The Annals of Statistics
1979, Vol. 7, No. 1, 150-162

TESTING FOR ELLIPSOIDAL SYMMETRY OF A MULTIVARIATE
DENSITY'

By RUDOLF BERAN
University of California, Berkeley

Let Z be a random vector whose distribution is spherically symmetric
about the origin. A random vector X which is representable as the image of Z
under affine transformation is said to have an ellipsoidally symmetric distribu-
tion. The model of ellipsoidal symmetry is a useful generalization of multi-
variate normality. This paper proposes and studies some goodness-of-fit tests
which have good asymptotic power over a broad spectrum of alternatives to

ellipsoidal symmetry.

1. Introduction. The statistical model most frequentlil assumed in multivariate
analysis is the normal distribution. A notable feature of the N(u, Z) density is the
property that its constant surfaces are ellipsoids centered at p, with orientation and
shape determined by the matrix Z. This ellipsoidal symmetry plays an important
role in the geometrical interpretation of normal-model multivariate analysis. Even
without normality, ellipsoidal symmetry of. the data distribution can provide a
rationale for the use of standard multivariate procedures (cf. Dempster (1969)).

Recent interest in robust statistical methods has led to more detailed considera-
tion of statistical models which retain some of the features of the normal model
while providing more flexibility in data-fitting. For one-dimensional data, a natural
generalization of the normal model is the symmetric location model, the shape of
the density being unrestricted apart from symmetry and regularity assumptions. In
a p-dimensional multivariate setting, a corresponding generalization of the normal
model is the model of ellipsoidal symmetry: each observation has density of the
form [det(4)]”'A[4 ~'(x — w)], where pis a p X 1 vector, 4 is a p X p nonsingular
matrix, and 4 is a density on R” which is spherically symmetric about the origin
(i.e., h(x) = h(Ox) for every orthogonal transformation O). Apart from spherical
symmetry and possible regularity assumptions, 4 is left unrestricted. To make the
parametrization one-to-one, the matrix 4 is assumed to be lower triangular with
positive diagonal elements and determinant one. (For some applications of this
model, see Dempster (1969), Huber (1972), Maronna (1976)).

The problem of testing for symmetry of a one-dimensional distribution has
received considerable attention in the literature. The tests studied fall into two
general categories: rank and permutation tests for symmetry (see Hajek and Sidak
(1967), for instance) and tests based upon the empirical cdf (Smirnov (1947), Butler
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(1969), Rothman and Woodroofe (1972), Doksum (1975), Koul and Staudte (1976),
Doksum et al. (1976)). Most of these references assume that the center of symmetry
is known; notable exceptions are the papers by Doksum et al. The more general
problem of testing for ellipsoidal symmetry of a multivariate distribution has been
studied less intensively. For known p and 4, Kariya and Eaton (1977) derive tests
of ellipsoidal symmetry which are UMP against certain affine transformations of
the data.

One aim of this paper, then, is to develop some broadly useful tests for
ellipsoidal symmetry, including the common situation where p and 4 must be
estimated from the data. The basis for such tests is the following consideration.
Suppose Z is a p-dimensional random vector whose distribution is spherically

random variable |Z| and the random unit vector |Z|~'Z are independent; more-
over the distribution of |Z|~'Z is uniform over a hypersphere of dimension p — 1
(cf. Dempster (1969)). For p > 2, the unit vector |Z|~'Z can be represented in
terms of angular polar co-ordinates ® = (6,,6,, - - -, §,_,) as follows:

(1.1) |Z]7'Z = (cos(8,), sin(8,)cos(8,), - - s sin(,)sin(8,), - - - , sin(f,_,)),

with 6,_, € [0, 27) and 6, € [0, 7] for 1 < j < p — 2. The distribution of @ is
given by
(12) P[OEB]= fBZ"w‘P/ZI‘(p/2)[H€;,2 sin?~'~i(8,) |db\db, - - - db,_,

= m(B), say.
The uniform measure m is hyperspherical surface area measure, normalized to a
probability measure.

