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WEAK CONVERGENCE OF SOME QUANTILE PROCESSES
ARISING IN PROGRESSIVELY CENSORED TESTS'

By PranaB KUMAR SEN
University of North Carolina, Chapel Hill

For progressive censoring schemes pertaining to a general class of (para-
metric as well as nonparametric) testing situations, one encounters a (partial)
sequence of linear combinations of functions of order statistics where the
coefficients are themselves stochastic variables. Weak convergence of such a
quantile process to an appropriate Gaussian function is studied here, and the
same is incorporated in the formulation of suitable (time-) sequential tests
based on these quantile processes.

1. Introduction. Let X, - - - , Xy, the survival times of N(> 1) items under /ife
testing, be independent random variables (rv) with continuous distribution func-
tions (df) F, - - -, Fy, respectively, all defined on the real line (— o0, o). In a life
testing problem, the smallest observation comes first, the second smallest next, and
so on, until the largest one emerges last. Thus, the observable random variables can

be represented as

(1~1) {(ZNI’ QNl)a ) (ZNN’ QNN)}
where Z,; is the jth smallest observation among X, - - - , Xy (1 <j <N) and
(1.2) Zy = X, for j=1,---,N;

by virtue of the assumed continuity of the F,, ties among the X; (and hence, the
Z,;) may be neglected, in probability, so that the Qy; are uniquely (in probability)
defined by (1.2) and (Qy;, * -+ , Qyn) represents a permutation of (1,- - -, N).
Since a complete collection of (1.1) demands the span of the experimentation until
Z,y is observed, while practical considerations often set time and cost limitations
on the duration of experimentation, the experiment may be terminated at the rth
failure Z,,, where

(1.3) r=[Np] +1 forsome 0<p <1

([s] being the largest integer contained in s). Thus, here, the observable random
variables are

(1.4) ZP = (Znis "+ * 5 Zy,) and Qg) = Oy " > Ow)-
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(We also know the complementary set QY — QY, but without any idea of the
order in which the elements appear.) For testing suitable statistical hypotheses
concerning the df’s F,, - - - , Fy, a terminal test based on (Z{, Qf) is termed a
censored test; we denote the corresponding test statistic by Ty,.

In a progressive censoring scheme (PCS), the experiment is monitored from the
very beginning with the objective of an early termination (prior to Zy,) whenever
statistically feasible, i.e., one observes Ty, at each failure time Zy, (1 <k <),
and, if for some k (< r), Ty, provocates a clear statistical decision in favor of one
of the hypotheses, experimentation is terminated at that time-point; if no such
k(< r) exists, the experimentation is stopped at the rth failure Zy, along with an
appropriate statistical decision. Thus, by constitution, a PCS test is based on the
entire partial sequence .

(1.5) {z 0,00 1<k <r},

and is time-sequential in nature. Since the updated sequence {7y, 1 <k <r}
involves dependent random elements and the PCS involves repeated testing on
these dependent statistics, statistical analysis of such a problem often becomes
complicated. In this context suitable invariance principles for {7y, 1 <k <r}
provide us with convenient tools for formulating a PCS test and studying its
(asymptotic) properties.

In the context of nomparametric life testing, Chatterjee and Sen (1973) have
studied PCS tests based on a general class of linear rank statistics; the theory rests
on an invariance principle for PCS linear rank statistics. For the case of F,
= ... = Fy = F involving an unknown parameter  (form of F assumed to be
specified), Sen (1976) has constructed PCS tests for Hy, : § = 6§, vs. H, : § # (or >
or <) 6, based on PCSLR (likelihood ratio-) statistics; here also, the theory is
based on an invariance principle for the PCSLR. The object of the present
investigation is to focus on a general class of location, scale and regression models
where the PCSLR statistics yield suitable quantile processes (QP) and to develop
suitable invariance principles for such PCQP’s. These models are introduced in
Section 2 and the corresponding PCSLR statistics are derived and incorporated in
the construction of appropriate PCQP’s. By nature, such a PCQP involves a partial
sequence of linear combinations of functions of order statistics with stochastic
coefficients depending on the various censoring stages. Further, the distribution of
these stochastic coefficients is generated by the classical permutation distribution
arising in the theory of rank tests and this enables one to study the limiting
behavior of PCQP’s under certain regularity conditions which are less stringent
than the ones pertaining to the asymptotic normality of linear functions of order
statistics (as has been studied by Chernoff, Gastwirth and Johns (1967), Stigler
(1969) and Shorack (1972), among others). Invariance principles for the PCQP are
studied in Section 3. The last section deals with some applications of the main
theory to some time-sequential tests.
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2. A class of PCQP’s. Let ® be an open interval containing 0 and let
{f(x; 8), 8 € ©}be a family of absolutely continuous probability density functions
(pdf), and for every f: —o0 < x < o0, let us denote by

(2.1) g(x) = — (3/3)log f(x; )|, and
G(x) =[1— F(x; 0)] "' ®g(z)dF(z; 0)

where F(x; ) = [~  f(z; 0) dz. We conceive of the model where the df F, admits
of the pdf f, and

(22) fi(x) = f(x; A(c; — ¢y)), —0 <x < o0, 1<i<N,
where ¢, - - -, ¢y are given constants (not all equal), &y = N 7'3Y_,c, and A is an
unknown parameter. We intend to test .

