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ASYMPTOTIC DISTRIBUTIONS FOR CLUSTERING CRITERIA

By J. A. HARTIGAN!
Yale University

A set of observations is partitioned into & clusters by optimizing a
clustering criterion W. The asymptotic distribution of this clustering
criterion may be determined simply in certain cases where the optimal
sample partition differs negligibly from the optimal population partition.
Detailed proofs are given in the one-dimensional case when the clustering
criterion to be minimized is within cluster sum of squares. The asymptotic
distributions are used to compute approximate significance levels of tests
for the presence of clusters, and of tests for bimodality.

1. Introduction. Let x,, x,, - - ., x, be observations from some distribution
function F. Suppose the observations are divided into two groups to maximize
the F-ratio for differences between the groups, or equivalently to minimize the
within group sum of squares. The division will be specified by a split point s,
such that observations less than s, are in one group and observations not less
than s, are in the other group. For very general F, the asymptotic distribution
of the maximum F-ratio, F,_,,, and the optimal split point is shown to be
normal. Finding the asymptotic distribution of F,,. is much simplified by
noting that the F-ratio changes negligibly if the sample is split at s5,, where s, is
the optimal split point for the population. The results are generalised to optimal
division of n observations into k groups.

More generally in p dimensions, observations x;, - - -, x, are divided into k
groups with means y,, y,, - - -, y), SO as to minimize the within group sum of
squares

W, = Ziinfigze X — yill* -
By analogy with the one-dimensional case, it frequently happens that W, differs
negligibly from

W, = Zyinfig; |lx, — gl

where p; are the group means in the optimal partition of the population.
Unfortunately, this simplification does not occur for spherically symmetric dis-
tributions. Some examples are given for k, = 2.

The above technique for division of a sample into k groups is known in the
cluster analysis literature as k-means; there are a variety of techniques for finding
approximations to the optimum partition; Fisher (1958) uses a dynamic pro-
gramming technique for finding the exact optimum in O(n%) steps for p =1,
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and for k = 2, the optimal hyperplane dividing the sample into 2 groups may
be found in O(n?) steps. MacQueen (1967) has the following asymptotic result:
beginning with arbitrary cluster means y,, y,, - - -, J;, each observation x, is
assigned to whichever of y,, y,, -, y, it is closest, and the chosen cluster
centre is modified to be the mean of observations assigned to it. The quantity
2 |Ix; — y;,|I*/n converges with probability one to

§infigq [|X — pyl* dF,

where x, is assigned to y; and {y;} minimizes the integral.

The one-dimensional results have direct application to clustering in p di-
mensions. Given the clusters, an analysis of variance may be performed in each
dimension; the asymptotic distributions in the one-dimensional case then provide
a conservative test for significance of the F-ratios of each of these analyses of
variance. See also Scott and Knott (1974) who use conjectured one-dimensional
asymptotics for grouping means in analysis of variance. For k = 2, the set of
n observations may be orthogonally projected onto the line between the two
cluster means; the maximal F-ratio for these projected values offers a test for
bimodality, using the asymptotic normal as a reference distribution. This test
is used in Henderson et al. (1977). Note, however, Day (1969) who shows that
the projection technique may be misleading for relatively few observations in
many dimensions. The histogram of the projected values is helpful in suggesting
the presence of two clusters, and similarly for k = 3, the projection onto the
plane containing the three cluster centres may suggest the presence or absence
of three clusters. For this reason, asymptotic distributions for 3 clusters in 2
dimensions should be the next step.

2. Terminology. The quantile function X for the distribution function F is
defined by

X(p) = sup {x| F(x) = p}, 0<p=1.
The function X is nondecreasing and right continuous. If U is uniformly dis-
tributed over (0, 1), then X(U) has distribution function F, so that X may be

regarded as a canonical random variable with distribution function F.
Define the lower and upper means of X at p by

X(p) = Vosp X(9) d4/p » 0<p=1,
X(p) = $45, X(9) dg/(1 — p) O=p<I.
The split function of X at p is

B(X, p) = pX*(p) + (1 — p)X*(p) — (83 X(9) dg)* , 0<p<l.