Let X;, X, -+ X, be a random sample of vectors in R”. The hypothesis
H,(p, A) of ellipsoidal symmetry postulates that the {X;} are independent and that
each X; has density of the form [det 4] 'h[4 ~!(x — w)], where h is spherically
symmetric about the origin and 4 is lower triangular with positive diagonal
elements and determinant one.

Let (f,, ,,) denote an estlmator of (p, A) based upon the {X;}. To test
H,(p, A), form the residuals {4, (X, — fi,)}. Let the {R(f,, A))} denote the
ranks, divided by n + 1, of the distances {|A Y(X; — fi,)|}- Represent the direction
vectors £|A"(X )| "'4;7 (X, — i,)} in terms of angular polar coordinates
{O:(f,, 4,)}. Let {a;; k > 1} be a family of functions orthonormal with respect to
Lebesgue measure on [0, 1] and orthogonal to the constant function on [0, 1]. If

p > 2, 1let {b,; m> 1} be a family of functions orthonormal with respect to the

uniform measure m on [0, 7} =2 X [0, 27) and orthogonal to the constant function
on this domain. For testing H,(u, A) when p > 2, we propose the statistic

LA _lean . A . A2
(13)  S,(fn 4,) = Zf 20 |[” 22718 (Re( By A1) Bn(O s An))] .
Large values of S,(,, /f,,) indicate that the data does not support H,(u, 4). Both
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K, and M, are allowed to increase with the sample size n, so as to expand the class
of alternatives that can be detected by the test.

An intuitive rationale for this test statistic runs as follows. Let F denote the cdf
of |A~Y(X; — w)| under H,(u, A), let U, = F(|4~'(X; — p)|), and let ©; denote the
polar angles of the direction vector |4 ~'(X; — p)|~'4 7'(X; — p). Set

(14) &(u0)=1
+ 35 5™ [0S0 @ (R i A,) DO iy 4,)) @i (4)b,,(6)

for u €[0, 1] and § € [0, #]?~2 X [0, 27). Under H,(p, A) and for K,, M, — o at
a suitable rate as n — oo, the random function g,(u, #) should estimate consistently
the density of (U, ©,), which is uniform. Thus, a plau31ble statistic for testing the
validity of the hypothesis H,(p, A) is

(1.5) nf[ 8,(u, 8) — 1) dudm(8),

which equals S,( {,, ff,,).
Another plausible statistic for testing H,(u, 4) is

A 1 ~ A ~ ~ 2
(16) Uy A,) = 22,5501 B2 o 177200 0 (R o )b, )|

where the weights { 8, ,,} do not depend upon n and =, .8 ,, < co. Statistics of
this form are essentially generalizations of the Cramér-von Mises goodness-of-fit
test and can be studied by methods developed for that case (see Beran (1975) for
more details). A practical drawback of U,(f,, /f,,) is that its asymptotic null
distribution depends in a complex way upon the specific estimators f,, /f,, used in
calculating the residuals. However, when (pu, A) are assumed known, comparing
the asymptotic power of the U, test with that of the S, test proves interesting and is
done in Section 3 of this paper.

For q\ne-dimensional data, there exist statistics analogous to S,(f,, ff,,) and
U,(fi,, A,) which are suitable for testing the hypothesis of symmetry. These
analogues are, respectively,

(1.7) S8 [n 321 e (R i)sen(X, = 4,) ]
and
(18) 1 B[ n S e (R ))sen(X; — i)

where fi, is a center-of-symmetry estimator, the { R(fi,)} are the ranks, divided by
n + 1, of the distances {|X; — fi,|}, and the { B} are weights which do not depend
upon n and which satisfy the requirement £, 82 < o0. No explicit results are given
in this paper for the statistics (1.7) and (1.8). However, it is not difficult to establish
appropriate counterparts to the results that are developed for dimension p > 2.
Primarily, this paper is concerned with the asymptotic behavior of S,(fi,, ,,) as
K,, M, » oo with n. Asymptotic distributions for quadratic functionals of a multi-
variate density estimator of window type have been derived by Rosenblatt (1975),
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using a Poissonization technique. In view of (1.5), the theorems established in this
paper confirm the possibility of proving similar results for Fourier series density
estimators. In place of Poissonization, however, the principal tool used in this
paper is a central limit theorem for dependent random variables which recognizes
near martingale structure in the sequence {S,(f,, AA,,); n > 1} after appropriate
centering. The method has wider applicability; for instance, it can be used to
weaken the assumptions for Theorem 1 in Rosenblatt (1975).

