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DERIVING UNBIASED RISK ESTIMATORS OF
MULTINORMAL MEAN AND REGRESSION
COEFFICIENT ESTIMATORS USING
ZONAL POLYNOMIALS!

By Jim ZiDEK
University of British Columbia

Unbiased risk estimators are derived for estimators in certain classes of
equivariant estimators of multinormal matrix means, ¢, and regression co-
efficients 8. Inall cases the covariance matrix is unknown. The underlying
method, a multivariate version of that of James and Stein (1960), uses zonal
polynomial expansions for the distributions of noncentral statistics. This
gives, in one case, therequired generalization of the Pitman-Robbins
representation of noncentral chi-square statistics including the appropriate
multivariate Poisson law. In the other case, a multivariate negative bi-
nomial law emerges. The result for regression coefficients suggests a new
minimax estimator and, essentially, an extension of Baranchik’s result.

1. Introduction. This report shows how certain decision theoretical results
concerning the parameters of the univariate normal law may be extended to the
multivariate case. This is done in terms of two examples of interest in their
own right.

The first problem of concern in this report is that of deriving unbiased esti-
mators of the risks of members of certain classes of estimators of £, a p X k
matrix of multinormal means. The class of estimators selected depends on how
much is known about the covariance structure. In the most general case treated,
it is assumed that the observable sufficient statistic is (X, S) where

X~ NEZ®1,)
S ~ W,(n, Z)
(1.1) X and S are independent
& and X are unknown
X=(Xl’t"’Xk)’ 5——'(51"“’51)

so that X is a normally distributed p X k (p < k) matrix with independent columns
X; ~ N,(¢;, Z). This example and the case & = ¢*1, are treated in Section 2.

Received March 1977; revised October 1977.

1 The National Research Council of Canada, Canada Council and the Office of Naval Research
(N00014-67-A-0112-0085) of the United States all contributed support for this research. The work
was done at the Statistics Department, Stanford University and the Division of Mathematics
and Statistics, CSIRO (Canberra) both of which generously provided facilities.

AMS 1970 subject classifications. Primary 62C15; Secondary 62F10, 62H]10.

Key words and phrases. Unbiased risk estimators, minimax estimators, multivariate Poisson,
multivariate negative binomial, James-Stein estimator, multivariate regression, zonal poly-
nomials, Pitman-Robbins representation.

769

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIKGLY

d ®
www.jstor.org



770 JIM ZIDEK

The case X = 1, is considered by Stein (1973b) where the use of unbiased risk
estimation was introduced.

The second problem is that of estimating the matrix of multivariate regres-
sion coefficients, §: ¢ X p, under a quadratic loss function. The unbiased risk
estimator is found via a zonal polynomial expansion involving, implicitly, a
multivariate negative binomial distribution.

It is hoped that these unbiased risk estimators will facilitate a systematic search
for superior alternatives to the commonly used, i.e., maximum likelihood, esti-
mators. Suchasearch is not undertaken here. However we do consider a natural
generalization of the Baranchik (1973)—Stein (1960) estimator of regression
coefficients and it is shown in Section 3 that this estimator dominates the usual
estimator. The result is (essentially) an extension of Baranchik’s result (1973).

The main results obtained are given in (2.2.12), (2.2.3) and (3.9). The method
used is implicit in the work of Shorrock and Zidek (1974) where another such
example is given; it has been applied by Lillestdl (1975, page 67 ff and page 88 ff)
in the complex counterpart of one of the problems treated here. This method
is a multivariate version of the method introduced by James and Stein (1960)
to prove the superiority of their simultaneous estimator of the means of inde-
pendent univariate normal laws over the usual one when loss is quadratic. Their
method uses the representation given by Pitman and Robbins (1949) of the non-
central chi-squared random variable. If y’(k, 6) denotes the noncentral chi-square
random variable with & degrees of freedom and noncentrality parameter 4, this
representation is

(1.2) 7i(k, ) ~ 7(k + 2).