(2.3) Hy:A=0 vs. H, :A% (or > or <)0.

Let us also denote by

(24) Ci=3N(¢—¢&) and ct=Cy'(c—¢&), 1<i<N,

so that ¥ ¢k =0 and 3Y (c%)*> = 1. Then, the likelihood function for

i=1 i=1
(ZP, QF) is given by
(2.5)

LN,k(Z%c)9 Q%‘)) = H,:'C-lfQN,(ZNi)szy=k+l[l - FQN,(ZNk)]
= Hlf=|f(ZNi§ A(CQN, - EN))H?,=k+1[1 - F(ZNk; A(C'Q,,,, - C_N))]'
Defining Cy and the cf; as in (2.4), we have from (2.5)
T = CN"{(—a/aA)log Ly, k(Z%‘), QS{/C))IA=O}
= 2o 160, 8(Z) + Oy 'Zlisi[1 = F(Zys 0]

(2.6) x {(—3/08)/2, A(x; Acg, — Cv)) dxlsmo)
= 3160, 8(Zw) + Ziii[1 = F(Zys 0)]7'{ /5, 8(:)(x; 0) dx) e,
= 3 1%0,8(Zn) + G(Zy)Z - s 1Cho,,
= S icto,[ 8(Zy) — G(Zy)] (as ENicfi =0).

Note that the differentiation under the integral sign in (2.6) is permissible under the
assumption that there exists an open interval ® (containing 0 as an inner point)
such that f(x; @) is a continuously differentiable function of # and for every
0 € 0, |(3/30)f(x; 8)| < U(x) where [*_ U(x)dx < co. For the time-being, we
make this assumption. Also, conventionally, we let Ty, = 0 with probability 1.
Note that

(2.7) Ty =Tyy = Z{LICI’GQMg(ZNi) = zi‘\;lc]fﬁg()(i)'
Thus, the LMP (locally most powerful) test statistic based on (Z%), Q¥) is Tj,, and
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in the setup of progressive censoring, the sequence {7Ty,; 0 < k < r} relates to a
sequence of linear combinations of functions of order statistics with the coefficients
{c¥o, )} all stochastic in nature. By reference to Hajek and Siddk (1967, pages
70-71), we may remark that the model (2.2) includes, as special cases, the classical
two-sample location and scale models as well as the so-called regression model in
location and scale.

We are primarily concerned here with weak convergence of suitable stochastic
processes constructed from the partial sequence {Ty,; 0 < k < r} where r satisfies
(1.3). In statistical applications we often face some related PCQP’s which we pose
below.

Note that under the usual Cramér-regularity conditions, [*_ g(x)dF(x; 0) = 0,
so that by (2.1) )

(2.8) G(x)=— {1 — F(x;0)}~'1* . g(2)dF(z; 0), —o0 <x < o0.

Let now u(?) be equal to 1 or 0 according as ¢ is > or < 0, and let

29 Sy(x) = N7IZY_u(x — X)), —o00 <x < 00

be the empirical df. We define :

(2.10) Gy(x) = - {1- SN(x)}_lf"_wg(x)dSN(x), x <Zyy,
= g(Zyn)s X > Zyy.

Then, in (2.6), we replace G(Z,;) by Gy(Z,,), and obtain a related sequence

(2.11) T =0 k=0,
= 2].'{=1C13QN,[ g(Zy;) — 6N(ZNk)]’ 1<k<N-1,
= Tyn—1s k = N.

Note that one can rewrite Ty, (1 <k <N — 1) as
1
(2.12) The = ioscio,| 8(Zn) + 5 The8(Zu)]

1
= 2?-18(21\/;')["1’:@”, + N__EZ’;-ICI‘\;QM:]’

so that it is a linear combination of a function of order statistics with stochastic
coefficients depending on the censoring stage.

We conclude this section with the asymptotic stochastic equivalence of the two
sequences {Ty,; 0 < k <r} and {T,; 0 < k <r}. We specifically provide the
proof for the null hypothesis situation and we shall see in Section 3 that the
conclusion remains true for contiguous alternatives. We denote by Fy(x) = F(x; 0)
and consider first the following.

LEMMA 2.1. Let {dy;, 1 <i < N; N < 1} be a triangular array of real numbers
satisfying

(2.13) SV dy;=0 and S d7 =1
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Also, let g = q(1) : 0 <t < 1} be a continuous, nonnegative, U-shaped and square
integrable function inside I = [0, 1]. Finally, let Q = Q- -+, Qy) take on each
permutation of (1, - - -, N) with equal probability (N!)~'. Then

(2.14) P{maxl<k<N—lq(k/N)lzlic=ldNQ,~l > 1} < [84%(¢) dt.
Proor. Let
(2.15) Uy =(N - k) 'S*_dy, for k=1,---,N—1.