For the case of two clusters in one dimension it is easier to work with B, which
corresponds to a between cluster sum of squares, rather than with W used in
the introduction, which corresponds to a within cluster sum of squares.

If X=(p) =1lim,, X(q), X*(p) = X(p) = lim,, X(q), then the upper and
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lower derivatives of B at p are given by

d ~ _
(1) PP B*(X, p) = {X(p) — X(PHX(p) + X(p) — 2X=(p)} -
A value p, which maximizes B(X, p) is called a split point. If X has finite
variance,

lim,_, B(X, p) = lim,_, B(X, p) = 0

p—1

and a split point p,, 0 < p, < 1 exists, and satisfies
X~(po) = [X(po) + X(p))/2 = X*(py) -

Thus for an optimal split into two clusters, the boundary of the clusters must
lie half way between the cluster means; otherwise the within cluster sum of
squares could be reduced by shifting the boundary towards the further mean.
The distribution function F(x) = 4 + 4x/(1 4 x*?! has the interesting property
that B(X, p) = 1 all p, so that all values of p, 0 < p < 1, are split points. If x,
is an atom of X, so that X(p) = x, in some interval [p,, p,), then p, is not an
interior point of the interval (p,, p,) because X(p) + X(p) — 2X*(p) = X(p) +
X(p) — 2x, is strictly increasing in the interval, whereas it must be nonincre-
asing at a maximum.

IfU,---, U, - is a sequence of independent uniforms, then X(U)), - - -,
X(U,), --- is a sequence of observations from F where X is the quantile function
of F. The empirical random variable X, is the quantile function of the empirical
distribution function F, of the sample X(U)), - - -, X(U,). IfU,,, ---, U, denote
the order statistics of U, - - -, U, then

X(p) = X[Uy) for ‘= S<p<, 1

IA
IA
S

Note that X, is a function of the random variables U,, ..., U,.

The sample split function B(X,, p) has its maximum at the sample split point p,,.
Since X, is carried by the n atoms X(U,), - - -, X(U,), so that X,(p) is constant
in [i — 1/n, i/n), the only possible values of p, are the jump-points of X,, namely
iln, 1 £i < n. Thus p, may be determined by n computations of B(X,, p). The
quantity nB(X,, i/n) is the between group sum of squares for the first i obser-
vations against the remaining (n — i) observations. Similarly (n — 2)R(X,, i/n)
is the F-ratio for the difference between the means of the first /i observations
against the remaining (n — 7). The principal results give the asymptotic behavi-
our of p,, B(X,, p,) and R(X,, p,).

All asymptotic calculations will use the underlying probability space of the
sequence of independent uniforms U,, U,, - --, U,, ---. The notation [P,‘ n] will
be used as a shorthand for “in probability as n approaches co.” Thus Y, <
1{P, n] means

lim,  P[Y, < 1]=1.

The notation — denotes convergence in distribution. The notation Y, = A
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means that Y, is a function of U,, ..., U, and p which converges to zero in
probability, uniformly over p in a neighbourhood of a fixed p,: that is, for each
¢ > 0, 34, N such that

@) P[sup,_py<s [ Yu(p)l > €] <e  for n>N.
(Here P is outer measure whenever sup,,_, ., |Y,(p)| > ¢ is not measurable.)
For a partition into k cells, specified by cutpoints0 = p* < p* < ... < p* = 1,

the partition function is

B(X, p) = Lt (§5i-1 X(p) dp)’l(p* — p'™) — (§i X(p) dp)*.
If B(X, p) is maximized at p = p,, and E; = (p,""}, p], 1 < i <k, set

q9; = SEZ dp
v =E[X|E] = $=, X(p) dp/q;
(3) 0 = E[(X — p)|E]

™

i = E[X — )| E]
7, = E[(X — m)| E].

(3

Define the ratio function

R(X, p) = B(X, p)/{§ X*(p) dp — B(X, p) — (Vi X(p) dp)*} .

The following formulae arise in the asymptotic distributions of the sample
versions of B and R, with x = { X(p) dp.

ts = 2 qps — p)?
tr= 2 9{ts — 1) X .07
4) 05" = 2 qi(ee — 1) — p5’ + 4 X g1 — p)e?
o' = 2 qil(es — 1)’ — prolPus s’ + X 49 — p)'olug 1y
— 2491 — iRl ps’ + X gt — 0 gt st
3. Asymptotic behaviour of B(X,, p).