Here y*(v) denotes the central chi-squared random variable with v degrees of
freedom, # is the Poisson random variables with mean 46% and given & = &,
x*(k + 2E) = y’(k + 2«) is independent of #. The multivariate version of this
representation does not seem to be obtained, as one might expect, by replacing
the chi-squared random variables by Wishart random variables. Rather, let
W,(k, 0, 1,) denote the noncentral Wishart random variable, i.e., the random
P X p matrix distributed as XX’ where X ~ N(3, 1, ® 1,), and let R denote the
diagonal matrix with diagonal elements its latent roots. Then the multivariate
version of the Pitman-Robbins representation is

(1.3) RIW,(k, 3, 1,)] ~ R,(k, 2%) .
Here R = R,(k, 2£) > 0, i.e., R, positive definite, is a random diagonal matrix,

say diag (R, ---, R}, R, > --. > R, > 0, with density element proportional
to

(1.4) Cu(F) exp[— tr (AIIF*~72" [Lig, (F, — F;) dF ;

C, denotes the zonal polynomial of index & = (&, -+, &,), £, = -~ =, = 0,
the x, being integers. And & = (%, ---, £,), § = --- = £, is a random partition
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of a random integer which has what might be called a multivariate Poisson dis-
tribution, namely

(1.5) Pk = x} = exp[—tr $00'1C,(35") ]! = 7450.(x) ,

say, where ||| = &, + - -+ + &,

The representation just described is derived implicitly in Shorrock and Zidek
(1974) and again implicitly in the derivation of equation (2.1.3). Observe that
if p =1 the distributions determined by (1.4) and (1.5) are, since C,(A4) = A*
in this case, the central chi-squared with k + 2r degrees of freedom and the
Poisson distribution with mean 10%. It should be noted that, whatever be p,
C.(A4) > 0 (see James (1968)) for all « if 4 > 0, i.e., A is positive definite, and
hence P{£ = «} > 0 for all «; also (tr A)¥ = X, u=x C«(A), so ||&|| has the uni-
variate Poisson distribution with mean tr 10¢’, and therefore };, P{f = «} = 1.

The representation given in (1.3) is due to James (see James (1964)). It and
variants of it such as that in Section 3 have been used to obtain series expansions
of distributions of noncentral random variables in terms of zonal polynomials.
An extensive list of references to such results may be found in Fujikoshi (1970).

Before proceeding further we review the relevant properties of zonal poly-
nomials which are elaborated in James (1964) and Farrell (1976). These poly-
nomials, C,(S), are homogeneous symmetric polynomials in the latent roots of
the p X p matrix, S indexed by the class of all ordered sequences, r={r,> - - - >x,}
of p nonnegative integers. The degree of C, is ||]|, and C, is so normalized that

(tr 8)* = X isipmi=ry Ce(S) » k=0,1,2,....

James (1968) proves C, is nonnegative on the space of nonnegative definite
matrices. The essential properties of these polynomials are:

(1.6) § exp{tr 40}A(d0) = 3, @, C,(A44")
(1.7) § C.(5,08,012(d0) = C,(8,)C.(8,)/C.(1,)
and

(1.8) EC(UU') = C(31,)/(a,™|]))

where 4 denotes the invariant probability measure on the group of n X n or-
thogonal matrices O, a,™ is given in James (1964), A: p X n and ,: PXp
are arbitrary, the latter being symmetric, and U ~ N,(O, I, ® I,). Observe that
{ (tr 40)7A(d0) = 0 whenever r is an odd integer.

2. Multinormal means,

2.1. Z > 0. In this case assume that in addition to X ~ N(§,Z® 1,), S ~
W,(n, Z) independent of X is to be observed, that & is to be estimated and that
loss is determined by L(&; 2, §) = tr Z-Y(& — £)(& — €). This problem remains
invariant under the transformation group under which

X AXO',  S— ASA',

& — AEO, 2 — AZ A,
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where A is nonsingular p X p and O is orthogonal k x k. It is more convenient
in subsequent calculations to choose, for the sufficient statistic, (X, S + XX’).
Then, as shown below, if £ is an equivariant estimator of &, £ must have the
form

