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REMARKS ON SOME RECURSIVE ESTIMATORS OF A
PROBABILITY DENSITY
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University of North Carolina at Chapel Hill and Manchester University,
England; University of New England, Armidale, Australia
The density estimator, f#(x) = n~'S7_ A7 'K((x — X))/ h;), as well as the

closely related one ff(x) = n~'h; %Ej_lhj‘ SK((x — X)/h) are considered.
Expressions for asymptotic bias and variance are developed. Using the almost
sure invariance principle, laws of the iterated logarithm are developed. Finally,
illustration of these results with sequential estimation procedures are made.

1. Introduction. Let X, X,, - - - be a sequence of ii.d. observations drawn
according to a probability density, f. Rosenblatt (1965) introduced the kernel
estimator of the density, f(x),

R 1 o, Kx—X}
f,.(x)—% j- K| ——);

and Parzen (1962) developed many of the important properties of these estimators.
A closely related estimator

D e R
i x) = ;2j=l-’ZK T
was introduced by Wolverton and Wagner (1969) and apparently independently by
Yamato (1971). This second estimator has the very useful property that it can be
calculated recursively, i.e.,

— - X
7 = 0 + k(252

This property is particularly useful for large sample sizes, since addition of a few
extra observations means that f,(x) must be entirely recomputed—a tedious chore

even with a computer.
In this paper we shall explore some properties of f* as well as a related estimator

f!, defined by

£ = (nh">‘%2;f-.h;%1<(x—;ﬁ)-
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This latter estimator can also be recursively formulated;

—1(h_\? - X
100 =2 (Bt a0 + k(25

n n

Yamato (1971) considers f* in some detail developing results similar to those of
Parzen (1962). Carroll (1976) considers both f, and f* and, using weak convergence
methods, establishes asymptotic distribution properties for both. Davies (1973) and
Deheuvals (1974) independently develop conditions for almost sure and uniformly
almost sure convergence of f*.

Davies and Wegman (1975) and Carroll (1976) discuss sequential procedures for
density estimation using f:, and f*. Finally we note Eddy (1976) also introduces
weak convergence methods to the consideration of f, for the purpose of establish-
ing results about the mode of f,.

In this paper we introduce the almost sure invariance principle into the consider-
ation of f* and f!. Through it we are able to establish a law of the iterated
logarithm for density estimators as well as the asymptotic distribution results. We
also illustrate the use of f* as a sequential density estimator.

Throughout this paper we shall deal with univariate estimators. The extension to
the multivariate case is straightforward. We shall assume that K is a Borel function
satisfying
(1 Sup—oo<y<oo|K(y)| <o

J2o|K(y)| dy < o0
lim, . ,|yK(»)| =0,
and also
) h,—0

nh, — oo.

Other assumptions about K and {A,} will be made as needed. A word of comment
about the assumptions is in order. K and {A,} are chosen by the statistician and,
hence, restrictions on these quantities should not be viewed as an undue handicap
unless, of course, the technical requirements force a slower rate of convergence.
Eddy (1976) and Carroll (1976) develop alternate sets of requirements on K and
{h,} which are restrictive in different ways. In our subsequent results we could
exchange our requirements for theirs to develop other sets of sufficient conditions.
However, neither of them deal with a bound on the bias, a result which requires the
relatively most unpleasant conditions on K. Indeed, weak convergence theory
seems unsuited for dealing with the question of bias. For this reason we have
chosen to develop asymptotic variance and bias by elementary methods rather than
appealing to the theory of weak convergence.

Davis (1975) presents a discussion of bias for the usual kernel estimate in which
the assumption in Theorem 1, that the kernel, K, has a Fourier transform, is
unneeded. However, her discussion is limited to the case r = 2. Her sufficient
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conditions may be exchanged for ours in the more specialized situation where
r=2.

2. Asymptotic bias, variance and consistency. In this section we shall base our
results largely on the methods of Parzen (1962); therefore, we shall only sketch
proofs. It will be convenient, throughout this paper, to deal with the sum

h;

J

(k)2 f1(x) = 2;=,h;%1<( i X’).

We recall a useful lemma from Parzen (1962).

