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ESTIMATES OF LOCATION: A LARGE DEVIATION
COMPARISON!

By GERALD L. SIEVERS
Western Michigan University

This paper considers the estimation of a location parameter ¢ in a one-
sample problem. The asymptotic performance of a sequence of estimates
{Tx} is measured by the exponential rate of convergence to 0 of

max {Po(Tn < 0 — a), Po(Tn > 0 + a)}, say ea).

This measure of asymptotic performance is equivalent to one considered by
Bahadur (1967). The optimal value of e(a) is given for translation invariant
estimates. Some computational methods are reviewed for determining e(a)
for a general class of estimates which includes M-estimates, rank estimates
and Hodges-Lehmann estimates. Finally, some numerical work is pre-
sented on the asymptotic efficiencies of some standard estimates of location
for normal, logistic and double exponential models.

1. Introduction. Consider the problem of estimating a location (shift) parame-
ter in a one-sample context. Let X,, X,, - - - denote a sequence of independent
random variables having a common absolutely continuous distribution with cdf
F(x — 0)and density f(x — ¢). Foreachn=1,2, ... letT, = T, (X, ---, X,)
denote an estimate of #. One measure of the performance of T, is Py(|T, — 6| > a),
the probability of the error of estimation exceeding a fixed number @ > 0. A
similar measure is given by the inaccuracy function

A(a, 0, T,) = max {P(T, < 0 — a), P(T, > 0 + a)}.

This measure has been considered by Huber (1968, 1972) in the development of
M-estimates.

If the sequence {T,} is consistent for ¢, the inaccuracy tends to 0 as n — co.
Thus, to measure the asymptotic performance of {T,}, consider

lim, ., (—1/n)log A,(a, 0, T,) = e, say,

if this limit exists. The number e will be referred to as the inaccuracy rate of
{T,}. Theinaccuracyrateeisidentical toe* =lim,_ (—1/n)logP,(|T,—06|) > a),
an asymptotic measure proposed by Bahadur (1967, 1971).

Huber (1968) has shown that an M-estimate is the translation invariant estimate
which minimizes the inaccuracy for any finite n. Thus a sequence of M-estimates
attains the largest possible inaccuracy rate in the class of sequences of translation
invariant estimates. This work is explored in Section 2 and an upper bound on
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e for translation invariant estimates is given. Bahadur (1960, 1967) implicitly
and Fu (1975) explicitly have given an upper bound for e* (or e) for consistent
sequences of estimates as

e* < inf{§ f(x — 0")log (f(x — &")/f(x — 0))dx: |6 — 0'| > a}.

The Bahadur bound, involving a larger class of estimates, cannot be less than
the bound for translation invariant estimates. In fact, the Bahadur bound may
be too large in the sense that for some distributions F, it is not attained by any
reasonable estimate. For instance, the Bahadur bound is attained by the sample
mean in the normal case but does not appear to be attained by any familiar
estimate in the logistic or double exponential case.

In this paper, the problem of evaluating and comparing inaccuracy rates for
sequences of translation invariant estimates is considered. The optimal inaccu-
racy rate is given in Section 2 and a general approach for M-estimates and
related estimates is discussed in Section 3. Some useful tools are to be found
in Chernoff’s (1952) paper. Finally, Section 4 contains some numerical work
comparing the inaccuracy rates of the sample mean, the sample median, the
maximum likelihood estimate and two M-estimates for the cases of normal,
logistic and double exponential distributions.

2. The optimal inaccuracy rate. In this section it is shown that under quite
general conditions, the optimal inaccuracy rate for translation invariant esti-
mates is attained by a sequence of M-estimates.

Fixa > 0 and let F(x) = F(x + a) and F(x) = F(x — a). Let the ratio of
the densities be ¢(x) = fi(x)/f,(x). For testing the hypotheses H,: F,vs. H,: F,,
consider the test function

Gu(xy, -+, x)=1, 7, or 0O if JIr,e(x)>k,, =k,, or <k,,

respectively, where k, and 7, are chosen so that E (¢,) = Ep (1 — ¢,) = a,,
say. Note that a, = inf, max{E(¢,), Ez(1 — ¢,)}, where ¢,(x,, - - -, x,) de-
notes an arbitrary test function.