Then, it follows from the results of Sen (1970) and Serfling (1974) that if &), be the
uniform probability measure over the set of N! permutations of (1,---,N), then
under Py, { Uy} is a martingale. Let

(2.16) b = (N = k)q(k/N), 1<k<N-1

Then, by the U-shapedness of g, there exists an a : 0 < a < 1, such that (N -
k)q(k/n)is N in k for 1 < k < Na. Hence, by the Chow (1960) extension of the
Héjek—Rényi inequality,

(2.17)  P{max, (,cnaa(k/N)[SE 1o > 1}

= P{max, c;.c ya/tmi| Uni| > 1}

< {hI%IlE(UI\ZIl) + E;cl\:th%lk[E(UAz'k) - E(UAzrk—l)]}

{NYq(1/N) + S¥2g?(k/N)[(N = &)/ (N = 1)(N = k + 1)])
N~'ZPg*(k/N) (as (N—k)/(N-1)(N—k+1)<N~', k>1),
[og* () dt, as q is U-shaped.

Since 2 1dyg, = — ;4 1dyg, | <k < N — 1, the case of Na <k < N — 1 can
be reduced by reflection and an inequality for this complementary part be obtained
in the same manner. []

In particular, if we let g(f) = K~',0 < ¢ < 1 where 0 < K < o0 and choose K
large, we obtain from (2.14) that

(2.18) max; < n|Z4_1dyg| = 0,(1)  uniformlyin N.

Note that if the X; are i.i.d. with df F, then by the Glivenko—Cantelli lemma, as
N->oo,
(2.19) max, ¢, v Fo(Zyi) — k/N|—-0  almost surely (a.s.).

LEMMA 2.2. If the X; are iid. with df F,, then under (1.3) and [| g|dF, < oo,

<
<

(220) max, |G (Zy) + (N — k)—12’§=1g(ZN,.)| -0 as.as N o oo.

ProOOF. First note that under the hypothesis of Lemma 2.2,
(221)  SUP_ ool /T 0 8(X)dSN(X) = [Z o, 8(x)dFy(x)| >0  as.as N —oo;

the proof is straightforward (see, for example, Basu and Borwankar (1971)), and
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hence, is omitted. Secondly, under (1.3), r/N - p; 0 <p < 1,
(2.22)

max, <, /{1 = Fo(Zy)}N/ (N — k) = 1]>0  as.as N — o0; by (2.19).
The rest of the proof follows from (2.8) and (2.20)-(2.22). ]

Note that for iid. X}, - - -, Xy (with df Fp), QW = (Qu1 - * * » Qnn) takes on
each permutation of (1, - -, N) with equal probability 1/N! Thus, by (2.6),
(2.12), (2.16) and (2.20), we obtain that under H, and (1.3)

(2.23) max1<k<r| T — Tnl

— 1
< {maxlgk<rlzlf=lcﬁgm|} {max|<k<r|G(ZNk) + _N___k2ﬁ=l g(ZNa)I}
-0, in probability.

With these results at our disposal, we are tempted to consider a more general class
of PCQP’s and then to study invariance principles for this class, leading to similar
results for { Ty, } as special cases.

3. An invariance principle PCQP. Instead of considering PCQP’s derivable
from some PCSLR statistics, we study here a broader class of PCQP’s.

Let J = {J(x), —o0 < x < oo} be absolutely continuous (on finite intervals)
and be a difference of two nondecreasing and square integrable (with respect to Fy)
functions, so that

(3.1) 82 = [ _JHx)dFy(x)(< ).

Further, let {dy,, - - - , dyy; N > 1} be a triangular array of real numbers satisfy-
ing the conditions:

3.2)

Sdy; =0, ZNdi =1 and max,_yldy|—>0 as N-oo.
Finally, let {Z{, Q%®, 1 < k < r} and r be defined as in (1.3) and (1.4), and let

(33) Cn=0, k=0
= 2’;=]J(ZNi)[dNQM + F.l_-lc-zl‘:-ldNQNa]’ ] < k < N - l

NN—1° k=N.

Our primary concern is to develop an invariance principle for {£y,; 0 <k <r},
and we consider first the case of the null hypothesis (H,) where the X; are i.i.d. rv
with an absolutely continuous df F,. We denote the expectation and variance under
H, by E, and V, respectively. Let

(34) S = Eo(B30)s 0<k<N,

and for every N(>r > 1), we consider a stochastic process Wy = { Wy(¢), t €
I}(I = [0, 1)) by introducing a sequence of nondecreasing, right-continuous and
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integer-valued functions {ky(¢), t € I}, where

(3.5) ky(t) = max{k : 8%, <183}, tel,
and then letting
(3.6) Wy(t) = 835, Cakn(2), tel

Note that W, belongs to the D[0, 1] space endowed with the Skorokhod J,-
topology(for N = 0, 1, Wy(t) = 0, V¢ € I). Our primary concern is to show that
under suitable regularity conditions,

3.7 Wy —q W,  in the Ji-topology on D[0, 1],

where W = {W(t), t € I} is a standard Brownian motion on 1.
Let us define

(3.8) ¢, =inf{x: Fy(x) >a} for 0<a<1
and let
(3.9) v2 = & _JAx)dFy(x) + (1 — o)~ (/& J(x)dFy(x))’, 0<a<I;

by (3.1), ¥> < oo for every 0 < a < 1. First, we consider the following.
LemMa 3.1.  Under (3.1), (3.2) and Hy, as N — oo,

(3.10) l%_)a] = Ef(f2,) -2 V0<a<l.