&X, S + XX') = [1, — PViBy(T)B'V-1P'|X ,

where ¢ is a diagonal p X p matrix and P, B are, respectively, the p x p or-
thogonal matrices for which S + XX’ = PVP'and V-*P'XX'PV-t = BTB where
V = diag{V,, ---, V,}, T = diag{T,, --., T,}, i.e., the {T;} are the roots of
|XX’'—T,(S+XX')|=0and with probabilityone ¥, > --- >V, and T, > ... >T,.
Here B is the unique p X p orthogonal matrix with nonnegative first row while
P is chosen, for convenience in the sequel, at random from among the 27 possible
choices that work, each choice being equiprobable. To obtain this representa-
tion, note that equivariance implies

E(X, S + XX') = PViO&O'V-iP'X, 1))
= PViOp(O'R)

where R = V-1P'X, p(4) = &(A, 1,) for all A: p X k and O is any orthogonal
matrix. Equivariance implies p(A4) = p(A)Q for all refiections in the row space
of 4 so p(A) must also be in that space. Decompose A4 uniquely as 4 =
B[A]T*A]C[A], T[A] being diagonal with nonnegative, decreasing diagonal
elements, B[A] orthogonal with nonnegative first row and C[A] defined as
T-4[A]B'[A]A, so that C[A4]C'[4] = 1,. Choose D[A]so that (C'[A4], D'[A]): k x k
is orthogonal. Then equivariance implies o(A4)=B[A]p{(T*[A], 0)}(C'[A4], D'[A])
for all A. Since p(A) is in the row space of A, for all 4, with an abuse of notation,
ol(TH{ AL, 0)} = (o{T*[ A1}, 0). Thus p(A) = B[AJo(T}[AT-*[A]BTA]A. With
R, B, T, etc., as defined above, i.e., B = B[R], T = T[R], and with ¢(T) =
o{T#)T-*, p(O'R) = B[O'R]¢(T) B'[O'R]O’R = O'BA¢(T)AB'R since B[O'R] =
O’BA for A = diag{=+1, -.., +1} appropriately chosen to make OB’s first
row nonnegative. It follows that & = PViBAQ(T)AB'V-*P'X for all A =
diag{+1, - -+, £ 1} since O was arbitrary. Thus A¢(T)A = ¢(T) for all such A
and hence ¢(T) is diagonal. The asserted equivariant representation follows.

Because throughout this section only equivariant estimators are considered,
it may be assumed without loss of generality that X = 1, and the § = &, where
£,6, = diag{4,, ---,4,} and 4, = --- = 2, 2 0. For any given §, X, the 2,
are, in the problem reduced by invariance, the roots of the determinantal
equations

|ge — 28| =0  |&& — | =0.

Let us turn to the problem of deriving an unbiased estimator of
E s tr Z“({E — E)(é — &) where Eis equivariant. To this end consider

(2.1.1) AR, &) = E tr (X — &)X — &) — E tr (§ — £)(E — &) .
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It is readily shown that
(2.1.2) AR(E, &) = —E, tr WTH(T)[(T) — 21,]
—2E, tr &/PVIBH(T)B'V-P'X

where W = B'VB. Consider the first term on the right of equation (2.1.2) with
HW, T) = tr WT§(T)[¢(T) — 21,]. We find

E, r(W,T) = exp(—4tr N)Er(W, T)exp(tr §,'X)

where “E” is the expectation computed with £ = 0, £ = 1,. In this case, the
joint distribution of X and § + XX’ is invariant under the transformation
(X, S + XX') > (H,XH,, H,[S + XX'|H,') where H, and H, are, respectively,
arbitrary p x p and k x k orthogonal matrices. Also (W, T)is invariant under
these transformations. As shown below it follows from (1.6) and (1.7) that

(2.1.3) E r(W,T) = 3, ma(r)EF=“tr WT§(T)[$(T) — 21,],
where 7,,(x) is the multivariate Poisson law defined in equation (1.5) and
EF=rr (W, T) = [Er(W, T)C(XX)[EC(XX")].

To derive equation (2.1.3) change variables X — XH,’ in the above expression
for E, r(W, T) (W, T remaining invariant under this change as does the distribu-
tion of X). This gives

(2.1.4) Eeor(W, T) = exp(—3tr A)Er(W, T)exp(tr §/XH,) .