THEOREM 1. Suppose X has finite variance and a unique split point p,. Let p, be
a sequence of sample split points. Then p, — p,[P, n].

Proor. The quantities B(X,, p) will be shown to be uniformly small for p
near 0 and 1, and uniformly continuous in probability in intervals not including
0 or 1. For each fixed p, B(X,, p) converges to B(X, p) in probability. The
convergence of p, to p, then follows by a standard compactness argument.

In order to connect the empirical random variable to the empirical distri-
bution function, it is convenient to define d(U) = 1 if U < p, d(U) = 0 other-
wise, r, = 3, d(U)/n. IfU,,, ---, U, are the ordered U,, Uinry P < Uppr41y-
Since X is nondecreasing, X, (r, — 1/n) = X(U,y) = X(p) and X, (r,) =
X(Upr,+1) Z X(p). By the law of large numbers, p — ¢ < r, < p + ¢[P, n] for
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each ¢ > 0. Therefore for each ¢ > 0,

G) Xu(p —¢) = X(p) = Xu(p + )P, n].
It follows that X,(p) — X(p)[P, n] at points of continuity of X, as is well known
(Rao (1973), page 423). Much more detailed analyses of the deviations X,(p) —
X(p) are given by Kiefer (1967).
To show convergence of X,(p), using (5),
18 Xu(9) dg = {5 X.(9) dg + §2, Xa(9) g
152, Xa(9) dg] < (IXu(P)] + [Xu(r)D)lp — 1al = (1X(p + &) + [X(p — €))e[P n]
i Xu(q) dg = T X(Uy) d(U)/n — §,<, X(q) dg[P, n] -
Thus X,(p) — X(p)[P, n] whenever it exists.
To show that B(X,, p) is negligible for p near 0 or 1,

B(X,, p) = plXu(p) — X(O)F + (1 — p)[X(p) — X.OF
=< 18 (Xu(9) — X.(0)y dg + [X.(p) — X (O)]"-
The quantity on the right is nondecreasing as a function of p, so
SUp, <, B(X,, p) < 15 [Xa(p) — Xo(0)) dp + (Xo(r) — Xo(0))"
— §§ [X(p) — X(O) dp + (X(r) — X(0))'[P, n] .

Since X has finite variance, the quantity on the right approaches 0 as r — 0, so
for each ¢ > 0,

sup,<, B(X,, p) < [P, n] and SUp,s1_, B(X,, p) < ¢[P,n] forsome r.
To show that B(X,, p) is uniformly continuous, using (1),
|B(X, p) — B(X, )l = 0K(r)  for r<p,g<1l—r|p—9gl <9
where
K(r) = 4X(1 — r) — X()(IX()] + [X(1 = )] + [X()] + 1X(1 = 7))

Using the convergence of X,(p), X,(p) X.(p), if r and (1 — r) are points of
continuity of X,

|B(X, p) — B(X,, )| < 20K(r)  for 1< pg<1—r|p—ql <[P n].
For each ¢ > 0, choose r, d such that
B(X, p), B(X,, p) < ¢ for p<r, or p=1—r[P,n];
|B(X,. p) = B(X, gl <& for r<pg<1—r|p—ql <Pl
|B(X, p) — B(X,q)l <e for r<p,g<1—r|p—q|l =9[Pn];
B(X,, p) < B(X, p)+ ¢ for p=1i0,1 i< 1/o[P,n].

