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SEQUENTIAL BAHADUR EFFICIENCY

By RoBerT H. BERK' AND L. D. BROWN?
Rutgers University

The notion of Bahadur efficiency for test statistics is extended to the
sequential case and illustrated in the specific context of testing one-sided
hypotheses about a normal mean. An analog of Bahadur’s theorem on the
asymptotic optimality of the likelihood ratio statistic is seen to hold in the
normal case. Some possible definitions of attained level for a sequential
experiment are considered.

1. Introduction. Let X, X,, - - - be a data sequence of i.i.d. (abstract) random
variables whose distributions are indexed by a parameter §, ranging in a parame-
ter space ©. We are interested in sequential tests of H,: # €O, vs. H,: €0, =
O — 0O,, where O, is a nonempty proper subset of ©. We shall be particularly
concerned with the one-sided testing problem for a normal mean, by which is
meant that under 6, the data are i.i.d. N(4, 1) random variables, ©® = (— o0, o)
and ©, = (— oo, 0]. Below, we suggest an extension to the sequential case of
Bahadur’s theory of the stochastic comparison of tests (more precisely, of test
statistics) and of Bahadur efficiency. To that end, a brief synopsis of the non-
sequential theory is perhaps in order (cf. Bahadur (1971)).

Let P, denote the (joint) distribution of the data sequence under # and let
P, denote the marginal distribution of (X, ---, X,). If, for 6, w € 0, we have
P <P}, we let [(0: o) = I(X,; 0: w) = log (dP,*/dP,") denote the indicated
log-likelihood ratio statistic for X,. Similarly, /,(0: 0) = X%, [(X;;0: 0) =
log (dP,"/dP,"). We define the Kullback-Leibler information number

(1.1) K0, w) = { 1,(0: w)dP,
if Pt < P,}; otherwise K(0; w) = co. We also let
(1.2) K(6; ©,) = inf {K(0; 0): w € O} .

The stochastic comparison of tests applies to a sequence {T,} of real-valued
test statistics (for testing H, vs. H,), where T, is ZZ(X,, - - -, X,) measurable and
large values of T, are significant. The attained level of T, is then defined to be
L, = G(T,), where G,(x) = sup{P,(T, = x): we ©)}. We note that G,(.) is
always nonincreasing, hence L, is measurable. The limit (in probability, if it
exists) 7(0) = P, — lim, [—log L,]/n will be called the Bahadur index, or simply
the index, of the sequence {T,} at 6. (Apart from a factor of 2, this is Bahadur’s
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exact slope.) The index provides a measure of efficiency in that if another se-
quence {T,'} has index r'(f), to obtain a similar behavior of the attained level
with n’ observations (i.e., L}, ~ L,), one must have n'r’(¢) ~ nr(6). Thus r(6)/r'(9)
is, in this sense, the asymptotic relative efficiency of {T,} to {T,’}; in short, the
Bahadur efficiency. Clearly, large indices are desirable. It follows from a theo-
rem of Raghavachari (1970) (see also Bahadur (1971), Theorem 7.5) that for any
such sequence {T,}, one has

(1.3) P, — lim sup, [—1log L,]/n < K(0; O,) .

(For a sequence of statistics {Y,}, we write P, — limsup, Y, <Y to mean
lim, P,(Y, > Y + 0) =0 for all § >0. Clearly P,—1limY, =Y iff P, —
limsup, Y, < Yand P, — liminf, Y, > Y.) Asequence {T,} for which equality
holds in (1.3), for alt #€®,, is called optimal. Under general conditions,

Bahadur (1967a, 1971) has shown that the likelihood ratio statistic (sequence)
A, = supyee, inf,eq, l(0: @)

is optimal. For the one-sided normal testing problem, K(¢; ©,) = 46*and A, is
a strictly monotone function of S, /nt, S, = X, + .-. + X,, which is optimal in
this case.

In a sequential context, we retain a statistic sequence {T,} and adjoin to this
a (randomized) stopping time N for the data sequence. Unless otherwise noted,
we assume P,(N < oo) = 1 for all # € ®. T, then denotes the stopped value of
the sequence {7',}. Assuming still that large values are significant, we define the
attained level of T to be

(1.4) L, = H(Ty), where H(x) = sup{P,(Ty = x): w€©,}.

To allow for asymptotic considerations, we introduce a family of test sequences
and stopping times, {{T(n, a)}, N,}, indexed by the real parameter a. Here, for
eacha, T(n,a),n = 1,2, - .. is a sequence of test statistics and N, is a stopping
time. We require that for all e ©, P, — lim, N, = co. (Throughout, limits
on a are taken as a — c.) In many examples, a is a parameter of the stopping
boundary defining N, and the boundary moves out as a increases. Also, in many
examples, T(n, a) does not depend on a. We write T(a) = T(N,, a) and denote
the corresponding attained level by L(a). The Bahadur index of T(a) at @ is
then defined to be P, — lim, [—log L(a)]/N,, provided this limit exists.