Since this identity holds for every H,, it will hold for H, = H, randomly dis-
tributed independent of X on O(k) by the invariant measure on O(k) (normalized
to have total mass 1). By applying (1.6) to E¥ exp(tr §/XH,), (2.1.4) becomes

(2.1.5)  E r(W,T) = S, exp(—} tr AW Er(W, T)C,(8/XX'8,) .

Since C,(§,/XX'¢,) = C.(§,6,/XX’), the change of variables X — ﬁp X, H, being
randomly distributed, independently of X on O(p), yields by equation (1.7) (with
A= 50’50)

E r(W,T) = %, exp(—4 tr A)C,(A)a, " /C,(1,) - Er(W, T)C(XX')

i.e., by equation (1.8), equation (2.1.3).
The last term on the right of equation (2.1.2) is, with § = PViBg(T)B'V-iP',

(2.1.6)  —2E tr&/$X = —2exp(—}trA) di Eexp(tr £,4, X)
& e=0

where ¢, = 1, + ¢ provided that the expectation in (2.1.6) exists for sufficiently
small |¢] > 0. This will be the case if ¢’s diagonal entries are bounded by M,
say. Forthen, with A = PViB, tr&/¢ X = tréfX + etr X§/ApA and ife > 0,
etr Xe/ApA < LeM[tr (S + XX)XX' + tr (S + XX')&,&,/]- This inequality
is proved using twice the fact that if B and D — C are nonnegative definite
matrices of the same dimension, then tr BD > tr BC. The inequality implies
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the existence of the expectation in (2.1.6) when ¢ > 0 is sufficiently small
(I, — $eM¢&,&, must be positive definite). If ¢’s diagonal entries are not bounded,
they may be truncated at M > 0, say, and the subsequent analysis to equation
(2.1.8) below carried out for the resulting estimator with ¢ replaced by ¢,
say. By letting M — oo, then equation (2.1.8) will be obtained from its version
where ¢ is replaced by its truncated counterpart.

Under the transformation

(X, S + XX') — (H,XH,, H,[S + XX'|H,"),
B, T and V remain invariant and P — H,P. Thus,
exp(—tr JA)E exp(tr &,’d, X)
= %, 7R EC(X X))
X {EC([1, + ePVB(T)B'V-1P'\X o X'[1, + ¢PV-2B(T)B'ViP])}

= ¥, 7 (k) EC( XX\ {EC(B'VB[1, + ¢¢(T)F'T)} .
Under E, S + XX'and (S + XX')7*X = V-iP'X = U, say, are independent (see,
for-example, Shorrock and Zidek (1974)); it follows that V is independent of B.
Also B is independent of 7. This is because the density of U is, disregarding nor-
malizing constants, |1, — uu'|»~?=2/2 with respect to Lebesgue measure on the
space {u: 0 < uw’ < 1,}. Since thisdensity is spherically symmetric, an argument
of James (1954) for the normal law is readily adapted to yield the conclusion.
In addition, since the expression above is invariant under the transformation
B — AB with A = diag {+1, - -, +1} we may drop the restriction that B have
nonnegative first row and conclude by appealing again to James (1954), that B

is uniformly distributed by the invariant probability measure on the group of
p X p orthogonal matrices. Thus

(2.1.7)  EC(BVB[L, + sp(T)PT) = cEC(V)Cl1, + «4(T)FT)C.X(1,)
(see equation (1.7)). It follows that

exp(—4tr A) 5; Eexp(tr &/d. X)

= 2¢ 3, ma(R{ECXX)C (1)} HEC(V) tr [THT)V*C(T)]}
= X, 7 a(e){EC(XX")y {EC(B'VBT) tr T$(T)0(T)} ,
where V*C () = diag {(9/0t,)C(?), - - -, (9/0t,)C,()} and

0,(1) = 2V* In C,(¢) = 2 diag {.637 In C(1), -- -, a? In cx(z)} .
1

P
But C(B'VBT) = C(XX'). Thus

—2E, tr&/¢X = —2 3, myu(r)EF=* tr T¢(T)0(T)
and hence

(2.1.8). AR, &) = —Ef tr (WeT)T — 2W(T)T + 2T§(T)0x(T))
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where EZ denotes expectation with respect to the joint distribution of W, T,
and Z.

