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ON ESTIMATING THE SLOPE OF A STRAIGHT LINE WHEN
BOTH VARIABLES ARE SUBJECT TO ERROR'

By CLIFFORD SPIEGELMAN
Northwestern University

Let X; and Y; be random variables related to other random variables U,
V;, and W, as follows: X;=U;+ W,, Vi=a+ BU;+V, i=1---,n
where a and f are finite constants. Here X; and Y; are observable while U,, V;
and W, are not. This model is customarily referred to as the regression problem
with errors in both variables and the central question is the estimation of 8. We
give a class of estimates for 8 which are asymptotically normal with mean 8
and variance proportional to 1/ n%, under weak assumptions. We then show
how to choose a good estimate of B8 from this class. N

1. Introduction. Let X; and Y; be random variables related to other random
variables U, V;, and W, as follows: X, = U, + W, Y,=a+ BU, + V, i=
I,- - -, n,where a and B are finite constants. Here X; and Y; are observable while
U, V; and W, are not. This model is customarily referred to as the regression
problem with errors in both variables and the central question is the estimation of
B. It is generally assumed that (U, V;, W) i =1, - -, n are independent and
identically distributed random vectors, and that U, V,;, and W, are mutually
independent random variables.

An example that appears in economics is the following: U, represents the true
income of subject i. X; his measured income, Y; his measured consumption and W,
and V; are measurement errors. 8 represents the marginal propensity to consume.
References to this standard economic model can be found in Samuelson (1971).

We now discuss some previous contributions to the solution of this problem.
Reiersol (1950) proved that if U, is normal, B is identifiable if, and only if W, or V¥,
have a distribution which is not divisible by a normal distribution, and if U, is not
normal B is always identifiable. Neyman (1951) gave a consistent estimator for 8
when U is not normal. Wolfowitz (1952, 1953, 1954a, 1954b, 1957) gave a method
for estimating B8 when it is identifiable. This method is often reasonable if the
distributions of W, and ¥V, belong to a known small finite dimensional class, for
example when W, and V| are normal. Kiefer and Wolfowitz (1956) show that the
maximum likelihood estimates for this problem are consistent, if suitable regularity
conditions attain. It is not clear whether the usual optimality properties of likeli-
hood estimates apply to this problem. Rubin (1956) gives an estimate of 8 when the
errors W, and V| are normal and U, is not. He uses the uniform convergence of
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certain random functions to obtain his estimate. Other references may be found in
a survey paper by Moran (1971).

Under the basic and customarily made assumption that U, is not normal we
present an estimate b of B, which is easily obtained on a computer. When
E(X* 4+ Y* < oo this estimate is shown to be asymptotically normal with mean 8
and variance proportional to n~3. This proof is based on Reiersol’s proof of
identifiability and uses the technique of Rubin (1956).

2. The method. We begin by constructing an estimator B8 using a moment
generating function approach.

Recall that our basic assumption is that U, is not normal. Suppose momentarily
that 8 # 0. Since the arguments which we give do not depend upon the sign of 3,
let us take B8 > 0. Let us suppose that there are known positive numbers 7, and 7,
such that 7, < 8 < r,. (If 7, and 7, are not known we shall show how one may deal
with this situation later; see Comment 5 following Theorem 2'.)

Define ¢,(t,, 1) = 2"_,e"**%2% /n to be the joint sample moment generating
function of X and Y and let ¢,,(¢) = ¢,(¢, 0), and ¢,,(?) = ¢,(0, #) be the sample
moment generating functions of X and Y respectively. Define ¢(z,, t,) = E¢,(t;, t,)
to be the joint moment generating function of X and Y and let ¢, (¢) = ¢(z, 0) and
oy (1) = ¢(0, ¢) be the moment generating functions of X and Y respectively. Define

o1, ) 9(bty, 1,/b)
ox(1)oy(1)  Ox(br)dy(11/b)

This quantity is motivated by the identifiability proof in Reiersdl (1950) and has
the property that y( 8, ¢;, t,) = 0. If Y(b, ¢,, t,) = O for #,, ¢, in an open neighbor-
hood of the origin it can be shown that b = B, by following the identifiability proof
in Reiersol (1950). We now define the sample analogue of y,

ot 1) (b, 1,/D)
¢nX(t1)¢nY(t2) ¢nX(bt2)¢nY(tl/b) .