In the sequel, we show that (1.3) remains true in the sequential case (Theorems
2.1 and 2.2). Moreover, for the normal testing problem, we exhibit (Section 3)
a sequence {7} which is optimal for all families of stopping times. (The statistic
is a modification of the likelihood ratio statistic S,/n?.) We also indicate con-
nections between our results and some putative definitions of attained level for
a sequential experiment in Section 4. Connections with power curves are dis-
cussed in Section 5.

2. Bounds for the Bahadur index. In this section, we give two extensions of
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Raghavachari’s theorem to the sequential case. Theorem 2.1 requires only
that P, — lim, N, = co and provides a bound for limits in probability of
[—1log L(a)]/N,. With a condition somewhat stronger than P,(N, — o) = 1,
Theorem 2.2 provides an analogous pointwise result. It is shown by example
that the hypothesis of Theorem 2.2 cannot be weakened to Py(N, — o) = 1.

THEOREM 2.1. Let L(a) be the attained level of T(a), the stopped value of {T(n, a)}
for the stopping time N,. Then, provided P, — lim, N, = oo,

(2.1) P, — lim sup, [—log L(a)]/N, < K(¢; 9,) .

Proor. We suppose first that @, is simple, say 0, = {w}, so that P, denotes
the null distribution of the data sequence. We fix ¢ € © and write K = K(0; ).
We may suppose K < oo, since otherwise (2.1) is trivially true. We then write
1,(0) = I,(0: w), etc. We also drop the affix a, writing N = N,, etc. Let H(x) =
P(T=x)=,P(N=n,T,=x). Thus L = H(T). Let B = (I,(¢) < N(K +
d)). By the SLLN, Py(lim,/,/n = K) = 1 and hence P, — lim, [,/N = K. Thus
lim, P,B =1 for 6 > 0. Letting B° denote the complement of B, for a fixed
positive integer k and arbitrary 6 > 0, we have

(2.2) P)(L < e-V&+#) < PN < k) + P,B° + P,D,,

where D, = (N= k, L < eV %5+ B). We note that for n > k, E, = (D,
N=n)=(N=n,HT,) < e ™%+ | < n(K + 0)). We obtain a bound for
P,E,.
(2.3) PE, = {5 exp{l,(0: w)}dP,

< exp{n(K + 8)}P,E, < exp{n(K + 8)}P,(L < e~"E+1) < ¢=n ;
the last inequality follows from a result of Bahadur (1971, Theorem 7.4) which

says that under any null distribution, an attained level statistic is superuniform
on [0, 1]. On summing (2.3) over n = k, we obtain

(2.4) P,D, = Y.2i PyE, < e (1 — e7%) .
We then see from (2.2) that
2.5) Py(L < e~ME+9) < PN < k) + PyB° + e /(1 — e?).

Letting @ — co and then k — oo and recalling that P, — lim, N = co and
lim, P, B° = 0, it follows that lim, P,([ —log L]/N > K + 24) = O forany d > 0,
which entails (2.1). The case of composite 0, follows immediately since L >
L(a, ) for w € ©,, where L(a, w) is the attained level of T for the simple null
hypothesis {w}. Thus we have

P, — lim sup, [—log L]/N < P, — lim sup, [—log L(a, ®)]/N < K(0, w)
for all w € ©,, which entails (2.1). []

Raghavachari’s theorem is actually a pointwise result for [ —log L,]/n. A cor-
responding sequential version is given in the next theorem. The framework is
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the same as for Theorem 1, except that {N,} is replaced by a sequence of stopping
times.

THEOREM 2.2. Let N,, k = 1,2, ... be a sequence of stopping times for which
the following hold: there is a sequence of positive integers n, = n(0) such that

(2.6) PoUizm (Ve < 1) >0 as m— oo and
(2.7) et < oo forall 9>0.
Then, letting L(k) denote the attained level for T(k) = T(N,, k),
(2.8) P,(lim sup, [ —log L(k)]/N, < K(0;0,)) = 1.

REMARK. (2.7) entails that n, — oo, hence (2.6) is somewhat stronger than
the requirement that P,(N, — oo) = 1. In fact, (2.6) = Py(lim inf, Ny/n, = 1) =
1 = Py(N, < n(1 — ¢)i.0.) = 0 foranye > 0. Hence (2.6) is equivalent to the
existence of {m,} for which P,(lim inf, N,/m, > 1) = 1. (In many examples,
one has the stronger condition that P,(N,/n, — 1) = 1.) One sees that (2.7)
holds if for i + k, n; + n, and in particular, if n, < n,,, for all k. The hypothesis
thus holds for the nonsequential case treated by Raghavachari: N, = k. The
hypothesis also holds if N, < N,,,[P,] for all k.