An unbiased risk estimator is readily derived from equation (2.1.8) by integra-
tion by parts. For this purpose an explicit formula for the density of T is required.
Since T is the diagonal matrix of UU’ and the density element of U (when & = 0,
Y% = 1) is, disregarding normalizing constants, |1, — uu'|""~?~V2du, it follows
from the argument used by James (1954) to derive the density of the latent roots
of the Wishart matrix that the joint density of the diagonal elements of 7, i.e.,
T,> ... >T, is, apart from normalizing constants
(219) H (1 _ ti)(n—p—l)ﬂ H ti(k—p—l)/2 Hi<j (ti _ tj) H dti .

Observe that
E} tr T(T)0(T) = 3, 7,4 (k) EF=% tr TA(T)0(T)
and that
(2.1.10)  E*=<tr T¢(T)0(T) = {EC(B'VBT) tr T¢(T)0 (T){EC(XX")}*.
To obtain an unbiased risk estimator, the numerator of the right-hand side of

equation (2.1.10) will be evaluated using integration by parts and the density
given in (2.1.9). The numerator is the product of

(CONMECK)  and |3 E2T,g(T) ,,aa,T,, c.(n}-
Since, assuming ¢, is differentiable and that the resulting integrals exist,

0
E2T;¢(T) 57

C(T) = ET,C(T)[—2¢:(T) — s(T){(k — p + DT
+2 50T =Ty —(n—p— 1A =T)7},
returning along the path which led to this last expression, it is found that
Ef tr T(T)0(T)
(2.1.11) = N E, T[—20:(T) — ¢(T){(k — p + )T,
+ 25T =Ty —(n—p— 1)1 =T)"].
Combining equations (2.1.8) and (2.1.11) gives
AR(E, &) = E, ftr (—WeXT)T + 2W§(T)T}
(2.1.12) + 2 Ti46u(T) + 28(T){(k — p + DT
+250(Te = T) —(n—p— 1)1 = T)7}]}.
Equation (2.1.12) yieldé an unbiased risk estima‘tor of the risk of any equivariant
estimator for which ¢ is differentiable.

Efron and Morris (1972) obtain a minimax estimator for this problem; in their
estimator,

(2.1.13) $(T) = ¢ (TL ~1),
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where ¢ = (k — p — I)(n + p + 1)~ It is easily verified that for ¢ > 0, the
expectation in equation (2.1.6) exists for this choice. So equation (2.1.12) im-
plies, for this choice of ¢, that
(2.1.14) AR(E, &) = n[—(n + p + 1)¢ — 4¢

+ 2¢(k — p 4 1)E tr (XX")7'].
The best choice for ¢ is easily seen to be that chosen by Efron and Morris and
for that choice of ¢ we obtain the result they do, viz:
(2.1.15)  AR(§, &) = n(n + p + 1)k — p — 1}E, tr (XX")1.

DiscussioN. Were it not for the restriction of our considerations to equivari-
ant estimators, an unbiased risk estimator might well have been derived rather
more straightforwardly by an integration by parts, using, say, Green’s formula.
Equivariance is imposed to insure “pooling” across rows and across columns
(or across replications and across equations in the regression example of Section
3), and also to reduce the difficulty of the search for a superior alternative to
the maximum likelihood estimator by reducing the size of the class of contenders.
Although the risk estimator would be simpler to derive without this restriction,
this estimator would not so readily have suggested the sought after alternative.

2.2. X = ¢*l,. In this case assume S ~ g%,? is observable independently of
X ~ N(&, 021p® 1,) and consider the class of estimators, g of ¢ equivariant
under the transformation group which acts as follows:

X — cPXQ, S — S,
& — cPtQ, o? — cl?,

where P and Q are, respectively, p X p and k X k orthogonal matrices and
¢ > 0. It is readily shown that € must have the form

(2.2.1) EX, S) = [1, — Ba(LS™")B'|X
for some p x p diagonal matrix ¢ where B is the unique p X p orthogonal
matrix with nonnegative first row for which