Assuming that ¢(x) is nondecreasing, an M-estimate of § can be defined as
follows. Let [,(6) = []i., ¢(x; — 6) and define ¢,” = inf{6: [,(f) < k,}, 6, =
sup{@: 1,(0) = k,}, and

6,=20, with probability 1 — 7,
=4, with probability 7, .
It follows that 6,’, 8,” and the estimate #, are translation invariant.

As in Huber (1968), if ¢(x) is nondecreasing it will follow that 4, attains the
minimum inaccuracy within the class of translation invariant estimates of 6;

that is, 4,(a, 6, 9”) = a,and 4,(a, 0, T,) = a, for any translation invariant 7,.
The specific inaccuracy rate is given in the following theorem.

THEOREM 2.1. If ¢(x) is nondecreasing, then
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(i) lim,_, (—1/n)log A4,(a, 8,08,) = —log M, where M = inf,_, ., m(t) and
m(t) = \ fiify"" dx, and

(ii) limsup,_. (—1/n)log A, (a, 0, T,) < —log M for any sequence of trans-
lation invariant estimates {T}.

Proor. Let ¢, (x, ---, x,) denote an arbitrary test function for testing H,: F,
vs. H;: F,. Then Chernoff (1952) has shown that (—1/n) log [inf, {E€0(<,/z") +
Ep (1 — ¢,)}] » —log Masn — oo. Then part (i) follows since 4,(a, 6, 0,) = «,
and a, < inf, {E(¢,) + Ep (1 — ¢,)} = 2a,. Part (ii) is immediate.

REMARK 2.1. If m(f) = m(1 — 1), 0 < t < 1, it follows from the convexity
of m(t) that M = m(}). This property holds for instance if the density f(x) is
symmetric about 0.

3. Inaccuracy rates for a general class of estimates. Let a sequence of func-
tions {H,(x,, - - -, x,)} be given satisfying the property: 4,(0) = H,(x, — 0, - - -,
x, — 0) is nonincreasing in 6. Let {k,} and {r,} be sequences of constants,
0<7y,=<1. For each n, define an estimate 8,* = 4,*(X,, ---, X,) by 6,/ =
inf{6: 4,0) £ k,}, 6,” =sup{f: h,(0) = k,}, and

0.*=28, with probability 1 — 7,
=4," with probability 7, .
Note that 6,’, 6,” and 6, * are translation invariant and have continuous cdf’s.
Various M-estimates follow this prescription using H,(x,, ---, x,) = X7, ¢(x,)
for some nondecreasing function ¢b. Special cases include the optimal estimate
@, of Section 2 and the maximum likelihood estimate when the density f is log
concave (¢ = —f’/f and k, = 0). Rank estimates of § are also obtainable by
choosing H, to be a suitable function of the ranks of |x;|.

The computation of the inaccuracy rate for {#,*} is a nontrivial problem in
general. One very basic approach is to note that if #,(¢) is nonincreasing in 0,
then

Pp(ha(0) > k,) < Pr(0,* = 0) = Pr,(0,* > 0) = Pp (h,(0) = k)
and
Py (h(0) < k) < Pp(8,* < 0) = Pp(0,* < 0) < Py (h(0) < k,)

The following theorem is then immediate.

THEOREM 3.1. If h,(0) is nonincreasing in § and

(3.1)  tim,_. (—1/n) log Ps,(h,(0) > ky) = lim, . (—1/n) log Ps (h,(0) = k,)

=e*, say, and
(3.2) lim,_. (—1/n)log PFl(hn(O) < k,) = lim,_ (—1/n) log PFl(hn(O) < k,)
=e , say,

then the inaccuracy rate of {6,*} is min {e*, e”}.
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The equality of the limits in (3.1) and (3.2) may be easy to verify in special
cases, but such limits do not necessarily agree in general without some qualifi-
cation. Various techniques in large deviations theory may be useful in the
computation of the limits in (3.1) and (3.2).

REMARK 3.1. For the special case £,(0) = 317, ¢(x,), for some nondecreasing
function ¢, Chernoff’s theorem (see Bahadur (1971), page 7) gives expressions
for et and e-.

REMARK 3.2. The estimate §,* was defined as a random choice of either 4,’
or §,” and this randomization is frowned upon in practical circles. Instead,
the estimate can be defined differently, for instance as (6,” + 6,”)/2, without
affecting the inaccuracy rate. To be specific, if 6, is any translation invariant
estimate with¢,’ < 6, < 6,”, and if the hypothesis of Theorem 3.1 holds, then
{6,} has the same inaccuracy rate as {6,*}.