LeMMA 1. Suppose K is a Borel function satisfying (1) and {h,} satisfies (2). Let g
satisfy :
JZ ol g(w)] du < oo.
Then

hl,,fo‘o”K(h_l:)g(x — u) du — g(x)[®  K(u) du as n— oo

at each continuity point, x, of g.

THEOREM 1. (a) Let K and {h,} satisfy (1) and (2). If f is continuous at x,

nh, Var fi(x) - f(x)/®  K*(u) du.

(b) Let us further suppose K has Fourier transform K* so that K*(u) =
I2 e "K(y) dy. Suppose further that for some r, lim, o{[1 — K*(w)]/|u|"} = k, is
finite and that f*(x) exists. Suppose finally that nh] — oo and 1/nh;Z7_h/ con-
verges to v,. Then (Ef*(x) — f(x))/h! — v, k- fO(x).

(c) Let K satisfy the condition of part (b) and assume {h,} satisfies (2) and that

1 1 1
nh;*7 — o0 and 1/nh,*2Z5_ /"7 converges to v, 1. Then

Eff(x) — f(x)(nh,) "S5 b
R

= Yrey k, - fO(x).

CoMMENT. A popular choice for the sequence 4, is bn~". In this case v,
becomes 1/(1 — yr) so that Ef*(x) — f(x) = 0(n~""). Similarly for fI. A slight
variation in the argument yields the slightly more general result that Ef*(x) — f(x)
= O(n"E;‘_lhj’) in the case of (b). For the case h, = bn~7", these orders of
convergence are the same. However, this need not always be the case. For example,
if =1 and h, = b(log n/n), then n~'S7_h = O(log log n - log n/n) =
O(log log 7 - h,). Similar results hold for (c). We note that if 4, = bn~7, then f/(x) is
an asymptotically unbiased estimator of f(x)/(1 — v/2).

ProOoOF. (a) By Lemma 1,

I 7,‘— Kz(ﬁ—;j—“)f(u) dut = f(x) [ JK*(u) .
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But, using Cesaro sums,
1

lim,_  nh, Var fi(x) = lim,_,

n—-»oo

g 2K P ) a
= f(x)/ 2 K*(u) du.
(b) Let k, = lim,_o[1 — K*(u)]/|u|", and define

E = f=.h ‘K( 2 ))&

1 )
= (% —iuxprx(
5 20t K* (B )9(u) dtf,
where, of course, ¢(u) is the characteristic function associated with f. Then
E, — f(x) N P K*(hu) — 1

= =—[2 e W —rr—|u|"p(u) du
Pk 900

> kf(x) as j—oo.
But ’

1, E-fx) 1, ,E-fx
n <=l Ry nh'2 =

J

=7, - kfO(x).

Finally 1/n27_\E;, = Ef}(x) and (b) follows.
(c) As in part (b), consider

E —
J-lhz(E f(X)) = J_lhr+— “j h"f(x)

r r
nh,, nhn 2

- Yr+§l. kr 'f(r)(x)

But

1
W E; = Ef}(x)

=
TR

and (c) follows.

3. An almost sure invariance principle. Strassen (1964, 1965) introduced the
idea of an almost sure invariance principle and this notion has been developed by
Jain, Jogdeo and Stout (1975). Briefly put, we will use the almost sure invariance
principle by showing that the sum,

1 x— X x—X;
7ok 2| K 7 — EK A
J 9

is, with probability one, close to Brownian motion in a sense made precise below.
The asymptotic fluctuation behaviour of Brownian motion has been investigated
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and, by use of the almost sure invariance principle, we may transfer results about
Brownian motion to our density estimates.

We first shall reproduce some relevant results from Jain, Jogdeo and Stout
(1975). Theorem 2 represents a less general version of Theorems 3.2 and 5.1 of Jain,
Jogdeo and Stout (1975). Let Y,,---,7Y,,- -+ be a sequence of zero mean
random variables with finite second moments. Let S, =37_,Y; and V, =
2}_1E[Yj2], So=0= 7V,

THEOREM 2. For a fixed a > 0, assume

3) V,— o
and
o (log, V) i
4) k=1_2Vk—k‘E{ Ykzl[ 2> lo:ka(loSz Vk)z‘"“)]} < oo.