L =BXX'B,
and L = diag{L,, ---, L.}, L, > --- > L, > 0. Furthermore,
o E allX — &P — E ol — &IP)
(2.2.2) = E;* tr L[2¢(LS™) — ¢(LS~Y) — 4¢(LS-1)V* In C;(L)]
= VR(, 1),
say, where 2 = §¢7? and E;* denotes expectation with respect to the joint dis-

tribution of L, S and £ The unbiased risk estimator derivable from (2.2.2) is
determined by equations (2.2.3) or (2.2.4):

AR(é, ) = E{[X L{—¢(LS™") + 45 '¢,,(LS™)
(2.2.3) + 2(k — p + 1L, 7g(LS)}]
+ 4 Dici [Lip(LS™) — Ly g(LSTHIL: — L;]7 s
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or equivalently,
(2.2.4) AR(E, 2) = E{Y L{—¢(LS™) + 457'¢,(LS™)

+ 2[(k —p + DL+ 2 X0 (Li — L)' 1g(LST)} -
If in equation (2.2.2), ¢ is replaced by ¢ = 1, — ¢, then we obtain, disregarding
terms which do not involve ¢,

AR, 2) = —E;tr L[H(LS™Y) — 6(L)]® +
This suggests the unbiased “predictor,” ¢*, of §;(L) given by
g (LS™T) =1 —n7'S[(k — p — DL + 2 350 (Le — L)™'

since, as an integration by parts will show,

EF=%g(L) = E*=**(LS™).
This is easily improved upon by replacing n~! by (n 4 2)~'. For, among esti-
mators with ¢, of the form

P(LST) =1 —eS[(k —p — D)L, + 2 35, (L — L)™',

equation (2.2.4) implies the best one has

c=c, = {n+2}7{1 — GA)}
where G > 0 is given by

G(Z) 4EIZL Z]#t(l’ _‘L)Z
E, N Lf(k —p— 1L+ 43, (L, — L) o

Since ¢; < (n + 2)7' < n~! whatever be 4, and since the functional of ¢ being
minimized is quadratic in ¢, it follows that the choice ¢ = (n 4 2)~! makes this
functional uniformly smaller in A than ¢ = n~'. It is not known whether the

resulting estimator dominates the usual one. It is the counterpart for ¢ unknown
of that proposed by Stein (1973b) for the case ¢ = 1.

3. Multivariate regression. Suppose X}, X,, - - -, X, are independent (¢ + p)

dimensional random variables, X; ~ N, (6, ). With

W=z =) o 2=l )

Y, pbeingg x 1, Z,{,px 1,and B, p X g,
E(Y,|Z) = a + 'Z,
where
‘3 = FZ_IB and a =179 — ,B'C .
The parameters a, f3 are to be estimated so that P = @ + f’Z, will be an effective
predictor of a future Y, more precisely, so that Y is uniformly better than the
least squares estimator ¥, = &, + f,/Z, with respect to the risk function

E[Y - f)] Frlz[y - Y]
(3.1) = E{tr T}[(a — &) 4 (8 — B)Cll(a — &) + (B — BYCY
+ tr TyL[B — BI'T,IB8 — 1}
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where I'} , denotes the conditional covariance of Y, given Z,, alli. This suggests
a natural loss function for the (a, 8)-estimation problem, namely, the expression
in equation (3.1) contained within the curly brackets, { }. Stein (1960) proposed
this loss for the case ¢ = 1.

An intuitively equivalent but mathematically simpler version is chosen here,
namely,

L((0, 2); (@ B)) = tr Tity{[( — @) + (B — B)Cli(e — &) + (B — B)LY
+ [ — AIT.B — A1)
where ', = (n— 1) (Z, — Z)Z, — Z). Like Baranchik we restrict our-
selves to the problem of estimating 8 under the loss obtained by setting { = 0

(as we may do without loss of generality since only equivariant estimators are
to be considered) and « = @. That is, the loss function is

(3.2) L((0, 2); ) = tr Ty [8 — YT (B — A1

Although this puts the problem into a form comparable to that treated by
Baranchik (1973) we cannot assert as he can that if 5 dominates 3, with respect
to the loss (3.2) then (¥ — f'Z, ) dommates (& B,) with respect to the joint
loss presented above for (&, f).

The loss function in equation (3.2) is essentially that proposed by Dempster
(1973) although his argument for it is different than that given here [predictions
are conceived as being made at the Z,’s already observed]. Thisted (1976, page
18) comments on this loss function and cites other work where it has been
introduced.