Proor. Let 2, be the set of all possible (N!) permutations of (1, - -, N).
Then, under H,,
(3-”) LN, N(ZS{IV)’ Q%V)) = Hiiv=1f0(ZNi)’ VQ%V) € Q/N’
and hence Z{", Q" are stochastically independent with Q% assuming each
permutation of (I, - - - , N) with the same probability (N!)~'. This insures that for
each k(= 1,- - -, N), Q¥ is independent of Z{" (and hence, of Z¢) when H,
holds. Thus, proceeding as in the proof of Lemma 2.1, we obtain that
(3.12) Eo(BalZ$) = Eo(Lax) = 0, 1<k <N;

(3.13)  Eo(L4)

= EO{EO(E%Vk'Z%())} = Eo{ VO(ENk|Z%())}

1
= Eo{ Vo(zlf- W (Zy)dyg,, + Elivsk+ldNQN,»[ - mzﬁ-l'](ZNa)})IZ%‘)}
N 1 2
= {V'_'_—f 1iv=-l|:dNi - sz=ldNa] }
1 1

X Eo{ _]\72/‘;_ A Zy) + NN =B [Zh 1J(Zm)]2}

=%Eo{fz-":°12(x)d8,«(x) + N]f k(fz_"goJ(x)dSN(x))Z},
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by (2.9) and (3.2), where the penultimate step follows by using the facts that under
Hy, QY (and hence, Q¥) and Z{ are independent (so that given ZP, the
J(Zy;), i <k are also given, while Qf assumes all possible permutations of
(1, -+, N) with the common probability (N!)~"), under this permutational law,
for arbitrary ay,, - - -, ayy, the variance of EY_IaN,.dNQN. is equal to (N —
DY lay — ayP- Z)_\ldy; — dyF} (where ay = N~'Z\,ay, and dy =
N 'S ,dy,;) and, by our choice, ay;, = J(Z,,) for i < k while Aups1 =" = ayy
= - (N - b2 J(2Zy).

Now, k/N>a:0<a<1=>N/(N-k)->(1-a)"! < o, and, by
(2.19)-(2.21),

(3.19) JA T (x)dSy(x) > [5 J"(x)dF(x)  as.as N—> oo (r =1, 2).
Finally, for r = 1, 2,
G.15)  [12507()dSu(x) " < [J2ld (x)|dSy(x) ]
< 23 (x)dSy(x) = N™IEJA(X)
where under (3.1), N ~'S}_,J%(X,) (being a reverse-martingale) is uniformly (in N)

i=1
integrable. Hence, (3.10) follows from (3.13)~(3.15) and the dominated covergence
theorem (cf. Loeve (1963, page 124)). 0
Let By, = B(ZY, QW) be the o-field generated by (Z¥, Q¥) and B =
B (Z5", Q) be the o-field generated by (Z{", Q¥), fork = 1,2, - - - , N.

LEMMA 32. Under Hy, {£y,, B 0 < k < N} (and hence, {Lny, Bry; 0 < k
< N}) are martingales for every N(> 1).

Proor. Note that £y, = £, _,, while for k < N — 2, by (3.2),
(3'16) BNk+1 - ENk

1 1
= 2’i‘= lJ(ZNi)[mzﬁilldNQM, - m2ﬁ=ldNQM,]

+(Zyis )| dug,,, + (N = k = 1)7'S52 1, ]

N —k B
B _(]éT—)l)[dNQNHI +(N - k) IZj'c=ld1vQN;]

X [J(ZNk+I) + (N - k)_12f=,J(ZM)].
Since, under H,, Q% *" is independent of Z{*" and
(317) EO[dNQNk+IIB:Ik] = EO[dNQN,H,,IQS\,’()] = (N - k)_'ZijHdNQW
=-(N=-07Sd,,  [by(32)],

it follows from (3.16) and (3.17) that
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LemMmA 3.3. Under (3.1), 3.2) and Hy, k/N — a : 0 < a < 1 insures that
(3.19) 2’§=0E0{(BN3+1 - BNs)zl%Ns} —p?; as N - oo.

Proor. Note that by (3.16) and the stochastic independence of Q", Z%, we
have for0 < s < N — 2,

(320) EO{(BNs+l - BN.s')ZI(EBN:}

1

{(N -s5)/(N—-s—1) }{ i= :+l[ 'NOyi _N___—S27=:+1dNQN,]2}

“J(szm) + 5 — & 1J(Z,W?)]ﬂzg) }

Now, by (3.1), for every > 0, there exists an ¢ : 0 < & < 1 such that
(3.21) S5 o (X)dFy(x) <m  for r=1,2.

For s < Ne, we note that B, \[d7, — (1/N — )2\, 1dyo P < ZV. 11475,
< 3N ,d3 =1, so that

(322) EIN 3E0{ (EN5+ 1 EN.s')2| %Ns}

< %[E‘S’SAEO{ [J(ZNHI) + 2 ,J(ZN,)rIZSfr) } ][(1 —e)"'+ 0N Y]

and proceeding as in (3.14)—(3.15), it can be shown on using (3.21) that the right
hand side of (3.22) can be made arbitrarily small, in probability (when N — c0).
Note that the conditional pdf of Z,,, , given Z§) is

(3.23) (N = )(Z)[1 = FZ2)]V 71 /[1 = Fo(Zwe) 1V,
Zy, < Z < 0.