Choose I C R? to be a compact set containing the origin (we show how to
choose it later; see Comment 4 after Theorem 2'). Define F(b) =
[13(b, t, t,) dty dt,. Tt is then clear from what we have said that F(b) = 0 iff
b = B. Define the sample analogue of F, to be F,(b) = [ JA(b, t,, t,) dt, dt,.

We now define our estimate b, of 8. Define b, as the minimizer of F,(b) for
7 < b <7y i€, F(b,) = min, ., F,(b), (if the minimizer is not unique we may
take b, to be any number between the smallest and largest minimizers). We now
state our results.

‘P(b> tl’ t2) =

Uu(b, 11, 1) =

THEOREM 1. Let b, be a minimizer of F,(b), T\ <b <, then b, is a strongly
consistent estimator for B, i.e., b, —> B w.p. 1 as n — 0.

Under the same conditions as in Theorem 1 we have:

THEOREM 2. b, is asymptotically normal with mean 3 and variance proportional
1
ton~ % as n— oo.
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ComMeNT 1. The limiting variance of b, is complicated and is not given here.
However, if the supremum of the m.g.f.’s in F( ) are known then an upper bound
on the variance can be obtained. This bound is useful for making a reasonable
choice of I. A technique for deriving such a bound is shown in the proof of
Theorem 2'.

CoMMENT 2. The requirement that 8 0 is not restrictive. If we let

by=b, if S_(X,-X)(Y,~-Y)/n>n"3
=0 otherwise ,
b, satisfies the result of Theorem 2 for 8 € [0, ).

PROOF OF THEOREM 1. Step 1. Sample m.g.f.’s converge uniformly on compact
intervals. Let G, and G be the empirical and true distribution functions of (X, Y)
respectively. For any finite constant, a, we have

Sup(t,tz)ell¢n(tl> tz) - ¢(tl> tz)'
< SUp(, e /jx1<a€XP(tx + 1,¥)d(G, — G)|
+sup,, tz)elf|(x,y)l>anp(t1x + 4,»)d(G, + G).

Since exp(#;x + t,y) is a uniformly continuous function on compact intervals and
¢,(2, t,) converges uniformly w.p. 1 on finite sets {(¢;, t,,), i = 1, - -, k} the first
term on the right-hand side of this inequality converges to zero as n — oo, and for
a and n large enough, the second term can be made arbitrarily small w.p. 1.

Step 2. b, > B w.p. 1. Since sample m.g.f’s converge uniformly on compact
intervals w.p. 1 ¥,(b, t,, t,) > ¥(b, t,, t,) as n — oo, uniformly in [r, 7,] X I w.p.
1. This implies that F,(b) — F(b) as n — oo, uniformly in [r,, 7,]. Therefore b, — 8
wp.lasn—oo. []

PrOOF OF THEOREM 2. For b, € (1,, 7,), 0 = F,(b,) = E,(B) + (b, — B)F,(£,)
where £, is between 8 and b,. Since b, is a consistent estimate of § it is sufficient to
show that n%Fn’( B)/ E/(£,) has a limiting normal distribution with mean 0 and
variance () > 0.

Let us define

o.(bty, 11/b)
&ux(bt3)d,y(1,/b)
and f(1,, t,, b) to be the corresponding quantity obtained when the subscripts n are
deleted. Then

fn(tb b, b) =

F,(B) = =2/ fa(t1, trs B)Wu(t1, 1y, B) a1y dt.
We now rewrite the two terms of the integrand in F,(3).
Un(ty, 1y B) = ¥u(t1, 1o, B) — (13, 1, B),

which is the sum of continuous i.i.d. random variables Q,(¢,, t,) with mean 0 and
finite variance +0,(1/n) uniformly for (¢,,2,) € 1. We also have f,(¢, 15, 8) -
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f(t), t5, B) uniformly for (7,, t,) € I w.p. 1, and therefore

EB) = — 1 (0 1 Y220 ) g, 10,1/ nt).

n

It remains to show that f'(¢, t,, B) is not zero in some neighborhood of the
origin, for if it is we will see that both F'(B) and F”(B) are 0. If f'(¢,, ¢, B) = 0
then

