
Ny(u, v, z) = ZL_oN,,(u, v, w)z¥
and
7*(m, n, z) = L _om(m, n, w)z"
where m(m, n, w) equals the number of ways in which the event {37 R, = w, 1 <
Ry <:-- <R, <N} can occur and is just (ﬁ)P( Wy(R) = w). Both N} and 7*
are polynomials since only a finite number of terms in the summation are nonzero.

THEOREM 2. If the components of the m X m matrix (d(i, j)) are given by

@) d(i,j) = 2B D=+ Dgx(j — i + 1, ¢, — b —2,z),
then
®) N3(u, 0, 2) = det{(d(i, )))-
The generating function for the numbers W(b, c, ¢) is then obtained from
9) W*(b,c,z) =2, W(b, c, )z" = Mm+D/2N*%(y o, 7).

The significance of Theorem 2 is that using (9) together with (6), the probabilities
for £y can be explicitly expressed in terms of the probabilities for W,,. The actual
expression is rather complicated but seems to be a promising step towards obtain-
ing useful results about the distribution of £, using material about the usual
Mann-Whitney statistic W,,.

Let us make a few preliminary remarks about the form of the matrix defined by
(N.Ifi—j>1lorc — b < 1,thend(i,j) = 0.If i = j + 1, then d(i, j) = 1 since
we take 7*(0, n, z) = 1 for n > 0. Thus the matrix (d(i, j)) has the same form as
those obtained by Steck in connection with the Kolmogorov and Smirnov statistics.
Since the d(i,j) are members of the polynomial ring over Z, caution must be
exercised in applying the standard results about determinants of matrices whose
entries are elements of a field.

The principle of inclusion-exclusion is used to derive Lemma 3 from which
Theorem 2 may then be deduced. As usual, Z denotes the set of integers. Suppose
that X* is a function mapping the finite subsets of Z™ into a commutative ring
such that if 5,, &, are two such disjoint subsets, X*(S, U S,) = X*(5)) + X*(5,).
The function X* is said to be multiplicative if there exist functions
X*)y, - -+, (X*),, suchrhatif /;,- - -, [, >0,/,+--- +I, = mand Z(i) c Z*,
then X*(Z(1) X - - - X Z(k)) = 7 (X *),(Z(), and we shall write (X*),(Z(3)) as
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X*(Z(i)). The number of elements in a finite subset S is denoted by |S|.

Let x,(#, v) = {(x}, " * -, x,,): x; integers, 0 < x; < - - - <x, <n, ¥, <x; <
v,i=1,-+-,m}. The sets £(i,j) are defined for 1 <i <j <m by £(,)) =
{(x5 - -+, x): x, integers, v; > x; > - - - > x; > u;} (which will be empty if v, —

u; < j — i — 1). By convention take X*(£(i, i — 1)) = 1 and otherwise X*(£(i, /)
=0forl <j+1<i<m

LeEMMA 3. If the components of the m X m matrix (d(i, j)) are given by

(10) d(i,j) = X*(£(i, /),
then, if X* is multiplicative,
(11) X*(Xn(u, v)) = det{(d(i, 1))}
ProOF. The matrix (d(i, j)) is of the same special form as that of Theorem 2. To
each subset of elements on the subdiagonal {d(i + 1, ) =1:i=1,---,m— 1}

there corresponds at most one nonzero term in the determinant containing these
and only these elements on the subdiagonal as a factor. By considering the
structure of these terms we find that

det{(d(l’.]))} = 'I?=1(_l)m_k20=io<i,<---<ik=m77vk=ld(iv-—l + l’ iy)’

and in view of (10) and X* being multiplicative we have

(12) det{(d(i,j))} = ’I:=1(_l)m'—k20=io<il<-~~<ik=mX*(q(i0’ IR ik))’
where

g(i0,~--,ik)={(x,,--',xm)EZ'”:ui<xi<vi,i=l,'-',m;

V;
-1

The principle of inclusion-exclusion yields that the right-hand side of (12) equals
X*(x,n(u, v)) and the lemma is proved.

Suppose that f(x,, - - -, x,,) = g(x;) + - - - +g(x,,), where g is a function map-
ping Z into itself. Then if X*(&) is defined as the generating function for the values
of f obtained when f acts on S, that is X*(§) = =, sz, it follows that X* is
multiplicative and Lemma 3 applies.

To prove the theorem, apply Lemma 3 to the case where X* is the generating
function for f(x,,« - -, x,,) = x; + + * -+ +x,, over subsets S of Z™. Notice that
for integers x, and i < j,

X _ g > >x >u,v=1---,k}

ShmiXe = 0, w<x > >x <y
if and only if
mize=Q - (U — i+ D(y - 1),
1<z, <+ <z; <, —y+ 1,
wherezk=xk—uj+1,k=i,---,j.Then

X*CG)) =Zm(j— i+ Lo, —w—j+ik—(—i+1)(y— 1))z~
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But the nature of 7 and u; ensures that
207D Dg*(j — i+ 1,0, — uy— j + i, 2)
=S —i+ Lo —w—j+ik—(—i+1)(y—1)z%

and so substituting for », and v, in terms of b, and ¢;, Theroem 2 follows.
Suppose we apply Lemma 3 when X* is defined by X*(5) = |5]| for finite
subsets & of Z™. Then

X*E) =[£G

_(oi—ttj.+l)
j—i+1 ‘+’

(9. =() i res<
=0 if ¢ <s.

where

Substituting for %, and v, in terms of ; and ¢;, (11) gives

weor-aef (2151

which is the expression obtained as Theorem 4.1 of Steck (1969).