It is easy to show that E[J(Zy,. )|Z$)] exists for all 0 <s <N — 1 (under 3.1)
and further by the absolute continuity of J(x) (on finite intervals) and the a.s.
convergence of |Zy, — & /| to 0 for every Ne <s < Na, a < 1, it follows as in
Theorem 3.1 of Sen (1.61) that

(3.29) max, . .;/nea E[J(Zns+ ) Zns ] — J(Zy)| >0 as.as N —oo.

Let us then denote by

(3:25) Uys = (N — S)—lzlsvﬂdzvg,v, =-(N- s)—lzi-ldNQN,’
1<s -1
(3.26) = (N —s5)"'=N, \d}y, . s=1---,N-1

It follows from (2.19) that { Uy,, B (Q¥); 1 <s < N — 1} is a martingale when H,,
holds and as in (2.14) and (2.26),

(3.27) max, ¢ y,| Uyl = 0,(N~")  forevery 0<a<1l
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Also, note that
(328)  Eo[ Uy, i|B(QF)]
=(N=s =)V = )0y, ~ E[d},,. |B3(QP)]}

=(N-s5- 1)_1{(1V - s)ﬁNs - ‘ﬁlfgzgqﬂdzggm} = ﬁNs’
I<s<N-2
Using the martingale property in (3.28) and the Kolmogorov inequality, we obtain
that under H,, for every ¢ > 0
(3.29) p{max, ., [NUy, — 1| > e} < e 2E{NUy, — 1)3,
where )

- N 17)?
(3.30) E)[NUy, - 1]2= Eo{ N—_kzlsv=k+1[d1~2/ s W”

__ N kN-K) oy (. 1)
(N - kP NV - 1)2"'(d”‘ N)
1

=[Nk/(N — 1)(N - k)]{zf.‘;]d;},. B W}

<IN/ (N = DV = 0] (max, g,y ) Sl + 5 |

-0

by (3.2) and the fact that k,/N - a : 0 < a < 1, as N — co. Thus from (3.29) and
(3.30), we have under H,,

~ 1
(3.31) max; ¢, <i| Uy, — ’ﬁl =0,(1), as N-o0.
From (3.20) through (3.31) we obtain that for k/n < a: 0 < a < 1,
(3-32) 21;=IE0{(BN3+I - ENS)ZI%NS}

- N-l[zf;.{f(zm) rp 2§-=IJ(ZN,.)}2}[1 + o]
= N[N~ s+ 1)/ (N - 9

+Z BT (ZWI(Zy) (N = iv )™ + 3, (N - s)z)][l +0,(1)]
= N B2 + o (B Z0) 1+ 0} + 4,)

(2 Tds, () [{1+ 4 0),

N

- [ 12T (x)dSy(s) +

while
(3.33) Eo(Efv 1 |€‘3No) = EO(B%II)

= N¥N - 1)‘2—]1VE0J2(ZN1)—->0 as N — co.
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Hence, by (2.23) and (3.14), the right hand side of (3.32) converges (in probability)
to v2, as N — oo, and the proof of the lemma then follows from (3.32) and (3.33). [J
REMARK. Note that in (3.33), N ~'EJ*(Zy,) — 0 follows from the fact that
(334) N'EJXZy,) < max,_; yN 'EJ*(Zy;)
< N7 'Eo{max, (; /3 (X))} >0, as N—oo,

where the last step follows by standard arguments under (3.1).
Let I(A4) be the indicator function of the set A. Then, we have the following

LEMMA 34. Foreverye >0, k/N>a:0<a<l,as N>
(335) 2l.sf-OE‘O{(BN.s‘+l - BN.S')ZI(IBN.s'+I - E’Nsl > 8/)I%Ns} —)po'

PrROOF. We break up the sum into two subsets {s < Ne} and {Ne <s < k}.
Then, by arguments similar to that in (3.22),

(336) 2:g-]f(])EO{(gNs+l - QNs)21(|ENs+1 - QNsI > £|%Ns)}
< (z!y{e(])EO{(BNs+l - BNs)zl%Ns} “‘>p0~

Since J(x) is the difference of two nondecreasing, absolutely continuous and
square integrable functions, it can be shown easily that for every 0 <e <a < 1,
there exists a C = C(e, a)(< 00), such that

(337 max,ecmed(Zne) + 7S (Zy) S C asas Nooo.

On the other hand, by (3.2), for every Q¥ € 2,
(3.38)

1 ; 1
max1<i<1v{|d1vg~,. + F:_izs=ldN N|} = max1<i<N{|dNQN,. - ﬁzi\’=i+ldNQN,|}

< 2{max,,cyldy]|} >0 as N —o0.
Hence, for every C and ¢ > 0, there exists an integer No(= Ny(¢’, C)), such that
1 § ’
(3.39) P{maXS<Na|dNQN: + ﬁ2i=ldNQNil < € /C} = 1’ VN > No.
From (3.16), (3.37) and (3.39), it follows that for N > N,,

(3.40) 21;-[Ne]+IE0{(BNs+I - BNs)ZI(IBNs+I — Lyl > 3/)|€6Ns} -—)pO’

and (3.35) follows from (3.36) and (3.40). []
We are now in a position to formulate and prove our main theorem of this
section.