Assuming (u, A) known, Section 2 establishes the asymptotic normality under
H,(p, A) of S,(p, A). Asymptotic power of the S,(u, A) test is studied in Section
3. The effect on the asymptotics of estimating (u, A) is analyzed in the final
section.

2. Asymptotic null distribution for known p, A. Our.study of S,(f,, ff,,) begins
with a simpler problem: the asymptotic distribution theory of the random variable
S,(u, A), which is defined like S, ( f,, ff,,) with the estimators (fi,, /f,,) replaced by
the actual parameter values (u, A). The transition from S,(u, 4) to S,(f,, ff,,) is
examined in Section 4. Let || - || denote the essential sup norm. The result
established in this section is

THEOREM 1. Suppose the functions {ay; k > 1}, {b,; m > 1} are uniformly
bounded, the {a,} are differentiable, and
(l) limn-—moKn = limn—»ooMn = 00;
2.n (ii) lim,_,,n~'M,Z% g = 0;
@iii) lim,_ n~'(K,M,) = 0.

Then, the limiting distribution of (K,,M,,)_%[S,,( p, A) — K,M,] under H,(u, A) as
n— oo is N(0, 2).

The proof of Theorem 1 uses two preliminary approximations which are de-
scribed in the following two lemmas. Let U, = F(|4 ~'(X; — p)|), where F denotes
the cdf of |4 ~'(X; — p)| under H(p, A). Let Z; = (U, ©,), where O, is the same as
0,(p, A) in the notation of the introduction, and let ¢ ,(Z) = a,(U)b,(0)).
Under H,(p, A), the {U;} and the {®,} are independent, the { U;} being i.i.d. with
uniform (0, 1) distribution and the {©,} being i.i.d. with the distribution as defined
in (1.2). Define

22) W, 4) = SEM 032110, (2)]
and
_1 n
(2.3) T,(p, A) = (K,M,)" 2n lE!IS,"mM" i;éjck,m(zi)ck,m(zj)'

LEMMA 1. Suppose that all the assumptions of Theorem 1, save (iii), hold. Then,
under H,(p, A)

(24) limn—»co(KnMn)_%Elsn('u" A) - Wn( s A)l =0.
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LEMMA 2. Suppose that the {a,}, {b,} are uniformly bounded and
(2:5) lim,_, n"'K,M, = 0.
Then, under H,(p, A),
@26)  lim, E[(K,M,) [ W,(n, 4) - K,M,] - T,(s, 4)]" =

ProorF oF LemMA 1. Let 4, ,(Z) = @(R)b,(0;,) and let G, =n~
216 m(Z), Dy, = n‘iZ,aldk (Z). By the Cauchy-Schwarz inequality,

@) [8,(1 4) = Wi, 4)|
I (Dk m Ck m)l
[ Dk,m_ Ck,m) ]%[EK" M(ka+ Ck m) ]%s

(ST

and, therefore,
28)  [EIS,(14) = W(mA)|]’
<[=%ME(D,,, — Con)][Z5MED, . + Cc )]

Lemma 1 is an immediate consequence of ‘(2.8) and the following calculations:
@9)  E(Dym = Cim) = n'E[Z]_(a(R) = a(U))5,(8)]

= E[a(R) — (V)]

< |l4I’E[R, - U]’