Let S be a random function defined on [0, o0) obtained by setting S(t) = S, for
t €[V,, V,.1)- Then, redefining {S(f), t > 0}, if necessary, on a new probability
space, there exists a Brownian motion ¢ such that
(5) |S(9) = &) = 0(#2(log, ) ~%) as.
Here log, t = log log t.

In particular, if (4) holds with a = 2 and ¢ > 0 is a nondecreasing function, then

P[s, > Vie(V,) i0.]=0 or 1

according as

?@exp(—dﬂ(t)/Z) dt < o or = co.

Let us identify Y, = A~ 3(K((x — X)/h) — EK((x — X))/h)), so that S, =
”hn% (fl(x) — Efl(x)) and
V. =St EY?= ES™ 1 K(X—Xj) EK(x_Xj)Z
S a h h

J

= h, Var nff(x).
But under the assumptions of Theorem 1
nhy, Var f(x) — f(x)[2 o, K*(u) du,
so that ¥, /n = h,n Var f}(x) - f(x)/®K*(u) du. Thus V, = O(n).

THEOREM 3. (a) Let K satisfy (1) and {h,} satisfy (2). Let f satisfy the conditions

of Theorem 1. If, in addition,

nh,

(6)
log n(log, n

then (5) holds for S, defined above.

) @D diverges to o,
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(b) In particular, if
nh

n

—_— diverges to oo,
log n(log, n)

then
P[s,> Vie(V,)io]=0 o 1
according as
°°¢( )exp( 0%(£)/2)dt <0  or = co.

(c) Fora >0

(log n) () = Eff(x)) > (A(0)[= o K*(u) di)? as. a5 n— .
(d) For a > 1,
Fi(x) = f"(x)
(Var £(x))*

PrOOF. (a) Since K is bounded and (6) holds, the event [Y? >
c*(k/log k(log, k)***D)] is an impossible event for k sufficiently large. It follows
that

lim,,_,

] = @m) i e .

E{ Y,fl[y;>+m]}< "
log ¥, (log, V)™

and the conclusion of (a) holds. Part (b) is immediate. To see part (c), divide (5) by
1
(2 log, ¢t - £)?, so that
S() — &)
(2-log, t-1)? :

Since £(¢) satisfies the law of the iterated logarithm, so does S(¢) for a > 0. It
follows that

< O((log 1~ o/ 2)

S, (log, n - n)%

—1las. as n— oo.
(10g2 Vn : Vn)

(2-log,n- n)%
But (log, n - m)7/(log, ¥, = V,)i — (1/f(x)f2 ,K*(w) du)® so that, recalling
1
n(h)2(fi(x) — Eff(x)) = S,, we have

(log n)_(f 1) = B(0) — (A0S 2 o K(w) d)*.

For part (d), we observe that &(¢)/ 17 is normal mean zero variance one (n(0, 1)).



322 EDWARD J. WEGMAN AND H. 1. DAVIES

But
t t
S( ) g( ) < 0((10 t)((l a)/2)) as.
tz tz
For a > 1, letting ¢t =
S,, . .
- is asymptotically n(0, 1).
(V)?

But ¥, = n%, Var fJ(x) and S, = n(h,,)%( fi(x) — Eff(x)) so that (d) follows.

Part (c) of Theorem 3 is particularly notable since it gives a law of the iterated
logarithm for the density estimator, f. This, together with part (c) of Theorem 1,
gives the exact rate of convergence for f;. This result may be stated in several ways,
depending on choice of h,. We make one single statement here for the popular
choice of h, = bn™".

THEOREM 4. Let K and h, be chosen in accordance with the hypotheses of
Theorems 1 and 3 and, in addition, let h, = bn=". If 1/Q2r + 1)) <7y

(10; n) (f"( ) — f(x;l 2,”~=1(h,~)?')—>(2f(x)f°3w1<2(u) du)ias.  as n— .

n(h,)?