It follows that B(X,, p) < B(X, p) + 3¢ for 0 < p < 1[P, n]. Since B(X, p) is
continuous and has a unique maximum at p = p,, for each §, > 0, 3¢ > 0 such
that B(X, p) < B(X, p,) — 4¢ for |p — p| = 8,. Thus B(X,, p) < B(X, p,) — ¢
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for |p — po| = [P, n]. Since B(X,, p,) > B(X, p,) — ¢[P, n], B(X,, p) < B(X,,
Po)l P, n] for |p — p,| = 6,. It follows that |p, — p,| < [P, n] for each §, > 0,
proving Theorem 1. [J

THEOREM 2. Suppose that X has finite fourth moment, and that B has a unique
maximum p,. Assume that X has a continuous derivative in the neighbourhood of p,,
and that B, = [(d*[dp*)B(X, p)],-,, < 0. Then

n4 (P — Po) = N<0’ Pl — po)
©) + (olgs + o) [| 447~ 2xp) |)
919>
n(B(X,, pa) — B(X, po)) = N0, 057)
mH(R(X, pa) — R(X, po)) = MO, 07)
where p,, pty, 01, 0y, G5 Gy, 0% 05* are given in (3) and (4).

Proor. The method of proof approximates B(X,, p) by a parabola in the
neighbourhood of p,. The value of p which maximizes this parabola differs
negligibly from p,. The value of B changes negligibly for p within O (n~*) of p,,
and a particular value of p is selected which allows simple asymptotic calcu-
lations for B.

Define Y, (p) = U, for p = (i — 1)/n, Y,(1) = 1, and let Y,(p) be linear for
(i—1)/n < p <i/n. Then n¥(Y,(p) — p) converges weakly to Z(p) — pZ(1)
where Z is a Brownian motion; see for example, Billingsley (1968), page 105.
For each continuous function W on [0, 1] define

Hy(W) = supy,_,.<; [W(p) — W(p,)| -
Since H, is continuous in the uniform metric on continuous functions W,
Hy(n¥(Y.(p) — P)) — Hi(Z(p) — pZ(1))
in distribution. Since the sample paths of Z are continuous with probability one,
H,(Z(p) — pZ(1)) -0 in probability as 6 — 0.
Thus H,(n*(Y,(p) — p)) — 0 in probability as 6 - 0, n — co. Now |Y,(p) —
U,(p)| £ max, |U,,, — U] = O,(logn/n). Thus
Uu(p) = Un(po) + p — po + Afnt,

where A denotes uniform convergence to zero near p,, as defined in (2).
Next consider X,(p); since X is continuously differentiable near p,,

X.(p) = X(Un(p)) = X(Un(po)) + X'(p*)p — po + Afn).
where p,* lies between U,(p) and U,(p,). Since U,(p,) — p,[P, n], and U,(p) =
U.(p) + A, p,* = p, + A. Therefore

™ X(p) = Xp) + 5+ (X(p) + 8P — 1)
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Integration of this equation, justified by the uniform convergence of A, gives

X.(p) = Xu(po) + {(Xu(po) — X.(po))/po + AXp — Po)
_n(P) = _M(Po) + {(X,n(Po) — X,(po))/(1 — po) + AYp — po)

B (Xos P) — (%,(p) — XA(P)Xu(P) + Xulp) — 2X,(p)

dp
_ dB*(X,. p)
dp, ni
+ (P = P)Eo(po) — Xu(POH(XulPo) = XulPo))/ o
— (Xu(po) = Xu(po)/(1 = po) — 2X"(po) + A}
+ (P — P —(Xa(Po) — Xu(Po))/Po — (Xu(Po)
— Xu(po))/(1 = po) + A}
X (Xo(po) + Xo(po) — 2X.(P0)) -
The term in (p — p,)* has been absorbed in one of the A’s. Using the con-

vergence of X, (o), X.(po)> X.(po), and noting that X(p,) — X(p,) = 2X(p,) since
P, maximizes B, reduces the expression to

(8) dB*(X,, p) _ dB*(X., po) + -+ (P — Po)(By + A)

dp dp,
where

B, = d2B(X’ Po)
dp,?
— [,\7([,0) — X(py)] [X(Po) — X(po) _ X(po) — X(Po) _ 2X'(p0)] ,
Po 1 —p