Since

Bo=(n = )T £(Z = Z)(Y. — ¥)

a,=Y — B,Z
are based on the minimal sufficient statistic it is natural to restrict the search for
a better alternative to the class of estimators based on this statistic. Furthermore,
following the Stein (1960) argument, we consider only equivariant estimators
with respect to the transformations under which

(3.3) (z) — (¢ o)(z) + (@) i=1,..n
where 4: ¢ X gand C: p X p are nonsingular and e: ¢ X 1 and d: p X 1 are
arbitrary.

If

V=01 = XX — D) — Xy

é = <)_,> )
Z
then under the transformaticn (3.3),
V-G V(& o
-0+

and
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with corresponding changes in the true parameters I', and §. Thus
(3.4) B—(CYBA', a— Aa — AB'C-d + e

and to require equivariance is to require (3.4) to hold for § and & as well. Since
Iy, — AL, , A’, the loss, (3.2), remains invariant. It follows that the risk func-
tion of equivariant estimators depends on the true parameter through the maximal
parameter invariants, i.e., through the true canonical correlation coefficients.
In other words, if, as will be assumed hereafter, p > g it may be assumed without
loss of generality that

(35) FY:lq, FZZIP, B':[A,O], 7]:0, C:O

where A: ¢ x ¢ = diag{p,, ---, p,} and p, = ... = p, are the canonical cor-
relation coefficients. Then I'y, = 1, — A?, B depends on the data only through
V, and @ = ¥ — B’Z. Furthermore as is easily shown, equivariance implies
(with symmetric square roots)
(3.6) B = (Va) PAR)Q(VY,
where R = diag {r,, ---, 7}, , > --- > r, denote the sample canonical correla-
tions, Q: ¢ X ¢ is orthogonal and given by
VetV u(Va)Vu(Vit) = Q'R*Q
and
P = Vi)V (ViH)Q'RY,

Pbeing p x gsothat P’P = 1,. The quantity f(R): ¢ X ¢ is an arbitrary diagonal
matrix function of R. The least squares estimator, Bo, is obtained from the choice

f(R) = f((R) = R.

It is readily shown that if § is equivariant,

(37)  Estr D7l — BIT,[8 — ]
= Extr[f — BIT[F — Bl = o(B, B) | say,
where in E,, Y|Z ~ Mf'Z,1,®1,_))and Z ~ N(O, [1 — Bf'1"'® 1,_,). Fur-
ther an argument similar to that of Section 2 shows that
(38)  p(B,B) = (n — 1)E, tr U¥R) — 2(n — 1)~'E, tr Rf(R)0;(R?) + tr f'88,
where U = Q'V,, 0, and 6;(!) = 2V*In Cy(l); & = (&, - - -, £,) is a random integer
partition, £ = ... = £,, having the multivariate negative binomial distribution
with probability mass function
—1 ’ 7R (n—
ms(®) = ("5), (R CLBBM — BB,
forall ¥ = (x,, - - -, x,). Conditionally, given # = &, Y and Z have a density
proportional to C,(zy'yz’) exp[—4{tr zz’ 4 tryy’}]. An integration by parts
involving the known form of the density of R when Z ~ N(0, 1, ® 1,_,) and
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Y ~ N0, 1,®1,_,) yields equation (3.9) below from which an unbiased risk
estimator emerges:

o(. B) = (n — 1)7'E, {tr UP(R) + 2R7f(R) + 2V*/(R)

N ] g

+ 2 (R — Rj2)_1:|} +tr p'8.
As will be shown below, a superior alternative to B, is f, for which

(3.10)  fI(R)=f(R) = (1 + )R — cR', O<c< AP—9=1)
(n—p+9q)

This choice is the natural extension of the estimator proposed by Stein (1960)
for the case ¢ = 1. Baranchik (1973) proved Stein’s conjecture for the loss in
(3.2) when T, is replaced by I', and ¢ = 1. For the loss in (3.2) the estimator
B, given by the choice f = f,, dominates §,if n = p + land p = ¢ + 1. In fact,
with p the risk function given in (3.9), it can be shown using Cochran’s theorem
that

o(Bu ) — p(Bo 6)
(3.11) = (n — 1)7c = 2Ap — g — )n — p + 9)7)
X (1= p — 1)1 = p + QE, tr (1, — AV, ViVin) !

where, it will be recalled, B’ = [A,0], I',=1,, ', =1, and $=T,7B =
[A, O, all without loss of generality because of the assumed equivariance. The
asserted conclusion follows since under the hypothesis o(f,, 0) — p(B,, 8) < O
for all values of the true parameters.