THEOREM 1. Under (1.3), (3.1) and (3.2), when the X, are iid. rv with an
absolutely continuous df Fy, (3.7) holds.
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PrOOF. By virtue of the martingale property of {£y,}, when H, holds, we are
in a position to use Theorem 2 of Scott (1973), and, to prove the theorem, all we
need is to show that

(3.41) 8 Z P Vo[ Lpil Brio1] =52, as Nooo (0<1< 1),
(342) 8572 Eo{[Cri — Eaic1 1 1(Ewi — Eaictl > &)|Bimi} —,0 (Ve > 0),

where k,(f) and r are defined by (3.5) and (1.3) respectively. Now (3.42) follows
directly from Lemmas 3.1 and 3.4 (where we note that (1.3) insures that 0 <p = «
< 1). By the martingale property in Lemma 3.2, 82, is # in k < N (for every N),
while by (3.5) and Lemma 3.1,

(3.43) 813,(”(,)/813, -t as N — o0.
Hence, (3.42) follows by using Lemma 3.3 for k = ky(¢) along with (3.43). ]

REMARKS. The condition that J is the difference of two nondecreasing func-
tions, though quite general, can be dispensed at the cost of strengthening (3.1) to

(3.44) 2ol J(X)|"dFy(x) < o0 for some m > 2.

In that case, in Lemma 3.4, a Liapounoff-type condition can be obtained (which
implies (3.42)) and the rest of the proof remains the same. Secondly, by (1.3), we
have limited ourselves to 0 < p < 1. Though p may be arbitrarily close to 1, there
are a few technical barriers for allowing p to be equal to one. Note that sz may
tend to o0 as p — 1 (viz,, J(x) = 1, Vx = v}f = p/(1 — p)). If, however, we impose
the additional condition [as in before (2.8)] that

(3.45) 12 J(x)dFy(x) = 0,
we obtain from (3.9) and (3.45) that for every 0 <p < 1,
(3.46) B2 = % JXAX)dFo(x) + (1 = p) " (JRTH(x)dFo(x))’

<[5 JH(x)dFy(x) + JE Xx)dFy(x) = 6> and lim,»} = 87

Even so, [%,J(x)dSy(x) is not necessarily equal to 0; in fact, it is 0,(N ‘%).
Further, {max,;,cyJ*(Zy;)} = Eo{max,;yJ*(X;)} = o(N), under (3.9), while
under (3.9) and (3.45), Ey(f*° . J(x)dSy(x))* = N ~'62. Hence, it follows from (3.13)
that for every (fixed) s(> 1), as N — oo,

(3.47) Ef(QBn_s) =82+ 57182 =(1+s"1)82>8% =}

This apparent anomaly can be straightened out with the help of (2.8) and (2.10).
Note that if g satisfies (3.1), then for every (fixed) s(> 1), as N —» o,

(48)  G(Zuy-,) = o[ N/s]7)  while |/Zng(x)dSy(x)] = O,(N %),

Thus, whereas (2.8) relates to a term (for x = Z;\,N_s)op([N /s]), (2.10) leads us to a
term 0,(N/s)N -3y = 0,(N 2/s), and hence, G(Zyy_,) and Gy(Zyy_,) are of
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different (stochastic) orders of magnitude, and the stochastically larger order of
magnitude for Gy(Zyy_,) pushes up the variance of £y, _,; in fact, here (2.20) and
hence, (2.23) may not hold. But, if s = s(N) be such that s(N) — oo but s(N)/N —
0 as N — oo, then it can be shown that

(349)  E(Ln_sm) =81+ 1/s(N) + o(1))>8 as N — .

Thus, as regards (2.23), we can proceed as follows. First, doing the same line (of
proof) as in Lemma 3.1 of Sen (1976), it can be shown that under H,,

(3.50) {Tye> Baxs 0 <k <N}  isamartingale,

while for n > 0, arbitrarily small, on letting ry = [N(1 — 7)), it can be shown that
E|(T3) = v} and E((Ty,)—>»i_,, so that by the Kolmogorov-inequality for
martingales, for every ¢ > 0,

(3:51) P{maer<k<N|TNk = Ty, | > 3} <e YTy - TNrN)2
= s_z[vf -, + o(l)],

which can be made smaller than any given §(> 0) by choosing n(> 0) sufficiently
small (and noting that as [gdF, = 0, by (3.46), lim,,_,ovlz_n = »?). On the other
hand, for r < ry = [N(1 — 1)}, 7 > 0, we are in a position to use (2.23), so that the
invariance principle for { T%,; 0 < k < ry} leads us to the same for {Ty,; 0 <k <
ry}, and this along with (3.51) yields the desired result for the entire sequence
{Twk; 0 < k < N}. In a similar manner, by the martingale property in Lemma 3.2
and (3.49), defining s(N) as in before (3.49), we can replace {£y,; 0 <k <N —
s(N)} by an appropriate {£y,; 0 < kK < N(1 — 1)} (n > 0) and apply our Theo-
rem 1. In view of the fact that Eq(Sxy — Lyy_.a)* — 8% (not to 0), we are,
however, unable to replace N — s(N) by N in this case. In actual practice, PCS
mostly involves a terminal censoring number (r) corresponding to a value of p
quite below 1, and, hence, this technicality is not of much concern to us.