= ||lal*0(n ")
and
(2.10) E(C?,) = E¢ (Z) =1

PrOOF OF LEMMA 2. By definition of the random variables W,(p, A) and
T,(n, A),

@11 (K,M) [ W,(, 4) - K,M,] = T,(1, 4)
= (K,M) [0S (Z) ~ K,M,)
The expectation of the right side in (2.11) is zero, while the variance equals
(212) (K,M,)"'n"! Var[E& M2 (Z)]
< (K,M,n) " E[ 2, a}(U)b(©) ]
= o(n~'K M)

the last step using the uniform boundedness of the {a,} and {b,,}. The lemma
conclusion follows.
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PrOOF OF THEOREM 1. In view of the two lemmas just established, it is enough
to show that the limiting distribution of T,(u, 4) under H,(u, A) is N(O, 2). This
can be done simply by applying a central limit theorem for dependent random
variables, such as Theorem 2.2 of Dvoretzky (1972) or Corollary 3.8 of McLeish
(1974). These theorems are appropriate here because if GEJ denotes the o-algebra
generated by the random variables (Z,, Z,, - - -, Z), the process
{(T,(p, A), @,); n > 1} is nearly a martingale under H,(p, A)

For2 < j < n, let

(2.13) Y, = 2(K,M, in" 'S5 Meey (Z)2 16 m(Z)

and observe that T,(u, A) = 27_,Y;. Though Y; also depends on n, p, and 4, we
omit further subscripts or arguments for convemence Evidently E[Y)|@;_,] =
and

(2.14) E[ Yj2|@'j—1] = 4(KnMn"2)_1211§,'}nM"[2i<jCk,m(Zi)]z-

Let V, = 37_,E[Y}?|@,_,]. The asymptotic normality of T,(p, A) follows from the
central limit theorems cited above once it has been verified that ¥, —,2 and

(2.15) St LE[ YUY >e)] -0

for every ¢ > 0 as n — .
The random variable ¥, can be written as the sum of two terms:

(2 16) v, 1= 4(KnMnn2);12Kn’ M:'E’!;l(n —j)clz, m(Zj)
2 = 8(K,M,n?) 'S M3l (n = u)e,, w(Z)ek m(Z),

the inner summation in the definition of ¥V, , being over both ¢ and u. Evidently,
lim,_,,E(V, ;) =2 and E(V, ;) =0. Moreover

@.17)  Var(V, ) = 16(K,M,n?) ZrZ}(n — j)? Var[ Sk M2 (Z)]
=0(n7"),
since the {¢; ,,} are uniformly bounded, and
1(2.18) Var(V,, ,) = 64(K,M,n?) S M3l (n — u)?
= 64(K,M,n*)" 'Snl(u — 1)(n — u)?
= O[(K,M,)""].

Thus, V,, —,2 under H,(p, 4) as n — 0.

By direct calculation, E(Y) = O(n *KMJ) + O(n~%* and therefore
S7LE(YS) = O(n*KIM?) + O(n~"), which tends to zero under the assumptions.
Hence the Lindeberg condition (2.15) is satisfied.
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The proof just given benefited from a referee’s advice to use Dvoretzky’s
theorem in place of the original characteristic function argument.

3. Asymptotic power for known pu, 4. This section studies the asymptotic
behavior of S,(u, A) under sequences of alternatives tending to an ellipsoidally
symmetric distribution. To simplify notation, these alternatives will be specified in
an indirect manner. For every n > 1 and 1 <i<n,let Z,, = (U, ,, ©,,) be a
random variable-random p — 1 vector pair which has density g,(z) with respect to
the product measure u obtained from Lebesgue measure on [0, 1] and the probabil-
ity measure m defined in (1.2). Suppose also that the random vectors {Z, ,; 1 <i
< n} are independent. Pick a continuous cdf F on the real line and let W, , be the
random vector in R? whose radial and angular polar coordinates are, respectively,
F~(U,,) and O, . Finally, set X, , = p + AW, , for given p X 1 vector p and
p X p lower triangular matrix A with positive diagonal elements and determinant
one.