Proor. By Theorem 1(c),

n]— ‘ 5 _of 22 n 1—yQr+1)
[ ) Bl - n(h )| =of Mg
which clearly converges to 0 if y > (1/(1 + 2r)).

While £} is an asymptotically biased estimator, of course, (1 — v/ 2)f! is asymp-
totically unbiased. However, the point of introducing f; is to use it as a vehicle for
obtaining results for f* which we do by the following lemmas. Unfortunately, the
results obtained from the almost sure invariance principle cannot be directly
applied to f¥, hence the circuitous route

Letb, = h, ? and ¢, = (nlog, n)z Let

n 1 x—Xj x_.XC‘
Sn = zj-lhj 2 K }?] - EK }5

1
= n(h,)*[ f(x) — Eff(x)].
LEMMA 2. Let a; = b, — b;_y,j > 2 with a; = b,. If

1

Fn ) 252 ( j“% - hj‘_%l)(j logzj)_;= » < o0,

hmn—»oo( W
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then

1
lim, b,l 252168, = v(2f(x)[* KX (u) du)? as.

Furthermore, if h, = bn~".
1

: n—1
hmn—aoobc _2 laj

= T A=K W) ) as.

Proor. By Theorem 3 part (c), S,/c, — f(x)[* K*(x) du)iI =s. Lete>0
and let S, = (1/b,¢,)27Z1a;S;. There is N, such that n > N, implies

1 1 ,
b”cnzjyélaj% + s Ton1a6(s — &) < S,
1 N, 1 n—1
S B =S + iy ag(s — e).

Taking lim inf and lim sup,
»(s — €) < liminf S; < lim sup S, < (s + ¢)».

Letting /0 yields the desired result.
To demonstrate the second part we approximate

1 1 ~1 - . 2\ - N1
zn lye = ng___l v/2 _ -1 v/ Io 3
b,c, 14;G; n((“")/z)(logz n)% j 1(] U ) )(J 2,./)

by
1
S5 = (y = )?)(y log, »)? dy
x+0/(log, x)%

Using L’Hospital’s rule, expanding in a Taylor series and then taking limits yields
the desired result.

LemMA 3. If (1/¢,)Z5_,y; —> s, then

1
WZ}':]bjyj - (1 - »)s.

PROOF. Let S, =37_,y, S, =0

1 n 1 n
b—cnzj=1bjyj = —C”Ejﬂbj(sj — 5-1)

,-1(b - )SJ
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THEOREM 5. Let K satisfy (1) and {h,} satisfy (2). Let f satisfy the conditions of
Theorem 1. If, in addition

nh,

m diverges to oo

and

1
. By N2 ap—ifs 1 _1y, . N

hm”“( n log, n) Zi2i(h2 = b3 logy)* = v < oo,
then (nh, /log, n)i(f¥(x) — Ef*(x)) — (1 — »)Q2f(x)[* K2 () du)? as. as n — oo.
Moreover, if the conditions of Theorem 1 part (b) hold and h, = bn™" with vy >
1/@r + 1)

then

( o )i(f,’f(x) - f(x)) > ( Y -t- 1 )(2f(x)f°—°ooK2(u) d“)% a.s.asn— oo.

log, n

" PROOF. We observe that

E)

1 h x =X x =X
w10 = ) =33 58 (5 - e 55 )|

J J

Identify ¢, =(n log, )%, b,= b3, , = (h) ™ 3[K((x—X,)/h,)~ EK(x — X,)/h,)]
in Lemma 3. The result follows from (7) and Lemma 3. Notice that Ef*(x) — f(x)

= 0(n™""), hence, ‘
1-v \3 1-v@r+1) \ 3
(g ) 120 000 = 0(( ] )

log, n log, n

and the result follows as in Theorem 4.

4. A sequential procedure. One particularly useful application of recursively
formulated density estimators is to sequential procedures. Davies and Wegman
(1975) introduce sequential density estimation, studying in some detail rules of the
form:

Stopif  |f,(x) —f,_,(x)] <e,  otherwise continue.