PROOF OF THEOREM. As in the proof of Theorem 2.1, we again assume first
that ©, is simple and that K = K(0; ©,) < co. Let B, = Nizm (Iy, < (K + 0)N,).
Since Py(N, — o) = 1, lim,, P,B,° = 0 by the SLLN. Then

(2.9) Py Uszm (L(k) < €™ F+20Vk)
< Py Uiam (N <) + PyB," + 2lizm PoDy s

where D, = (N, = n,, L(k) < e~®+*»N B ). As in Theorem 2.1 (cf. (2.4)), it
follows that P,D, < e~**/(1 — e~?), hence

(2.10) Py Usam (L(k) < emK+200)
SPUiem (N, <m) + PB,° + (1 — e ) 3iome ™.

On letting m — oo, it follows from the hypothesis that the RHS of (2.10) tends
to zero. Thus forany é > 0, P,([—log L(k)]/N, > K + 24 i.0.) = 0, which en-
tails (2.8) for ©, simple. As in Theorem 1, the result for ®, composite then
follows directly. [] ‘

An examination of the proof of Theorem 2.2 shows that it utilizes in an es-
sential way the discreteness of the indexing parameter k. It is not clear if there
is a satisfactory analog of Theorem 2.2 for a generally indexed collection {N,}.
This suggests that it is more appropriate to define indices via probability limits
rather than pointwise limits; cf. Bahadur (1960a). This contention is reinforced
by the following example, which shows that the conclusion of Theorem 2.2 can
fail in a spectacular way if conditions (2.6) and (2.7) do not hold. We assume
here the framework of the one-sided normal testing problem.
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ExampLE. For n > 1, let T,, = §,,/(2n)} and T,Wrl = oo. We define a se-
quence of stopping times, {Nk} for n=1,2,..., let b, = e and let {C,:
b, < k <b,,,} be a partition of (— oo, ), such that Py(S,, € C) < e, This
can be done since b,,, — b, > e”. Then for b, < k < b,,,and n > 1, let

N=N,=2n if S,,¢C,
=2n+1 if §,,eC,.
Clearly Py(N, — co) = 1 for all § € © and
Ty = Ty, = Su/(2n)} if S,,¢C,
= o0 if S,,eC,.

To compute L(k), the attained level of T,, we note that for b, < k < b,
SUp {P(Ty 2 %)t @ < 0) < sup (P,(5,,/(2n)* = x): @ < 0} + sup (P(S,, € G,):
0 <0} < et 4 e < 2 ¥, Thus for b, < k < b,,,, [—log L(k)]/N =
3[(T,*IN) A n] — n~'. However, Ty = co for exactly one k in the range b, <
k < b,,,. Hence sup {[—log L(k)]/N: b, < k < b,,,} = 3n — n~* (w.p. 1, under
any 6 € @), so that

(2.11) P,(lim sup, [—log L(k)]/N = o0) =1, all 0e®,

contrary to (2.8).

Note that, (2.11) notwithstanding,

P, — lim, [—log L(k)]/N = P, — lim, {T*/N = P, — lim, }S,*/N* = }6*,
so that {7} has (maximal) index 46* at §. It is easily seen from the above that
the corresponding lim inf in (2.11) is $6* w.p. 1. This example thus displays
a kind of superefficiency. The example rests heavily on the fact that N, is es-
sentially constant over long intervals of k-values, a possibility excluded by (2.6)
and (2.7). The use of improper random variables is not essential here. One
may, instead, map (— oo, co) into (0, 1) in an order-preserving way and replace
oo by 1 in the above example.

3. An optimal statistic. As cited above, Bahadur (1967a) showed under
general conditions that the likelihood ratio statistic is optimal. It might thus
be supposed that this result carries over to the sequential case. We show below
(Theorem 3.1) for the one-sided normal testing problem that in a sense, this is
so. More specifically, we exhibit a sequence {7} which has the property that
for every collection {N,} of stopping times for which P, — lim, N = co, T has
maximal index 36” under P,, § > 0. We also show by examples that none of the
three likely candidates S,, the likelihood ratio statistic S,/n* and S,/n are uni-
versally optimal in this sense. Counterexamples for S, and §,/n? are dlscussed
after Theorem 3.1 and one for S, /n is given in Section 4.

The following result applies to the one-sided normal testing problem.