If, in this scheme, g,(z) = 1 for every n > 1, then the random vectors {X; ,; 1 <
i < n} are ii.d., each having an ellipsoidally symmetric distribution determined by
the choices of p, A and F. Let H,(p, A, F)-denote the hypothesis that the {X; ,}
have this particular ellipsoidally symmetric distribution; H,(p, 4, F) is a sub-
hypothesis of H,(u, A). A sequence of local alternatives to { H,(p, 4, F); n > 1}
can be constructed by taking, in the scheme of the previous paragraph,

(3.1) 8(2) = 1+ a,r,(2),

where {a,; n > 1} is a sequence of constants tending to zero as n increases, r, is
integrable, [r,(z)du(z) = 0 for every n > 1, and g,(z) is nonnegative for every
n> 1

Let the {R; ,; 1 <i < n} denote the ranks, divided by n + 1, of the distances
{l47'(X;, — w|} and define S,(p, A) through (1.3) with (p, 4) in place of
(fi,, 4,) and (R, » ©, ,) instead of (R;, ®,). The following extension of Theorem 1
describes the large sample behavior of S,(u,4) under the alternatives to
H,(p, A, F) defined above.

THEOREM 2. Suppose the functions {a; k > 1}, {b,; m > 1} are uniformly
bounded, the {a,} are twice differentiable, and
G2 O lim, K, = lim, M, = ;

(i) lim, n~'MK7SR gl = lim,_,.,
(iii) lim,_, .n~'(K,M,)? = 0;

@iv) lim,_, (K,M,) ?na? = a? < 0;

(v) lim sup, /|r,(2)|du(z) < oo;

i) lim, S5 ¢, (2)r,()du(2)f = B < oo.

Then, the limiting distribution of (K, M,,)_%[S,,( u, A) — K, M,] under the sequence of
alternatives specified by (3.1) above is N(a’B, 2).

3 1
n~'M2K23E||a | = 0;
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Proor. Define centered versions of the random variables S,(u, 4), W,(u, 4),
T,(p, A) as follows. Recalling that ¢, ,(Z, ,) = a(U;, ,)b,(®, ,) and 4, ,(Z, ,) =

a,(R; )b, (8, ,), put

Ck m(z n) = Ck m( i, n) Eck m( n)
3.3
() b (Z) = don(Zs.) — Edy n(Z,.),

the expectations being taken under the alternatives. Replace the {¢, ,,} and {4 ,}
in the definitions of S,(p, 4), W,(n, 4), T,(p, A) by the {¢.m) and {d .}
respectlvely, call the new statistics S,,( [Ty A) W, (s A) and T " (1, A) respectively.
Let Ck m =N 22,_,ck ,,,( ») and Dk m=n 22,=1dk m(Z; »)- Then, letting

G, | denote the cdf of U, ,
G4 E(Dy, — G )’

= Var[(ak(Ri,n) - ak( l]i,n))bm(ei,n)]

< 1bnl’E[ a(R; ) = a(U, )]’

< bl IaIPE[ R, » = Uy 4]

< 2b,lPlalP{ E[R, , = Gy, (U, )] + E[ G, (V) = U, ]*)
= 0(a?llalP).
Thus, by an argument analogous to Lemma 1,

(35) (K, M) T[Sy, 4) = Wi, 4)] =,
under the sequence of local alternatives.

Evidently, E[G ,(Z )]l=0, Var¢ ,(Z, )] =1+ O(a,), and, for (r,s)#*
(k, m), E[¢& ,.(Z )¢, S(Z,, 2] = O(a,). The argument of Lemma 2 yields, in the
present context,

(3.6) (K,M,) [ W,(p, 4) — K,M,] — T,(, 4) >,0

as n— oo. Moreover, the proof for Theorem 1 adapts easily to show that the
limiting distribution of f",,( u, A) is N(0, 2). This result combined with (3.5) and
(3.6) establishes that the limiting distribution of (K,,M,,)‘zl[.fn( w A) — K, M,] is
N(O, 2) under the alternatives.