Carroll (1976), also introduces stopping rules based on fixed width interval estima-
tion. In this section we introduce a rule which is illustrative of sequential density
estimation using recursive estimators. For both the estimator, f*(x), and the
estimator introduced in this paper, f/(x), the correction term due to observation,
X,, is 1/nh,K((x — X,)/h,). A reasonable stopping rule might be to stop when the
correction, 1/nh, K((x — X,)/h,), gets “too small”. Unfortunately, if nh, — oo and
K is bounded, 1/nh,K((x — X,)/h,) gets “too small” independent of the observa-
tions. Thus we choose a stopping variable N, such that

N, = first n such that 1 /4, K((x — X,)/h,) <e;
= oo if no such » exists.
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THEOREM 5. We assume (1) and (2) hold for K and {h,} respectively.

(@) P[N, < o] = 1, ie., N, is a closed stopping rule.

(b) ENF < o for every k. Moreover, there is a number, p, with 0 <p < 1 such
that Ee™: exists for t < — log p.

(c) If K(x) > O for all x, then N, — oo in probability as &|0.

(d) If K(x) > O for all x, then N, — ¢ a.s. as ¢|0.

(e) Under the hypotheses of Theorems 3 and 4 if K(x) > 0 for all x,

S (x) > f(x) as. as €|0
and
(1 = v/2)fy (x) > f(x) as. as €)0.
PrOOF. Let X have density, f. We first observe
1 x—X
' P[ hn—l K( hn—l )

1 x—X
P{E'K( h,, ) <8}.
=p1- " Poi(1 — py)
where p; = P[1/hK((x — X)/ k) > ¢].

P[N,< ] =32 ,P[N, = j]

j=1

P[N, =n]=P[hilK(x;1X)>e

> €

=l-p+p(l—p)+ - +py- P (1 —p) +- -
=1.

Since [u|K(#) — 0 as u — * oo, it follows that P[1/h,K((x — X)/h) > ¢e] -0 as
Jj— o0, ie, p—>0 as j—>o00. Let 0 <p < 1, for j sufficiently large, say j > My,
p; <p.

Hence EN* = 3 n*p[N, = n] < Zp_n* + Z7_, ;n'p" "'~ < oo. Similarly

n=1
Ee™e = 2;"<'1=le.mP|:]V‘3 = n] < Sh_je™ + e’(l+"”)2:°_.,$+l(eip)n_l—"”.

This latter sum will be finite provided e < 1 or ¢t < — log p.
To show (c), we note that p/11 as €|0. But P[N, <n]=1-p,---p, >0 as
€l0. Thus P[N, > n] — 1 as ¢/0 for fixed n. Hence N, — oo in probability as /0.
Next let w be any point in the basic probability space. We have 1/h,K((x —
X(w))/h,) > 0. Let N, be any positive integer. Choose e < min, ;5 1/1K((x —
X(w))/ k) (¢ may depend on w). Thus N,(w) > N,. Taking lim inf €0,
lim inf, 4 N, > N, ass.

But N, was arbitrary
lim inf, 4 N, = o0 a.s.

Part (e) follows immediately.
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A slightly more general stopping rule might be
N = first n such that 1/g(h,)K((x — X,)/k;) <e.

= oo if no such n exists
where g(x) is some monotone nondecreasing function of x. To illustrate consider
the rule
N = first n such that 1/#2K(X,/h,) <&
= oo if no such n exists.

In this example, we presume X;,...,X,,... is a n(0, 1) sample and we are
estimating f(0). Let us assume that K(x) = 1/7(1 + x?), —o0 < x < c0. We ob-
serve then

.

p,=P LK(K) >e&

: \h

n

=2P 0<X<h,,( L —1)
weh?

_ 2(@((;1; - h,f?%) - @(0))
- 2@((% - h,f)i) -1

In this case, we notice that p,12®(1/ 778)% — 1. Thus P[N, = n] is very close to a
geometric distribution. We also note here that, in general, we can compute the
exact distribution of N, given K, {4,} and f.

One may argue that the rule proposed here is unsatisfactory since we stop on the
basis of one observation. A more satisfactory rule might be based on the last M
observations, where 0 < M < n. One may even choose M an increasing function of
n. Our present discussion, however, is not meant to be definitive, only illustrative of
what might be done.
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