THEOREM 3.1. Let T, = S,/n* — c,, where, for some d > 0, (2(1 4 d)logn)t <
¢, = o(n?). Then for any collection {N,} of stopping times for which P, — lim, N, =
oo, Ty, has exact slope 36* under P,, 6 > 0.
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Proor. We drop the affix a, writing N = N,, etc. For x > 0,
sup (P(Ty 2 %) 0 < 0) = sup {P(Sy/N* — ¢y 2 %): @ < 0)
Z::t sup {Pw(‘sl'n/né — ¢, ; X): @ é 0}
N5 PSujnt = x 4 ¢,) < Do, exp{—3(x* + )
et 3 n~1+0 = C(d)e .
Letting L denote the attained level of T, it follows that —log L = 4(Sy/Nt —
cy)? — log C(6) on (Sy > Nicy), so that P, — liminf,[—log L]/N = P, —
lim, {}(Sy/N — cy/N*)* — N-tlog C(0)} = }6* since P, — lim, cy/N* =0 and
Py(Sy > Nicy) — 1. By Theorem 2.1, P, — lim sup, [—log L]/N < 46*>. Thus
T, has (maximal) exact slope 6 under P,. []

A

AN

REMARK. The estimate used to establish the theorem is very crude and it is
conjectured that {T',} remains optimal for all ¢, = o(nt) for which nic, is in the
upper class of LIL (for S,). By a similar argument, it can also be shown that
another modification of S,/n? that renders it optimal for all stopping times is
(S,/n*)I(S, > nic,), where c, satisfies the conditions given in Theorem 3.1.

We show next by example that S, /nt need not be optimal. Heuristically, this
may be seen by considering the stopping time N = inf {n: |S,| = (an)!}. Neglect-
ing overshoot, S, /N* assumes only the values —a? and a?, having corresponding
attained levels 1 and {. Since P, — lim, N = oo, the exact slope of S /N* is zero.
(The argument becomes rigorous if S, is replaced by a continuous-time Wiener
process.) A rigorization of the above heuristics for discrete time appears to be
very delicate. Instead, we consider another stopping boundary for which the
analysis is simpler. We introduce the following notation. For x > 0, let e,(x) =
I(x) = x, I ;,(x) = max {log [,(x), 1} and e, (x) = exp{e(x)}, k=0,1, ...
Thus [, and e, are inverse to each other on [e,(1), c0). Let

(3.1) N = inf{n: S, = (anl(n))}} .

By the SLLN and LIL, P,(N < o) =1, all § = 0. (It would perhaps appear
more natural, in the testing context, to define N by a two-sided boundary, with
|S,| replacing S, in (3.1). This requires no essential change in the following
argument.) We note that a reasonable sequential test can be based on the data
sequence stopped by N. One may, for example, reject H, for large values of
Sy/Nt — log N (cf. Theorem 3.1).

ProrosiTiON 3.2. With Nasin (3.1), Sy/N* has exact slope zero under all § > 0.
PrROOF. We use the following crude estimate:
(3.2) P(N < n) < Y7oy P(S, [kt = (aly(k))?) < ne~te.
We next estimate the tail of the statistic Sy/(aN)t. Since Sy/(aN)t = [[(N)]t,
we have, for x > 1,
Sup {P,(Sy/(@N)t Z x): @ < 0} 2 PySy/(aN)} = x) = P((N) = )
= PN = ey(x?)) = 1 — etoey(x?)
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by (3.2). It will follow that L, the attained level of S,/N* satisfies

(3.3) P(L—->1)=1, 6>0,

if we show that

(3.4) Py(e ey (Sy*laN) - 0) =1, 6>0.
To establish (3.4), we note first that

(3.5) 0 Sy — [aN(N)]} £ X .

It is an easy consequence of the Borel-Cantelli lemmas that for normal variables
with unit variance,

(3.6) Py(limsup, X,/(2logn)t =1) =1, all @,
hence 4
3.7 X, = O([log N]}) .

(For random variables Y, and Z,, we write Z, = O(Y,) to mean limsup, |Z,/Y,| <
oo w.p. 1. A corresponding meaning is given to the expression Z, = o(Y,).)
On dividing across by N in (3.5) and noting that P,(S,/N — 6) = 1, we see that
Py(N/al(N) — 1/6%) = 1, hence that

(3.8) P,(Njal(a) — 1/6*) =1, 6=0.
It follows from (3.5)-—(3.8) that
(3.9) Sy'/(aN)t = I(N) + O([L(a)]/a) -

On taking exponentials, we see that on N > ey (1),

e(Sy’/aN) = L(N)[1 + O([L(a)]}/a)]
= L(N) + O(L(a)[1(a)]}/a) ,
hence that
(3.10) ex(Sy'/aN) = L(N) + O((a)[(@)]}/a)  and
ex(Sy'faN) = N[1 + o(1)] .
It follows from (3.10) and (3.8) that (3.4) and hence (3.3) hold. A fortiori,
Sy/N* has exact slope zero under all > 0. []

The next example shows that S, need not be optimal. The no-overshoot
heuristics are similar to those for S,/N* above. Let

(3.11) N=N, =inf{n: |5, = a} .