B
210g| (b2 + 51)

W e 2 B 5| Sotempentiey | 7
Define ¢(-) = (3 log ¢,,(+))/dt. Expression (4) gives us
@ (12 = 5 Jote + e = by, = 00 )

If we take the partial derivative of both sides of (5) with respect to #;, and
evaluate it along the line ¢, = B¢, we obtain ¢>(t1 + Bt,) = ¢(t) + ¢(t1)t,, which
implies that a one term Taylor expansion for ¢ is exact in the neighborhood of the
origin. Whence ¢”(f) is 0 in a neighborhood of the origin and log ¢(¢) is a quadratic
contrary to the assumption that U, is not normal.

Finally we observe that F,'(§) —,F"(8)= [,(f'(¢;; £, B)P dt, dt; >0asn— 0.

If we replace the m.g.f’s used to define b, by characteristic functions, and
redefine ¢(¢,, t,) and f(¢,, t,, b) we obtain a new estimate b,(C) of B as follows.

Choose I C R? to be a compact set such that for b € [r,, 7,] and (¢,, 2,) € I,-
both ¢y (2))dy(2,)| > C and |py(bt,)dy(2,/b)| > C, when 0 < C < 1. Define
F,(b, C) = [,.4*(b, 1,, 1,) dt, dt,, and our new estimate b,(C) as the minimizer of
F,(b, C), 1) < b < 7,. Then we have the following theorems:

THEOREM 1. b,(C)— B w.p.1lasn— 0.

THEOREM 2’ If E(XX*+ Y% < oo, b,(C) is asymptotically normal with mean B
and variance O(n~ 2), and in addition the limiting variance o*( B, C) is bounded above
by

kop(Ic)
szlclf,(tl’ b, B dt, dt,

where kg is a positive constant which does not depend on C or B (we may take
ko = 36), and . is Lebesgue measure.

CoMMENT 3. This bound shows the interaction between the choice of I and
the distributions of U}, ¥, W,. It is not a sharp bound but it is somewhat intuitive.
The actual performance of this estimate may be gleaned from simulations in
Spiegelman (1976). Apparently b,(C) is a reasonable estimate.
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For finite constants p and o a characteristic function which is equal to exp(iut —
6%?) in the neighborhood of the origin must be equal to it everywhere (Kagan,
Linnik and Rao (1973), page 21). Therefore the proofs of Theorem 1’ and 2’ follow
by the same approach used to prove Theorems 1 and 2, except for the bound on
o%(B, C) which we now derive. By application of the Cauchy-Schwarz inequality
we have

Jilf (8 1y, B 1Q4(24s 1) dt, dty 2
[1f (8 15, B)F dt, dty

10:(t1, L%, w(Ic)

Il f (8, 1 B dt, dt, .
We also have the following inequality, ||Q,(t,, )| < koC ~2 because Q, is the
sum of ratios of characteristic functions, on .. The denominators in Q, all have
modulus greater than or equal to C, and the numerators are easily bounded by 1.

o (B, C)<E

CoMMENT 4. We suggest that C and I. be chosen to minimize
[C?f1 1 f (1), ty B dty dt)] " 'w(dc). Tf f is not known we suggest using f; in its
place. This choice will make our bound on 6% 8, C) as small as possible.

ComMeNT 5. If 7, and 7, are unknown and E(X* + Y*) < oo,
_SL(x - X)(1-7)
Si(X - X)

T

and

__ S(v-7)

Csn(x, - X)(Y,- 7)

are useful choices for 7, and 7,. They converge in probability to numbers bounding
B from above and below, and our theorems remain valid for this choice. If

E(X*+ Y* = oo the variations of the Neyman and Wolfowitz estimates cited
earlier may be used.

T2

CoMMENT 6. If the characteristic functions of X and Y are not known the
sample characteristic functions of X and Y may be used in choosing /.. Suppose
we divide our sample into two independent groups. One group contains A(n)
observations and the other the remainder. The group containing A(rn) observations
is used to estimate I, and the other group to obtain b,(C). Suppose that A(n) — o
as n — oo and A(n) = o(n). Then conditioned on I. Theorems 1’ and 2’ remain
valid.
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