Let us now proceed on to the nonnull case. We shall confine ourselves to local
(contiguous) alternatives where parallel results can be derived and these will be
incorporated in the next section for the study of asymptotic power of some PCS
tests based on such PCQP’s. Consider a triangular array {Xy;, 1 <i < N; N < 1}
of (row-wise) independent rv’s and assume that X, has an absolutely continuous
df F,, with an absolutely continuous pdf f,; and
(3.52) Sui(x) = F(x; Acy)), —o<x<o0,i=1---,N,
where f, A and cf; are all defined as in the beginning of Section 2. Note that, in
(3.52), A is regarded as fixed while by (2.4), the cy; all go to 0 as N — co. We
denote such a sequence of alternative hypotheses by {Hy}, while H, relates to
A = 0. Our concern is to study the weak convergence of { W}, defined by

(3.5)-(3.6), when { Hy} holds.
We define the dy; as in (3.2), the cj; as in (2.4), and assume that they satisfy the

limits

(353)  limy_ I dyich; = p*(—1 < p* < 1), max, ;< nlci| = 0;



WEAK CONVERGENCE OF SOME PCQP 427

in fact, fordy, = ¢, i=1,- - - , N, p* = 1 [by (2.4)]. For 0 <p < 1, we define
(3.54) a(t, p) = max{a : 2 < 2}, 1 €[0,1],

where »7 is defined by (3.9). Note that »2, , is ~ in #(€[0, 1]) and Vo =
0, »2,,) = »2 so that a(0, p) = 0 and a(l, p) = p. Here also, we denote F(x; 0)

and f(x; 0) by F, and f,, respectively, and g(x) and G(x) as in (2.1). Further, we
define

(3:55) THx) =[1 = Fo(x) ] fLd(0dF(y),  —o0 <x < o0

(356) (P =[fIDe)dF(x) ~ (1 - ) VEIEE)], ., (EL
We also assume that the pdf f(x; @) is absolutely continuous in §(€®) for almost
all x, (0/30)f(x; 0) = f;(x; @) exists and converges to fj(x; 0) as § -0, and

further, defining g(x) as in Section 2 and letting Fy(x) = F(x; 0), we assume that
(357)  limgof 2o [ fi(x; 0) 1*[ f(x, )] dx = [2g*(x)dFy(x) < 0.

Finally, let us denote by

(3.58) p={p()=08p*P /v, t €1}

and note that by assumptions made on J and g, u € C[O0, 1] space. Then we have
the following.

THEOREM 2. Let {Wy} and W be defined as in (3.5)—(3.7). Then, under (1.3),
(3.2), (3.53), (3.57) and {Hy} in (3.52), as N — oo,

(3.59) Wy — n—qW,  intheJ\-topology on D[0, 1].

PROOF. Let Py and Py be respectively the joint df of (Z&’, Q%) when H, (i.e.,
F, = Fy, Vi =1) and Hy, in (3.51) hold. Then, under (3.2), (3.52) and the assumed
regularity conditions on f, it can be shown (df. Hijek and Siddk (1967, pages
239-240)) that { Py} is contiguous to {Py}. For x € D[0, 1] and § € (0, 1), let us
define
(3.60)  ws(x)

= sup{min[|x(?) — x(s5)|, |x(s) = x(u)]]: 0<u<s<t<u+8<1}.

Since, Wy(0) = 0, with probability 1, and, by Theorem 1, under Hy,, { Wy} is tight,
it follows that
(3.61) limg olim supy P {ws(Wy) > €|H,} = O, Ve > 0.

Also, Wy is a mapping of (Z{’, Q%) into the space D[0, 1]. Hence, by the
contiguity of {P}} to { Py} and (3.61), we conclude that

(3.62) limg olim supy P {ws( Wy) > €|Hy} = 0, Ve > 0,

that is, { Wy} remains tight under { Hy }. Thus, to prove (3.59), we need to establish
only the convergence of the finite dimensional distributions of { Wy — u} to the
corresponding ones of W.
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For this purpose, for any k : k/N > a : 0 < a < p < 1, we rewrite £,, as
(3.63) B = ZN-1did (X)I(X; < Zyy,)

1
+ | (20 | (S dul(x, < Zw)),

where I(A4) stands for the indicator function of the set 4. Defining £, and J* as in
(3.8) and (3.55), we introduce
(3.64) B = ZM1dvJ(X)I(X; < &) + J*E)ZN dyl (X, < &)

If we write Sy(£,) = N "'k, then by (3.63), (3.64) and the definition of Q¥, we
have

| .
(3.65) ;k = LNky + {J*(ga) - N — kN EII(IL IJ(ZNi)} {2,?:’ ldNQNi}'

Note that N ~'ky — a, in probability, under H, [viz., (2.19)], so that by the same
technique as in Lemma 2.2,

(3.66) V*(&) — (N — ky) 'Sk, J(Zy,)| -,0, under H,,

while by (2.18), [Sk 19y0,,| = 0,(1), under H,,. Hence, the second term on the right
hand side of (3.65) converges in probability to 0 as N — oo when H, holds.
Further, by the martingale property (Lemma 3.2), we have by the Kolmogorov-
inequality,

(3.67) P{maxq:|k_q|<8N|BNq - BNkI > GlHo} -0 as &LO,

and hence, noting that |N ~'ky — «| —,0 and k/N > a : 0 <a < 1, we obtain
from the above that

(3.68) Lo — Ly =0 as N—>oo  when Hjholds.

Again, by virtue of the contiguity of { P¥} to { Py} and (3.68), we conclude that as
N — oo,

(3.69) Eae — Cvx =,0  under { Hy} as well.