The following result implies that S, has index zero. Let L(a) denote the attained
level for S,.

ProrosITION 3.3. As a — oo,

(3.12) log L(a) = o,(N,) .
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REMARK. Note that N, — co. In fact, from Theorem 2.1 of Berk (1973), we
have for 8 > 0 that

(3.13) lim, N,ja = 1/ [P,].
We establish (3.12) with the aid of the following lemmas.

LEMMA 3.4. Let N = N, be as in (3.11). Let @ denote the N(0, 1) df. For
x>0,

(3.14) P(Sy = a+ x) = (1 — @[x + o(log a)])e’? .
Proor. Fix a positive k < a. Then

P(Sy=a+ x) = P(Sy_,=a—k, Xy=x+ k)
= . P(N=nS,,=a—k, X, =x+k)
= T [ — O + K)IP(N = 1, S,y = a— k)
2 (1 — O + K)] Su PN = 1,5, = a— k)
=[1 — ®(x + k)]P(Sy_, = a — k)
> [1 — O(x + k)]P(Xy < k, Sy = a)
= [1 — @(x + k)][Py(Sy = a) — P(Xy > k)] .
We note next that P(X, > k) < E, XY I(X; > k) = E,NPy(X, > k) < e **EN.
We have from Theorem 2.4 of Berk (1973) that E,N = O(a*), hence, taking k =

(6 log @)}, P(Xy > k) = O(a™?). The desired conclusion then follows from the
fact that Py(Sy = a) = 4. (I

Lemma 3.5. Let N beasin (3.11). Then forall 6, E,(Sy — a|Sy = a) = O(1),
hence (S, — a)I(Sy, = a) = O,(1) forall 6 = 0.

ProOF. A familiar argument, due originally to Wald (1947) gives E,(Sy —
a|Sy = a) = Ef(Xy — (a— Sy_y) | Xy = a— Sy_)) < sup{E,(X; —ulX, =2 u):
0<ucx<a+b}=E(X|X = 0) =E(X,+0|X, = —0) = w(ﬁ), say. Clearly
w(f) < oo and does not depend on a, which entails the desired conclusion. [J

ReEMARK. For the stopping time t = r, = inf{n: S, = a}, it follows from
known results in renewal theory (see, e.g., Feller (1971), page 371) that S, — a
has a proper limit law as @ — oo and is a fortiori O,(1). This entails the second
part of the lemma since on (S, = a), S, = S,. (In fact, for ¢ > 0, S, — aand
S. — a have the same limit law for then lim, P,(Sy = a) = 1.)

PrOOF OF ProposiTION 3.3. We obtain (3.12) by noting that sup {P,(Sy =
a+x): @ <0} = P(Sy = a+ x), so that Lemma 3.4 entails —logL(a) <
3[Sy — a + o(log a)’] + O(1). The desired conclusion then follows from Lemma
3.5and (3.13). [J

4. Bahadur efficiency and sequential experiments. We consider here, in the
context of the one-sided testing problem for a normal mean, possible definitions
of the attained level of a sequential experiment. For us, the term ‘“sequential
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experiment” is synonymous with “stopping time.” In speaking of the attained
level of an experiment, one has tacitly in mind, of course, an appropriate null
hypothesis. We suppose that the stopping time is defined by a well-behaved
(say, convex) continuation region in the (n, S,) plane. A point in this plane is
denoted by (n, s). In the nonsequential case, when the stopping time is N = n,
the stopping boundary is a vertical line at n and the second coordinate orders
the boundary, providing a measure of significance or attained level for the pos-
sible outcomes (with s = co the most significant value and s = — co the least
significant). It seems natural to try to similarly order other stopping boundaries
and analogously define attained levels for the outcomes of a sequential experi-
ment. For example, consider the triangular (Anderson) boundary corresponding
to N = inf{n: |S,| = a — n}, the upper boundary being the segment of the line
s = a — n between (1, a — 1) and (g, 0). Intuitively (neglecting overshoot), the
portion of the boundary near (1, @ — 1) contains the most significant outcomes
(outcomes that speak most against the null hypothesis § < 0) while the boundary
near (1, I — a) contains the least significant outcomes. It seems natural to order
the stopping boundary with the outcome (1, @ — 1) having the smallest attained
level, proceeding clockwise around to the outcome (1, 1 — a), which then has
attained level one. The actual attained level of a point (n, @ — n) on the upper
boundary, say, is the (maximum) null probability of stopping on the portion of
the boundary between (1,a — 1) and (n,a — n). In this case, this is just the
null probability (neglecting overshoot) that S,/N = (a — n)/n, so that this notion
of attained level for the sequential experiment is just the attained level of S,/N.
This reasoning implicitly uses the idea that under 6, (n, S,) tends to move along
the ray s = nf, so that one expects large values of S, /N under the alternative
hypothesis.