Restricting X* to subsets of integers is for convenience and such restrictions may
be removed without affecting the validity of the proof of Lemma 3. For instance,
suppose that X* is the distribution of (U}, - - - , U,,), where the U; are independent
random variables uniformly disributed over [0, 1] and we require an expression for
Py, < U? <v,i=1,---,m)where U? is the ith order statistic of the sample
and u;, v; are now real numbers lying between 0 and 1. The arguments of Lemma 3
still hold and

X*L(>i, /) = P(o; >U; >+ - >U >u)
= {( —wy;""}/ G- i+ DL,

where (x), = max(x, 0). This provides another proof of Theorem 2 of Steck
(1971).

Using the principle of inclusion-exclusion offers a unified approach to these
results and gives every term in the determinant a probabilistic (or combinatorial)
meaning.

Returning to Theorem 2, we use (8) to express the result in the form

(13)  Ni(w0,2) = 20 (= )" Bomicic - cimmz 21D

k *(; — 7 — —
Xaf ¥ (i, = by ¢ o1 — b, —2,2),

v—1

from which we use (9) to obtain an expression for the numbers W(b, c, £) in terms
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of the #’s as

(14) W(b, ¢, 1) = Spo (= 1) Bosicinc - <lpmmB0mjocii< - iem1

7y =1‘77(iy LG +1 T bi, -2, _jv—l)’
where
Y= t— (m(m + l))/2 - 2I:—l(bi,, - lv)(lv - iv—l)' h
In order to apply the results to obtaining the distribution of £, the probabilities
can be obtained from W(b, c, t) by dividing by (IIX ) and substituting in (6). The
values of b, and ¢; depend on ¢ and e and are given by
b, = max([(iN — e + t)/m],i — 1),
g=min(<(e+t—(m+1—-—i)N)/m>,n+i+1),
i=1--,m
The values of w(m, n, w) can be obtained from tables of the exact probabilities
for the Mann-Whitney statistic (remembering to convert from probabilities to
integers) or directly from the recurrence formula #(m, n, w) = «#(m — 1, n, w — N)

+ @(m, n — 1, w). Hence (14) provides a way of evaluating the probabilities for &y
—although this appears to be a rather cumbersome procedure.

4. Recurrence relationships. A recurrence formula for N} may be obtained by
expanding the determinant in Theorem 2 by the mth column to obtain

(15) N,ﬁ(u, 0, z) = 'I:l=1(— 1)k+lN:;—k(u’ 0, Z)'”*
c(ky Op_ gy — Uy, — k + 1, 2)z¥0n =)

or equivalently
(16) N, 0, W) = Zp_ (= D) ZIN, (4,0, w = D)7

: (k’ Om—icl — U — bk + 1,0 — k(u,, — 1))’
where in N_,(u, v, z) and N, _,(u, v, w), u and v are reduced to their first m — k
components and

No(u, v, w) =0 if w>0

=1 if w=0,

so that N§(u, v, z) = 1. Since the 7’s can be obtained along the lines described in
Section 3, (16) provides a way of generating values of N, (u, v, w).

There is another recurrence formula for W(b, c, t) which does not involve the
7’s. Write W(b, c, t) in more detail as W(m, n, b, c, £). Then, if S; = R, — R,
i=2,---,m, W(m,n,b, c, t) equals the sum over R, of the number of vectors
(Sy - - -, 8, for which

(a) S; are integers, 1<§5,<---<§,<N-R;;

®) b— R, <S;<c¢—R, i=2---,m

(¢) ZimaSi=1t— mR,,
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which is just W(m — 1,n— 1 - 1,b(R)), ¢'(R), t — mR,) where b'(R)) =
(b2_ Rl" c ’bm _Rl)andc,(") ‘=(CZ_R1" C s Gy T Rl)‘Then

W(m, n,b,c,t) = 221'_',,”_11”"1‘ ~-1,n— R, + 1, b'(R), ¢(R), t — mR)),
which enables us to generate th¢ numbers W(m, n, b, ¢, t) from the values of
W(l, n, b, c, t), which are obvious. An observation which might help to simplify
computation is that for any real vectors b, ¢, one may always replace b, ¢ by
b, = max([b,],i — 1)

i

¢=min(<¢>,n+i+1) i=1---,m,

1

so that W does not depend on n.

Finally, let us note that our results may be related to_the null distribution of
another Mann-Whitney type test statistic. Suppose that § is the subgroup of §
generated by g, and put

gN = maxge@{ WN(g(R))}a
then discussion of the null distribution of £, follows the same lines as that for &
and in particular W(b, c, #) can be used by settingc; =n+ i+ 1,i=1---,m
The statistic £y, can also be used for testing against the general alternative
hypothesis that F(+) # G(*).
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