_I¥ _ X(po) — X(po) 2y

©) B, = [R(p) — X(po) | FLL=2U) — 2xpy) |

Integration of (8) gives an approximation of B by a parabola near p,,

(10) B(Xo p) = B0 p) [ 2 1 N~ p

+ 3(Bo + A)(p — po)’ -

The sample split point p,, maximizing B(X,, p) is therefore the solution of

BXnp)—o,  po=p— B 1")0)’/(30 + 8+ 8
dp dp, nt

The asymptotic properties of p,, B(X,, p,) and R(X,, p,) are best studied by

expansions not about p,, but about r,, the proportion of U, ..., U, < p,. Let

diU)=1 if UZp, dU)=0 if U>p, so that r, = 3 d(U,)/n, X,(r,) =

> X(U) d(Uy)/(nr,), X (r,) = > X(U)1 — d(U,))/(nr,). Since r, =0 or 1

with positive probability, define X,(0) = X(p,), X,(1) = X(p,). Then
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E[X(r)|r] = E[5 dU)X(po) | r.] = X(ps), and similarly &[X,(r,)|r,] =
X(po)s E[X(r)Xu(r)| ] = X(po)X(p,). Thus r,, X,(r,) and X,(r,) are uncor-
related, which makes them convenient quantities for asymptotic calculations.
Setting

(1) Xy(r) = X(po) + X [X(U:) — X(po)) d(Uy)/npy + Afn*

Xo(ra) = X(po) + X [X(U)) — X(po)][1 — d(U))in(1 — po) + Afnt,

sinced(U), [X(U) — X(p,)]1d(U), and [X(U) — X(p,)][1 — d(U)]are uncorrelated,
the variables r,, X,(r,), X,(r,) are asymptotically normal with means p,, X(p,),

X(p,) and variances py(1 — p,)/n, o.}/np,, ¢,}/n(1 — p,) and zero covariances.
The sample split point p, is the solution of

dB*(X,, p) ~ o < 4B (Xss p) ’
dp - dp
which is obtained from (7) with p, replaced by r,, as

(1) po=rat o= LR = KRR + Xilr) = 2X,(r)] -

Using (7), since X, (r, — 1/n) < X(p,) < X,(r), Xa(r.) = X(po) + A/nt. From
(11), X,(r,) + X, (r,) — 2X(p,) is asymptotically normal with mean 0 and variance
O(n='). Therefore

po=rut = L) = XpORAr) + X(r) = 2X,(r)].

From (11) and (9), p, is asymptotically normal with mean p, and the variance
given in (6).
From (10), expanded about r,,

B(X,, p,) = B(X,,r,) + <%_~

r) A _
) =)
+ %(BO + A)(pn - rn)2

= B(X, ) + 2
n

(13) B(Xn’ r’n) = rn(l - rn)()?n(rﬂ) - ——Xn(rn))2
= B(X, po) + (1 = 2po)(X(po) — X(po))(rs — Po)
+ 2100(1 - PO)(‘Yn(rn) - "7(100) - Xﬂ(rn)

+ XN E(p) = X(p) +

Thus B(X,, r,) is asymptotically normal with mean B(X, p,) and variance, from
(11),
[(1 = 2p)'pu(1 — Po)(X(po) — X(po))*
+ 4p’(1 — po)(X(po) — X(po))X(0:’/po 4 0:7((1 — po))]/n

which reduces after some algebra to ¢,%/n, given in (3).
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To obtain the asymptotic distribution of R(X,, p,), define
n,=nr,, nzzn(l —r,,‘)
i1 = —‘n(r'n) b i2 = _'n(rn)
5= 2 (X(Uy) — %) d(U))/nr, , st = 2 (X(Uy) — %) (1 — d(U,))/n(1 — r,) .
R(X,, 1) = Zon(% — )’/ X nis? + Ajnt = 33 9rs — Y2 g:08
+ 2 (o — ng)[(ps — p) — 0 2 qits — 1) 2 9.07]n T qi04
+ 2 2 9 — )% — ) X qi05
— 229458 — o) X qes — 1) /(3 q;07)° + Afnt .
The quantities n;, X; and s5,* are asymptotically normal; n, and n, have correlation
—1, and %, and s;* have covariance v,/ng, but other pairs of variables are asymp-
totically uncorrelated. Thus R(X,, p,) is asymptotically normal with variance
oz'[n as given in (4). []