These considerations apply as well to other familiar stopping rules defined by
an upper and a lower stopping boundary, the SPRT for example. (For open
boundaries such as the SPRT or the square-root boundary mentioned in Sec-
tion 3, the ordering still proceeds clockwise starting from n = 1 on the upper
boundary. However, one must make an imaginary transition at n = oo to reach
the lower boundary.) For these stopping times (still neglecting overshoot), the
attained level of the point (n, 5s) on the upper boundary is also the null proba-
bility of exiting at the upper boundary with N < n. Thus another possible
definition of attained level for the stopping time is the attained level of the
statistic N, small values being significant (and subject to the proviso that one
exits at the upper boundary). If overshoot is not neglected, the two definitions
do not quite coincide, except asymptotically. We indicate below (Theorem 4.1)
a class of boundaries for which this notion of attained level is optimal, in that
the corresponding exact slope is maximal. Our considerations apply to Sy/N,
though there are similar results for N. We also show by example that S,/N is not
optimal in every case, even for a convex continuation region whose boundary
permits a clockwise ordering as discussed above.
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The following gives conditions under which S,/N is optimal. We consider
continuation regions whose upper halves have asymptotic shapes: on homothe-
tically contracting by a factor a, the contracted regions tend to a limit.

THEOREM 4.1. Let N = inf{n: S, ¢ (—af,(n/a), ag,(n/a))}, where the nonnega-

tive boundary curves f, and g, satisfy the following:
(iy Forn=1,2, ..., lim, af,(n/a) = o and lim,_,, f,(x)/x = 0.

(ii) g,%(x)/x is nonincreasing in x.

(iii) R,(x) = g,(x)/x decreases with a to a continuous strictly decreasing limit
R(x), where R(0+) > 0.
Then L, the attained level of Sy|N satisfies

P, — lim, [—log L]/N = 6%, 6>0.

REMARK. Here is an example of a continuation region satisfying the hypothe-
sis of the theorem. For & > 0 (which will depend on a in a manner specified
below), let N =inf{n:|S,| = (bnlogn)t}. Setting n/a = x and ag,(x) =
(bnlog n)t, g,(x) = (bxa~'[log a + log x])*. If we now set b = a/loga, we see
that g,(x) — x*. Thus the asymptotic shape of a (n log n)* boundary is a “root-n”
boundary.

Proor. If follows from the hypothesis that R,(+) decreases continuously to
zero. Let p, = R,”. Then 7, is increasing and decreases with a to » = R-%.
For § > 0, we have

(4.1) lim, Py(Sy = ag,(Nja)) = 1,
which, together with the relation S,_, < ag,(N/a — 1/a) entails (on dividing
across by N) P,(lim, R,(N/a) = 6) = 1. The hypotheses insure that R, converges
uniformly to R. Thus Py(lim, R(N/a) = ) = 1 or
(42) P,(Nja—5(8) = 1.
Next we note that for x > 0, letting g(x) = xR(x),
sup {P,(Sy = Nx): w < 0}
= Za P8y = nx v ag(n/a))
= ZnSav(z) Py(S, = ag(n/a)) + Zwa,,(z) Py(S, = nx)
= Dnsenw eXp{—3a’g*(n/a)[n} + 2in>ance CXp{—3nx7}
= exp{—3ag’[n(x)]/7(x)[1 4 o ()]} + exp{—an(x)x’[1 + o(1)]}
= exp{—4an(x)*[1 + o(1)]},
since g[n(x)]/n(x) = x. It follows that under § > 0, L, the attained level of
Sy/N satisfies '

(4.4) —log L = 3a(Sy/N)'n(Sy/N)[1 + o(1)] -
Since Py(Sy/N — 0) = 1, it follows from (4.2) that S,/N has index 46* under
P, 11

(4.3)
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The following example shows that the above intuitive notion of attained level
for a sequential experiment is not always optimal. (Alternatively, S,/N is not
always an optimal statistic.) Let N = inf{n: S, = atnf or n = @?}. The trun-
cation assures that Py(N < oo) = 1 for all . It follows as in Theorem 4.1 that

(4.5) Nja — 1/6° = 7(6) 6>0.
(Asymptotically, the truncation has no effect for ¢ > 0.) Moreover, for x > 0,
Sup {P,(Sy = Nx): 0 < 0} = Py(Sy = Nx) = Py(X, = at) = e+'[1 + o(1)].