To complete the proof of Theorem 2, it suffices to show that

(37) (K,M,) %[ S, (1, 4) = $,(1, 4)] >,0’B

as n — oo. With y, ,.denoting Ed, ,.(Z; ,) for brevity, the difference on the left side
of (3.7) can be expressed as the sum of two terms:

B, ,= 2(K,M, )_—Ek m " M, mzi-ldk,m(zi,n)

(33)
B2,n = - (KnMn) znzllgf;nMn nu‘k,m'
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By Taylor expansion, the difference p, ,, — Ec; ,.(Z; ,) equals the sum of D, ,
and D, ,, where

Dy, = E[(R,, — U, )a(U, )b, (©;,)]

Dy, =27'E[(R,, — U, ) (& )bn(®; )]

and ¢ , lies between R; , and U, ,. If I(x) denotes the indicator of the set [0, o),
then (n + 1)R, ,, which is the rank of U, ,, can be represented in the form

(3.10) (n+ DR ,=1+3_1(U,, - U,

By using (3.10) and first computing the conditional expectation given U; ,, we find
that D, , = O(a2||ak||) On the other hand, by an argument similar to (3.4),
D,,= 0(a2|| . ). Since Ec;, ,(Z; ,) = a,fcy, m(z)r (2)du(z), it follows now under
the theorem assumptions that lim,_, B, , = — a’B and that lim, ,,E(B, ,) =
2a°B.

(3.9)

Evidently
(3’11) Var(Bl,n) < 4n(KnMn)_lE[EII§,"mM" p‘k, mdk, m(Zi, n)]2
=L ,+L,,
where
= 4n(K,M, M, E[d?
(3012) ( ) 2Ic m l"’k m [ k, m( n)]

L2 n= 4n(K M ) lzl%’m)"#(r :)[J‘k mp‘r E[dk m(Z n)d (Z n)]’

Since the {4, ,.(Z; ,)} are uniformly bounded the result of the previous paragraph
for B, implies that L, , = O[(K,M, )‘5] Since E[d, ,(Z;,) — & m(Z, )} =
O(a2||ak||2) by the argument for (3.4), it follows that E[d; ,.(z;, 4, (Z; )] =
Eley m(Zi e, fZ, )] + O llal) + O(ayllall); moreover for (r,s) # (k, m)
Elc,, m(Z; e, (Z; ,,)] = O(a,). A calculation which applies this and the result of
the prev1ous 3paragraph to L2 n ultlmately yields the fact that L,, =
Oln~3(K,M,)i] + O[n~iKsMA(S%||a;|?)?], which tends to zero as n — co. Thus,
B, , —,2a’B and (3.7) is verified.

REMARKS. The significance of these asymptotics can be clarified by comparing
the asymptotic power of the test based upon S,(u, A) with that of the test based
upon the statistic U,(u, A) defined in (1.6). The limiting distribution of U,(u, 4)
under H,(u, A) as n — oo is a convolution of scaled chi-square distributions (see
Beran (1975) for further technical details).

Both S,(p, A) and U,(p, A) generate tests which are sensitive to a wide range of
alternatives to H,(u, A). However, neither test dominates the other uniformly in
asymptotic power. To see this, consider two particular sequences of alternatives
having the general form described at the beginning of this section. The first
sequence is specified by the choices

(3.13) o, = n~H(KM)5, () = (K,M,) ¢, (2)
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where (r, 5) is fixed, while the second sequence is obtained by taking
G e =T M) (D) = (K,M,) 2R ()

Since the {¢, ,,} are uniformly bounded and lim,,_mn"(K,,M,,)% = 0, the alterna-
tive densities 1 + a,r,(z) determined by either (3.13) or (3.14) are, in fact, nonnega-
tive for all sufficiently large values of n. Moreover, [r,(z)du(z) =0 and lim
sup, f|r,(2)|du(z) < oo in both cases.

The alternative sequence (3.13) is of a type commonly considered in asymptotic
power calculations: the sequence {n%[ 8,(2) — 1]} converges to a nontrivial limit as
n — co. Under the alternatives (3.13), the statistic S,(u, 4) has the same limiting
distribution as it does under H,(p, A) (by Theorem 2); however, the limiting
distribution of U,(u, A) becomes a convolution of scaled chi-square distributions,
one of which is noncentral (cf. Beran (1975)). Thus, U,(u, 4) gives an asymptoti-
cally more powerful test in this case.