Thus, for finitely many £’s, say, k; < - - - < k,,, m(> 1) given, satisfying
(3.70) N~'%; — a(t, p), 0<y <---<t,<1,

to study the joint distribution of Wy(¢)), - - -, Wy(2,), it suffices to consider the
joint df of £, , - - -, £ . Since the £, involve a sum over independent random
variables, by the classical (multivariate version of the) central limit theorem, it
follows that under (3.1), (3.2), (3.52), (3.53) and (3.57), [C, - -+, £ ] converges
in law to a multivariate normal distribution with mean vector [u(z), - - -, u(2,)],
and dispersion matrix vpz(tj A1) 1=1,..., m Which conforms to the desired pattern.

0

ReMARKS. In (2.23), we proved the stochastic equivalence of {Ty,; 0 < k <r}
and {T%; 0 < k <r} when H, and (1.3) hold. Here also, we can proceed on the
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same line as in (3.63)-(3.65) and use the contiguity of { P}} to { Py} to show that
(2.23) remains true when { Hy} (in (3.52), (3.53) and (3.57)) holds along with (1.3).

One could have extended the results of Sen (1976) to the current setup of
nonidentically distributed rv’s. However, that would have induced more complica-
tions in the proof along with some extra (mild) regularity conditions (viz., (2.8) and
(3.36) of Sen (1976)). The current approach provides an alternative and simple
solution.

Asymptotic normality of linear combinations of functions of order statistics has
been studied by Chernoff, Gastwirth and Johns (1967), Bickel (1967), Moore
(1968), Stigler (1969), Shorack (1969, 1972) and others. Recently, Sen (1978a) has
employed a reverse martingale characterization to strengthen the asymptotic nor-
mality to an invariance principle for the tail-sequence of such statistics. A similar
invariance principle has also been developed by Sen (1978b) for rank-discounted
partial sums (which can be expressed as a linear combination of functions of order
statistics with stochastic weights). In all the papers referred to above, the regularity
conditions needed to study the asymptotic theory are more restrictive than the ones
incorporated in the current study. This is not surprising. The permutational
uniform distribution of Q" and the stochastic independence of Z$" and Q"
(under H,) account for the main reason for the relaxation of the regularity
conditions. For the case of contiguous alternatives in (3.52), this is not quite true,
and hence, we need some extra regularity conditions. For general alternatives,
contiguity may not hold and, hence, the current method of proving Theorem 2 may
not stand valid. A different proof for this type of result, in general, will require
more restrictive regularity conditions.

4. Applications to time-sequential tests based on PCQP. A variety of rank based
PCS tests is available in the literature. Hajek (1963) has developed the asymptotic
theory of Kolmogorov-Smirnov (KS-) type tests for regression alternatives, and his
results can be adapted readily in a PCS provided we let »/N — 1. The simple
limiting null distributions of these KS-type statistics (viz., (3) and (4) on page 189
of Hajek and Sidak (1967)) are not valid if /N — p: 0 < p < 1. However, some
recent tabulations of the critical values of the truncated KS-type statistics by
Koziol and Byar (1975) and Schey (1977) provides us with these (approximate)
critical values. In Chapters V and VI of Hijek and Sidak (1967), some related tests
are also considered; in particular; the Rényi-type and Cramér-von Mises-type tests
for regression alternatives deserve mention and they can also be adapted in a PCS
when we let /N — 1. Again, forr/n —p : 0 < p < 1, the limiting distributions of
these statistics are no longer very simple and extensive simulation studies are being
made to provide approximate critical values in such cases. Chatterjee and Sen
(1973) have studied the weak convergence of PC linear rank statistics to a
Brownian motion and their procedure can be used for any r/N -p : 0 <p < 1
with simple limiting null distribution theory provided by them. Usually their
procedure is better than Hajek’s ones. All these procedures share one common
feature: namely, they are based solely on the vector Q, disregarding any informa-
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tion contained in the vector Z$ of associated order statistics. Thus, it is quite
intuitive to extract this information and in Section 2, we have shown that a PCPLR
statistics sequence relates to PCQP’s which again can be approximated by more
convenient linear combinations of functions of order statistics with stochastic
coefficients. Thus, in the same spirit as in Chatterjee and Sen (1973) and Sen
(1976), we may be interested in employing the process Wy, defined by (3.5)—(3.6)
and use as a test-statistic

(1) My = M(Wy)

where M(x) = M(x(?) : 0 <t < 1) is a suitable functional. For example, we may
take the KS-type statistics as

(4.2) My = supyc, 1 Wy(1) = maXocx<, vk /2o
(4.3) My = supyc, 1| Wa ()| = maXoc i< | Cnkl/ 7,

and obtain the limiting distributions of M,J or M), with the aid of our Theorem 1
and the well-known distributional results on sup,,;W(?) or supy, | W(?)|.
Theorem 2 provides us with the asymptotic power of such a test. We may also
consider other functional (such as the Rényi-type or Cramér-von Mises type) of
W, and purpose the same as test-statistics. This leads us to the study of the
asymptotic behavior of different functionals of PCQP’s with different {J}, and will
be studied in a subsequent paper.

Acknowledgment. Thanks are due to the referee for his valuable comments on
the manuscript.
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