4. Applications. In this section a comparison of inaccuracy rates is made for
selected estimates in the context of normal, logistic and double exponential
distributions. If {7,”} has inaccuracy rate e,(a) for i = 1, 2, then the asymp-
totic relative efficiency of {T,“} to {T,”} is defined to be e, ,(a) = e,(a)/e,(a).
This efficiency can be directly interpreted as the ratio of respective (large) sam-
ple sizes required for the two estimates to have identical inaccuracies.

In what follows the underlying distribution will be indicated by a second
subscript: N for normal, L for logistic and D for double exponential. Using
Theorem 2.1 and Remark 2.1, the optimal inaccuracy rates are

e, y(a) = a*2,

e, (@) = a + log ((1 — exp(—2a))/2a),
and
e,p(a) =a—log(l + a).

Consider the sample mean X, = Y17, X,/n. Since the optimal estimate 6, of
Section 2 is X, in the normal case,

ez y(a) = a’f2.
For the other distributions, the symmetry of f and Chernoff’s theorem can be

used to yield ez(a) = —log[inf,,, E, exp(#(X — @)))]. Then using the well
known moment-generating functions

ez (@) = —log[inf,,, tr exp(-—at)/sin (tr)]
and
ez p(a) = (1 + @)t — 1) + log [2((1 + a@*)t — 1)/a?].
Consider next the sample median M, = median {X,, - - -, X,}. Bahadur (1971)
page 25, shows that
* = lim,_, (—1/n) log Py(|M, — 6| > a)
= —(3)log (4p(1 — p))
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where p = P,(X, > a). Since the inaccuracy rate equals e*, it follows that

ey, x(a) = —(3) log [4Q(a)(1 — D(a))]
where @ is the standard normal cdf,

ey,.(a) = (a/2) + log[(1 + exp(—a))/2]

ey p(@) = (—3%) log [exp(—a)(2 — exp(—a))].

The inaccuracy rates for maximum likelihood (ML) estimates have already
been given for the normal (X,) and the double exponential distribution (M,)
cases. For the logistic case, the ML estimate is the solution ¢ to the equation

» . (1)(1 + exp(—x; + 6))) = n/2. Using Theorem 3.1, Remark 3.1 and the
symmetry of f, it follows that

eyr,(a) = —log[inf,z, exp(—1/2) (= exp(#/(1 + exp(—x + a)))f(x) dx].

As a final estimate, consider the M-estimate of Huber defined as the solution
6 to the equation X 7_, ¢(x; — #) = 0 with ¢(x) = max {—k, min {k, x}} for some
k > 0. This estimate is considered “in between” X, and M, in its sensitivity to
extreme observations and has properties similar toa trimmed mean. The optimal
estimate of Section 2 reduces to this estimate in the double exponential case if
k = a is used. Using Theorem 3.1, Remark 3.1 and the symmetry of f, the
inaccuracy rate of this estimate is

ey(a) = —log[inf,,,I(1)],
where I(f) = Ep(exp(t¢(X — a))). In particular
Iy(f) = exp(—kt)®(a — k) 4 exp(kt)(1 — D(a + k))
+ exp(—at + £22)(P(a + k — t) — O(a — k — 1)),
I,(t) = exp(—kt)/(1 + exp(—a + k)) + exp(—a — k — k)/(1 + exp(—a — k))
+ exp(—at) {¢*k exp(tx — x)/(1 4 exp(—x))*dx

and

and

(1) = exp(—ki) + [t exp(—a)/2(t — D][exp((t — 1)k) — exp(—(t — 1}k)]
if k<a
= (¢/2(t + 1)) exp(a — (¢t + 1)k) + (#/2(t — 1)) exp(—a + (t — 1)k)
— exp(—at)/(f — 1) if a<k.

Tables 4.1—4.3 give selected values of the above inaccuracy rates and the
corresponding efficiencies relative to the optimal rates. Where necessary, the
integrals and infimums were computed numerically on a PDP-10 at the Com-
puter Center of Western Michigan University. Figures 4.1—4.3 provide graphs
of the efficiencies relative to the optimal rates.