On the other hand, under the alternatives (3.14), the statistic U,(p, 4) can be
shown to have the same limiting distribution as it does under H,( u, 4), while the
limiting distribution of (K,,M,,)‘%[S,,( u, A) — K,M,] becomes N(a? 2) by Theo-
rem 2. Consequently, S,(p, A) is the asymptotically more powerful test statistic
here.

The phenomenon just noted, that neither the S,(u, A) nor the U,(p, A) test
dominates the other uniformly in asymptotic power, is logically related to a result
described in Section 3 of Rosenblatt (1975): a goodness-of-fit test based upon a
quadratic functional of a window density estimator neither dominates nor is
dominated by a goodness-of-fit test based directly upon the empirical cdf. In fact,
the test statistic U,(u, A) discussed above is an extended analogue of the Cramér-
von Mises goodness-of-fit test (cf. Beran (1975)) while S,( u, 4) can be viewed as a
quadratic functional of a certain Fourier series density estimator (see (1.5)).

4. Effect of estimating the parameters. In most cases, the parameters p, 4 are
not known but can be estimated from the data, under the assumption of ellipsoidal
symmetry. Let f,, /f,, denote estimators such that (g, — p, ff,, —A) = Op(n‘%)
under H,(p, A). One construction of such estimators is given by the appropriate
class of M-estimators (see Maronna (1976) for details). This section examines the
asymptotic behavior of the statistic S,( fi,, /f,,).

To simplify the theoretical calculations, the estimators fi,, ff,, will be replaced
with discretized versions ¥, A* which are defined as follows. Let b be an arbitrary
positive constant. Since 4 is nonsingular, the parameter space for (u, 4) is an open
subset of a euclidean space having dimension (p? + 3p)/2. Pave this parameter
space with cubes of side length n~3b. Set (X, A¥) equal to the center of the cube
containing the realized value of (fi,, ff,,) except when the second coordinate of that
center is a singular matrix; in that case define (¥, 4) as the cube center estimator
plus (O, n~3bl ), where I is the p X p identity matrix. Since the difference (fi, —
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w4, — A¥) = 0,(n"7) in either case, it follows that (w* — p, A* — ) =
Op(n‘%) under H,(p, A).

The notation of the previous sections is retained in the statement and proof of
the following result.

THEOREM 3. Suppose the functions {a;; k > 1}, {b,; m > 1} are differentiable
and

4.1 () lim, K, = hm,,_mM,, = 00;
(i) hmn—»oon_EK 2M 22 =1l %]

= limn-—»con ZM ZK 22)r‘nlml” ” = 0

(iii) ¥, A¥ are defined as above;

(iv) the density h is continuous on R?;

(V) there exists a p X 1 vector valued function h(x) such that for every

P X p matrix B and every p X 1 vector c, the function h'%(x)(Bx +
¢)"h(x) is square integrable over R? and

lim"_,wf{n%[h%(x + n_%B,,x + n‘%c,,) - h%(x)]
— 27"~ 3(x)(Bx + c)Tli(x)}zdx =0
Jor every sequence {(B,, c,)} converging to (B, c). Then, under H,(p, A),
(42) (K, M,) 73S, 43) = Wy 4)] —,0

as n — 0. Moreover, if the assumptions of Theorem 1 are also satisfied, the limiting
1
distribution of (K,M,)™2[S,(u¥, AY) — K,M,] under H,(p, A) is N(0, 2).

Proor. It suffices to establish (4.2). Let {(u,, 4,); n > 1} be an arbltrary

sequence of values in the parameter space such that (u, — —A4)= O(n‘i)
We show first that

-1
(43) (KnMn) 2 [ Sn( By An) - Wn( M, A)] —)pO

as n — oo. If (4.3) were not true, there would exist a subsequence of {(p,, 4,); n >
1} which contained no further subsequence for which (4.3) would hold. Thus, in
verifying (4.3), the existence of limits u = lim,,_mn%(p,,, —u) and 04 =
lim,,_mn%(A,, — A) may be assumed without loss of generality.