NoTEes. The essential result of this theorem is that B(X,, p,) is adequately
approximated by B(X,, r,), the between cluster sum of squares using the popu-
lation cutpoint X{(p,), which has simple asymptotic behaviour. An interesting
novelty is the approximation of B(X,, p) near Po by a parabola, so that B(X,, p)
has a “Taylor series” expansion about p, which is valid for p not too close and
not too far from p,; the notion of uniform convergence near p,, represented by
the symbol A, is necessary for easy manipulation of the expansions. Using the
expansion (13), the error B(X,, p,) — B(X,, r,) is seen to be a X,? variable with
expectation

[0/, + 0:*/9:19. 9, ,
[4X'(Po)‘]1112/(#2 - /"1) - l]n

ignoring terms o, (n~?).

A standard appoximate optimisation technique acts as follows when p = 1,
k = 2. Begin with initial split point p,, move to p, satisfying X,(p,) = 1X.(p,) +
$X,(p,), move to p, satisfying X,(p,) = 3X,(p,) + $X.(p,), and so on until a
local maximum p satisfies X,(p) = 4X,(p) + $X,(p). It follows from (8) that
P — pn = 0,(n7?), and so B(X,, p) = B(X,, p,) + 0,(n"?). The local and global
maxima thus differ negligibly. From (7), assuming p, — p, = O,(n" %),

5 = Xpo) = X(py) 5 -
[P, — Pl = : oy [P — Pl + 0, (n7Y).
’ 4py(1 — po)X'(po) ’
The coefficient of (p, — p) is less than 1 because B, < 0. The convergence of
pi to pis thus linear, and O(log n) iterations will be required to go from the
assumed initial accuracy O,(n~}) to the sufficient final accuracy O,(n™!).
From (8), a Newton-Raphson step is

Pr— P = X’fb(pl)"‘l' i‘,n(pl) _ 2X'n(p1)
2X,(P1) - (Xn(Pl) - Xn(Pl)/2P1(l - P1))

which goes from O,(n~t) to O,(n~') accuracy in a single step. Of course X'(p,)
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must be estimated by, say,

nt [Xn <p1 + l) - Xn(pl)] :

nt

For k clusters in p dimensions, a Newton-Raphson step requires estimation of
a kp X kp matrix, the second derivative of the between cluster sum of squares
as a function of the cluster centres; this could be a complex and risky task. In
any case, there might be an advantage in using a relaxation technique in which
the within cluster mean %, at the first iteration, is replaced by the cluster centre
(I 4+ a)x, — ax, on the second iteration rather than by the within cluster mean
¥, Herea, 0 < o < 1, is chosen to speed up convergence.

The conditions in the theorem could perhaps be weakened. The condition
that X have finite variance is used only in showing that p, is bounded away from
0 and 1, which reduces to showing that pX *(p) is uniformly small for p near 0
(with a similar problem for p near 1). It may be that

(1t X«(q) dg)p** 10 as p|O,
for 1 < @ < 2 is enough to establish this uniform convergence, but I haven’t
been able to prove it. If X is discontinuous at p,, the formulae in (6) apply
with X"(p,) replaced by co. If |X(p) — X(q9)] < K|p — ¢q| for p and g near p,,
the asymptotic normality of p, may no longer hold but the formulae for R, and
B, remain valid.

4. The normal case. The statistic R(X,, p,) is the likelihood ratio statistic
for the null hypothesis that the observations come from a normal distribution,
against the alternative hypothesis that each observation comes from one of two
normal distributions with different means but the same variance. The normal
distribution is therefore a natural null distribution.

Define ¢(x) = exp(—4x?)/2n}, ®(x) = (“,, ¢(u)du, and ®(X(p)) = p. Then
X(p) = —¢(X)/p, X(p) = o(X)/(1 — p), and B(X, p) = ¢*(X)/p(1 — p) has a
maximum when 2X — ¢/(1 — @) + ¢/® = 0. Since X(p) = o(X)/(1 — O(X))
increases with X, log P(X = x + k| X = x) [with derivative —¢(x + h)/(1 —
D(x + h)) + ¢(x)/(1 — D(x))] decreases with x whenever # > 0. Thus E[X —
x| X =z x] decreases with x. Similarly E[X — x|X < x] decreases with x.
Therefore 2x — ¢/(1 — @) + ¢/® = E[x — X| X < x] + E[x — X| X = x] in-
creases with x and so has a unique zero‘at x = 0, p = 1.