Thus L, the attained level of S,/N satisfies —log L = O(a?), which, in view of
(4.5) implies that Sy/N has exact slope zero under all P,. In the above example,
we get the same result for any limiting boundary curve g(x) for which g*(x)/x in-
creases to co as x T co. It follows from Theorem 3.1 that there are still optimal
statistics in such cases: S,/N* — log N, for example. In fact, it may be verified
that S,/N? is optimal here.

Theorem 4.1 suggests that Bahadur efficiency is not helpful for distinguishing
among stopping times of interest. If the above intuitive notion of attained level
of a sequential experiment is adopted, all of the stopping times subsumed by
Theorem 4.1 seem equally efficient. If, instead of S,/n, one uses T, = S,/n* —
log n to define the attained level of a sequential experiment, by Theorem 3.1 all
stopping times have (absolute and relative) efficiency one. One reaches the same
conclusion if the index of a sequential experiment is taken to be the supremum
of all indices attained by statistics defined on the stopped data sequence. The
relevance of this for sequential testing is not entirely clear. At any rate, the no-
tions of Hodges-Lehmann and Chernoff efficiency do serve to distinguish among
sequential tests; see Berk (1976).

5. Some connections with significance levels. The Bahadur index we have
been considering is more properly called the stochastic Bahadur index. An al-
lied notion, a nonstochastic Bahadur index, provides a measure of efficiency for
critical regions; cf. Bahadur (1960a, b). In the nonsequential case, for critical
regions defined by a sequence of test statistics {T,}, this latter notion is the fol-
lowing: one selects critical values ¢, = c,(f) so that 8 < P(T, =¢,) <1 — 8
for some 3 € (0, §)and all n. Then, letting @, = () = sup {P(T, = c,): @ € O}
be the associated size, the nonstochastic index for (the critical regions defined
by) T, is ‘

(5.1) 0(0) = lim, — L log a, ,
n

provided this limit exists.

Judging from the loose way in which the term “Bahadur efficiency” is used
in the literature, the distinction between stochastic and nonstochastic indices is
not always uppermost in people’s minds. Happily, the two notions often coin-
cide. Indeed, Bahadur (1967b, Proposition 11) has established a result of this
nature in the nonsequential case: if {T,} has stochastic index r(f) which is
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constant w.p. 1, then p(¢) = r(f). Some authors (Klotz (1965), Stone (1968),
Tsutakawa (1968)) have computed only nonstochastic indices. In such cases, it
would be of interest to know that this is also the stochastic index. One can, of
course, verify the existence of a constant stochastic index and appeal to Bahadur’s
result. This seems tantamount to computing the stochastic index. An alternative
is provided by Theorem 5.2 below, which avoids treating stochastic limits.

An appropriate sequential analog of (5.1) is not entirely obvious. Should one
replace the divisor n by N, or, to retain the nonstochastic nature of the index,
use E, N or some other deterministic quantity? Fortunately, in many cases one
does not have to confront this difficulty, since there exist constants v, = v,(6)
for which

(5.2) P, — lim, N,/v, = 1 .

Usually, one has lim, E,N,/v, = 1as well. Assuming the choice of divisor to be
thus resolved, Theorems 5.1 and 5.2 below give conditions under which the sto-
chastic and nonstochastic indices coincide. Theorem 5.1 is similar to Bahadur’s
Proposition 11 (op. cit.), in that one essentially assumes the existence of a sto-
chastic index. Theorem 5.2 is something of a converse proposition, in which
one infers the existence of a stochastic index.

THEOREM 5.1. Let T(a) be the stopped statistic for N, and let L(a) denote the
attained level of T(a). Suppose that for some B e (0, %), there are critical values
¢, = c,(0) for which
(5.3) B P(T(@)y=c,) <1 -8, al a.

Let a, = a,(0) = sup{P,(T(a) = ¢,): @ € Oy}. Then, if there are constants v, =
v,(8) for which

(5.4 P, — lim, [—log L(a)]/v, = k, k=1or0
then also

(5.5) lim, [—log a,]/v, = k .

If k = 1, we can take v, = —loga,. The possibility k = 0 aliows for an index

of zero. Verifying (5.4) is akin to verifying the existence of a stochastic index.
If P, — lim N, /v, exists and is not zero (w.p. 1), then (5.4) is equivalent to the
existence of a stochastic index. The next result allows us, in a sense, to reverse
the logical implication (5.4) = (5.5) and deduce the existence of a stochastic
index from corresponding behavior of log a,.