Under H,(p, A), the joint density of the residuals {4,(X; — u,); 1 <i <n},
which are used in computing S,( p,, 4,), is [I7-,h,(x;), where

(4.4) h,(x) = det[ 1 + n~7471(84),]
h[x + n~14"Y(84),x + n_%A_l(&")n]

and (0w), = nz(p.,, — ), (64), = nZ(A — A). Since the determinant in (4.4)
equals 1 + n‘itr[A ~1(84)] + o(n~ 2) it follows, using the assumed properties of
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the density A, that
45)  2m3 [z (x) — h3(x)]
= tr[ 47'(84) ] k3 (x)
+h73(x)[A7(84)x + A7'(81) ]TR(x) + e,(x),

where lim,_,  feX(x)dx = 0. This implies that the two sequences of probabilities
with densities {II7_,h,(x;)} and {II7_,A(x;)} are contiguous (cf. Le Cam (1969)).
Consequently, in view of Lemma 1,

(4’6) (KnMn)— % [ Sn( s An) - Wn( My An)] —)po

.

under H,(p, A) as n — oo.
The random variable W,(p,, 4,) can be written in the form

lan 2
(47) I/Vn( s An) = 2lk(;"mAM"[n 22i=1ak( []1( Hns An))bm(ex( s An))] >
where U(p,, 4,) = F(A4,7'(X; — ,))) and O,(p,, 4,) is the polar angle vector of
ATV(X; — w,); F is still the cdf of 4~(X; — p) under H,(pu, A). By algebraic
manipulation, W,(p,, 4,) can be expressed as the sum of W(p, A) and two other
terms:

(4.8) Jin= ”—lzﬁ'}nM"le[Ck, m(zx( s Zn)) - Ck,m(zi)]2
J2, n= 2” - 12115',”111an7= lck, m(Zx)[ ck, m(Zi( [ An))ck, m(Zi)]’

where Z,(p,, 4,) = (U(,, 4,), ©,(p,, 4,)) and ¢; ,, is defined as in Section 2.
Since A is continuous, the density of F is also continuous and bounded. Conse-
quently Z(p,, 4,) = Z, + O,(n"7) and both J,, and J,, are O,(n K,
SMo\[1B,]l) + O,(n~ M, |la])). Therefore,

(49) (K, M,) 73 [ W,y A,) = (1, 4)] 5,0
as n — oo. Combining (4.9) with (4.6) establishes (4.3).

Let B(r) denote the ball of radius n~ 3r and center (p, A) in the parameter space,
viewed as an open subset of euclidean space of dimension (p? + 3p)/2. The ball
B(r) contains only a finite number N(r) of the possible values of the discretized
estimator (py, 47); let {(m, ;, 4, ;); 1 <i < N(r)} denote these possible values.
The convergence (4.3) implies that

1
(410) max]<i<N(r)(KnMn) 2 [ Sn( B, o> An, i) - Wn( M, A)] —)pO

as n— oo. Since (pf — p, A — A) = Op(n‘%) and r can be chosen arbitrarily
large, (4.10) in turn implies the validity of (4.2). The theorem follows immediately.

REMARKS. While S,(p, A) and S,(pf, AY¥) have the same asymptotic distribu-
tions under the conditions of Theorem 3, their exact distributions under H,(p, 4)
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differ. Moreover, the exact distribution of S,(u¥, 4¥) depends upon the specific
estimator used in place of the parameters (., A).

In general, the asymptotic power of the S,(u}, 47) test is not the same as that of
the S,(p, A) test. Typical estimators (u¥, A¥) which are root-n consistent for
(p, A) under H,(p, A) possess only the weaker property (pu¥ — p, A¥ — A) =
O,(a,) under the local alternatives studied in Section 3. Thus, the perturbation
induced in the distrubution of the statistic S,(u, 4) when (u, A) is replaced by
(pr, AY) is of the same order as that caused by the alternatives acting directly on

Sp(p, A).
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