This result is not, strictly speaking, an extension of Baranchik’s result (1973)
to the case ¢ = 1, because the loss function differs from that of Baranchik. It
should be noted in comparing the results that Baranchik assumes n + 1 inde-
pendent X;’s are to be observed, not n as is asserted on page 312 of his article.

DiscussioN. For the loss function considered here and the case g = 1, the
superiority of the estimators determined by (3.10), i.e., the estimators considered
by Baranchik, are very simply established by conditioning on Z, suitably trans-
forming f,, and appealing directly to the James-Stein result (1960). This analysis
is carried out by Sclove (1968). Likewise there is a James-Stein estimator for
the case ¢ > 1, which we have not evaluated.

The estimator determined by equation (3.10), i.e., the one suggested by the
Stein (1960)-Baranchik (1973) works, is also the one determined by equation
(2.1.13), i.e., by the Efron-Morris (1972) work, when for the case of fixed Z,
the problem is reduced to its canonical form, the form considered by Efron and
Morris (1972). In fact, an alternate argument which yields equation (3.9) directly
from equation (2.1.12) may be constructed as follows. After restricting p to be
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equivariant, and then setting I') = 1, condition on Z. The resulting problem
can then be reduced to that of Section 2 and equation (3.9) obtained directly
[substitute p for k, ¢ for p and note (i) that S now corresponds to the residual
sum of squares so instead of n degrees of freedom, § has just n — p — 1]. This
approach has the shortcoming, however, that it does not give the representation
(3.8) which is of interest in its own right.

Our analysis of the problem preserves the algebraic character of the problem,
i.e., B is regarded as a ¢ X p matrix rather than a vector of dimension gp, and
it is this which leads to the identification of f(R) given in (3.10). This in turn
reveals, in the next paragraph, a role for canonical variates in multivariate
regression analysis.

It is clear from equation (3.11) that the best choice of c is given by

c=(p—g—NDn—p+9)7".
For this choice of ¢ it is readily seen that
(3‘12) Bl = Bo[alq - b( V12 V2_21V21)_1V11]

where a =(n — 1)(n — p+ g)*and b =(p — g — 1)(n — p + ¢)~'. Alterna-
tively this is

(3.13) B, = (22")"Z[al, — bRH)A'Y] A

whereZ = (2, -+, Z,) —(Z,---,Z2), Y = (Y}, ---, Y,) — (¥, ---,¥)and A'Y
denotes the matrix of estimated canonical Y-variates. In as much as @ — 6R,™?
is small when R, is, the effect of premultiplying 4’'Y by (al, — bR™?) is effectively
to reduce to zero those canonical Y-variates with small canonical correlations.
Post multiplying by A4~! then returns the analysis to Y’s coordinate system.
These heuristics would be more nearly correctif (al, — bR~?) = diag {(a — bR, *)}
were replaced by (al, — bR~*)* = diag{(a — bR,;~*)*}and, indeed, these heuristics
suggest this ought to be done. The rationale for 5, would seem to be that the
estimator, BO, is improved when “noise” in the form of nearly uncorrelated
canonical Y-variates are replaced by zero.

Observe that since o(f,, §) = pg(n — 1)7', equation (3.11) implies when ¢ =

(p—g—1)(n—p+ q)* that
(3.14)  (n—1pB B =pg—(p—q—1(n—p+q7(n—p— DEW

where W = tr (V,; — V, ViVa) (Vi VitVy) ™. An unbiased estimator for the risk
of B, is apparent from equation (3.14). Furthermore, 100(p — ¢ — 1)((n —
p + q97(n — p — 1)W/(pq) estimates the percentage reduction in risk achieved
using B, instead of §,.
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