THEOREM 5.2. Let T(a) and L(a) be as in Theorem 5.1. Suppose there are sub-
sets B, and B, of [0, 1] and, for all B € B, U B, critical values c,(B) = c,(B, 0) which
satisfy:

(5.6) inf{8: BeB} =0, sup{B: feB}=1.
(5.7) (@) YpBeB,, liminf, P(T(a) = c,(8) = B
(b) VBeB,, limsup,P,(T(@) > c, () < 8.



SEQUENTIAL BAHADUR EFFICIENCY 579

Let a,(B) = a,(B8, 0) = sup{P,(T(a) = c,(B)): w e O,}. Then, if there are constants
v, = v,(0) for which

(5.8) lim, [ —log a,(B)]/v. = k , all feB,U B, k=1o0r0,
then also
(5.9) P, — lim, [—1log L(a)]/v, = k .

REMARKS. It appears that in many cases, (5.8) is easier to verify than (5.4).
Requirements (5.6) and (5.7) are actually equivalent to the following: there
are critical values c,(0) and c,(1) so that

(5.10) lim, P,(T(a) = c,(1)) = 1 = lim, P,(T(a) < c,(0)) and
lim, [log @,(0)]/log a,(1) = 1.

With a little care, it may be possible to check (5.10) directly, thus shortcutting
the verifications necessary for Theorem 5.2. This theorem can be used to justify
that suitable limits involving log a, are, in fact, stochastic indices. We note also
that Theorems 5.1 and 5.2 are not explicitly asymptotic: there is no (explicit)
requirement that N, — co.

PRrROOF OF THEOREMS 5.1 AND 5.2. Since sup {P,(T(a) = x): w € ©,} is nonin-
creasing in x, we have that

(5.11) T(a) = ¢, = L(a) < q, and T@<c,=L(a) = q,.

From (5.3) it follows that Py(L(a) < a,) > 8 > 0 or that § < P,([—log L(a)]/v, =
[—log a,]/v,). Then, it follows from (5.4) that lim sup, [ —log a,]/v, < k. Simi-
larly, (5.3) and (5.11) entail 8 < P,(T(a) < ¢,) < Py(L(a) = a,), from which it
similarly follows that lim inf, [ —log a,]/v, = k. Thus (5.5) holds.

Theorem 5.2 is proved similarly: from (5.7a) and (5.11) we obtain
P,([—1log L(a)]/v, = [—log a,(B)]/v,) = B, which, together with (5.8) entails
lim inf, P,([—log L(a)]/v, > k — ¢) = B, all ¢ >0, all feB,. Since sup{p:
Be B} =1 (cf. (5.6)), it follows that P, — lim inf, [ —log L(a)]/v, = k. From
(5.7b), one similarly concludes that P, — lim sup, [—log L(a)]/v, < k, hence
that (5.9) holds. []

We note that it is not always possible to obtain a stochastic index from sig-
nificance levels. This is manifest in the nonsequential case if the stochastic in-
dex is random (not constant w.p. 1). Bahadur and Raghavachari (1972) discuss
some nonsequential testing problems in which random stochastic indices occur.

In closing, we touch on the interpretation of a random stochastic index as a
measure of efficiency. Suppose {T(n, a), N,,}, i = 1,2 are two collections of
test statistics and stopping times for the same data sequence. Let Ty(a),i = 1,2
denote the corresponding stopped statistics. If, for i = 1, 2, L,(a), the attained
level of T,(a), satisfies

(5.12) P — lim, [—log Ly(a)]/N;, = 1;»
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then the possibly random ratio r,/r, does, in a sense, measure the asymptotic
performance of T (a) to Ty(a): if

(5.13) P — lim, N, /N,, = r)/r,,
then the log-attained levels are equalized asymptotically. That is,
(5.14) P — lim, [log L,(a)]/[log Ly(a)] = 1.

That r,/r, may not be constant then seems to mean that the asymptotic relative
performance of T, to T, is different on different parts of the sample space. (If
the convergence in (5.12) is w.p. 1, one could say that the relative performance
is different for different data sequences.) In the sequential case, satisfying a con-
dition like (5.13) with r /r, random seems to present no conceptual difficulties.
However, an interpretation for the nonsequential case seems a bit elusive. If
the convergence in (5.12) is w.p. 1, then choosing nonrandom sample sizes n,
and n, so that ny/n, — 2 means that the behaviors of 7, and T, are matched
(asymptotically) on the set of sample sequences for which r,/r, = 4. Of course,
even when the convergence in (5.12) is only in probability, one has convergence
w.p. 1 for a suitable subsequence.

Acknowledgment. We are indebted to Professor R. R. Bahadur for his meticu-
lous comments on an earlier draft of this paper that enabled us to clarify the
presentation in various ways. In particular, we were able to disabuse ourselves
of some unfounded notions concerning Bahadur efficiency.
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