The flatness of the efficiency curves for the normal and logistic cases was
unexpected. This indicates that the local behavior of the estimates adequately
reflects the overall behavior. Unfortunately, this does not carry over to the
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double exponential case where the sample median is locally efficient but its
efficiency drops off quite fast. The efficiency of the sample mean is adequate
for logistic distributions but too low for double exponential distributions. In
this latter case, the sample mean becomes more efficient than the sample median
fora > 1.5. The efficiency of the Huber estimate appears only mildly sensitive
to the choice of k, especially for the normal and logistic cases. For the estimates
and distributions considered here, the best compromise appears to be the Huber
estimate with k chosen between .5¢ and 1.50.

TABLE 4.1
Inaccuracy rates and efficiencies (relative to the optimal rate)
for the standard normal case

a eo(a) ex(a) en(a) en(a)

k= 1) k = 2)

.01 (0)S .(0)318 (00452 .(0)495

(.637) (.904) (.990)

.10 .005 .00318 .00452 .00495
(.636) (.903) (.990)

.50 125 .07928 .11268 .12369
(.634) (.901) (.990)

1.00 .50 .31374 .44805 .49443
(.627) (.896) (.989)

1.50 1.125 .69440 .99765 1.11110
(.617) (.887) (.988)

2.00 2.00 1.20995 1.74615 1.97121
(.605) (.873) (.986)

2.50 3.125 1.85079 2.67117 3.06979
(.592) (.855) (.982)

3.00 4.50 2.61139 3.74633 4.39670
(.580) (.833) (.977)

TABLE 4.2

Inaccuracy rates and efficiencies (relative to the optimal rate)
for the logistic case

a eo(a) ex(a) ex(a) ex1(a) exn(a) exn(a)
(k=1) k=3)
.01 .(0)4167 .(0),125 .(0),152 .(0)4167 .(0),156 .(0)4163
(.750) (.912) (1.00) (.939) (.979)
.10 .00167 .00125 .00152 .00167 .00156 .00163
(.750) (912) (1.00) (.939) (.979)
.50 .04132 .03093 .03771 .04132 .03869 .04053
(.749) (.913) (1.00) (.936) (.981)
1.00 .16144 .12011 .14763 .16137 .14981 .15894
(.744) (.914) (1.00) (.928) (.985)
1.50 .35032 .25827 .32143 .34962 .32046 .34663
(.737) (.918) (.998) (.915) ©(1989)
2.00 .59522 .43378 .54842 .59191 .53432 .59151
(.729) (.921) (.994) (.898) (.994)
2.50 .88380 .63574 .81814 .87347 .77603 .87997
(.719) (.926) (.988) (.878) (.996)
3.00 1.20576 .85544 1.12163 1.18096 1.03369 1.19832
(.709) (.930) (.979) (.857) (.994)
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TABLE 4.3

Inaccuracy rates and efficiencies (relative to the optimal rate)
for the double exponential case

a eo(a) ex(a) ex(a) en(a) en(a)
k=1) k = 2.5)
.01 .(0),497 (04495 .(0)250 (0,378 .(0):296
(.997) (.503) (.761) (.595)
.10 .00469 .00455 .00250 .00377 .00295
(.970) (.532) (.804) (.630)
.50 .09453 .08410 .06069 .08918 .07196
(.890) (.642) (.943) (.761)
1.00 .30685 .25506 .22599 .30685 .26902
(.831) (.737) (1.00) (.877)
1.50 .58371 .46257 .46531 .56804 .55341
(.793) (.797) (.973) (.948)
2.00 .90139 .68846 .75486 .84073 .88987
(.764) (.837) (.933) (.987)
2.50 1.24724 .92438 1.07940 1.11656 1.24724
(.741) (.865) (1.895) (1.00)
3.00 1.61371 1.16603 1.42936 1.39204 1.59823
(.723) (.886) (.863) (.990) -
1.0 4
H(k=2)
.9
. H(k=1)
<7
.6
M
.51
0 T T v T ~
0 1.0 2.0 3.0°

a

FiG. 4.1. Efficiencies relative to the optimal rate for the standard normal distribution
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ML
1.0 .
x__ H(k=3=1.70)
.9 X
H(k=1=.60)
.8
.7 4 M
.6
.5 -
0 ™ T g - T T a
0 1.0 2.0 3.0
Fic. 4.2. Efficiencies relative to the optimal rate for the logistic distribution
1.0 4 H(k=2.5%1.80)
.9 z
H(k=1=,70)
.8 A
.7 M
.6 4
.5 4
0 - r T v v - a

0 1.0 2.0 3.0

FiG. 4.3. Efficiencies relative to the optimal rate for the double exponential distribution
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