The quantities in (2) are ¢, = ¢, = §, p, = —(2/n)}, p, = (2/7)}, 02 = 0,2 =
(1 = 2/z), vy = —v, = 2/n)¥(1 — 4/n), t, = 7, = 3 — 4/x — 12/x*. From (6),

P (5 gt m—;l?zq)

o< n(2 2 )
) (2 200~ 2))
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The last two formulae appear in Hartigan (1975), page 98, without proof. Some
Monte Carlo evaluations of the distribution of R for small n are given in
Engelman and Hartigan (1969), and the asymptotic normality of R is suggested
there; more precisely, it is suggested that

2 2.4 1
w0+ m (1= 2) 2, )
by examination of the Monte Carlo results for small n.

As a check on the asymptotic formulae, samples of size n = 10 and n = 100
were drawn from the normal distribution, and the quantities p,, B(X,, p,),
R(X,, p,) were computed for 100 such samples. In Table 1 it is seen that the
computed means and variances approximate the theoretical ones. Normal plots
reveal that the quantities B(X,, p,) and R(X,, p,) are quite skew for small n, so
that the normal approximation is not too safe for n < 100. However Bt and
R~t were found by experimentation to be quite normal even for n = 5.

TABLE 1
Moments of split statistics over 100 samples from normal parent.

Dn B(Xn, Pn) R(Xn, Dn)

Mean n x Variance Mean n x Variance Mean n x Variance

n=10 .498 .358 .621 .733 2.26 36.7
n =100 .490 .760 .629 .899 1.82 6.42
Asymptotic .500 .688 .637 .924 1.75 6.74

5. The uniform spike case. If p, is fixed, R(X, p,) is maximal (co) when X is
concentrated on two points with weights p, and 1 — p,. If clusters are thought
to be modelled by modes in the parent population, an appropriate null hypothe-
sis is the unimodal parent population which maximizes R(X, p,). For p, > 1,
the optimal distribution has an atom for p e [$(1 — p,), $p, — %) and is uniform
elsewhere

Xp)=(p+p— D21 —=p) 0=p <l —p)
X(p) = —1% (1 —p)=p<igp—3
X(p) = (p — po)/2(1 — p,) p—4=p<l.

EX = (1 — 2py), o1y = = 3(1 — po)» 13 = §pos 0,° = (1 — po)/48py, 0, = g, vy =
v, =0, 7, = (1 —py)/1280p,, 7, = 155, B(X; po) = 1po(1 —po)s R(X, py) = 6py, 05° =
(I —po)(1 + po— 10p,* + 12p%) /48, 0, = 12(10 — 20, + 17 py* 4- 30p,*)/10(1 — py).
These formulae hold only for p, > 1.

From (6), at p, = 4, R(X,, p,) has asymptotic mean 3 and variance 19.2/n for
a uniform parent, compared with asymptotic mean 1.75 and variance 6.6/n for
a normal parent. Thus the “uniform-spike” based test is much less likely to
reject the null hypothesis.
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6. Many clusters in one dimension. The partition function B(X, p), corre-
sponding to cut points 0 = p" < p' < ... pF Tl < ph =1, s

i1 (V300 X(p) dpy’l(p* — p=) — (53 X(p) dp)* .

The partition function is maximized by the optimal cut p,, and the sample par-
tition function is maximized by the optimum sample cut p,.

The generalization of Theorem 1 states that p, — p,[P, n] if X has finite vari-
ance and unique optimal cut. This is proved analogously to Theorem 1. First
if p, is unique, then X must be carried by at least k distinct points; otherwise
Xp)=xforp' < p<p,0=pP < p'<p'-.. < pt'=1. An optimal cut
is (p° p, p's - -+, p*7') for any p, p" < p < p! which contradicts uniqueness of p,.
Secondly, B(X, p,) is larger for k clusters than for J clusters, j < k, since any
Jj-cut may be improved to a (j 4 1)-cut with larger B by splitting a cell [p*~!,
p) on which X is not constant.

Now consider a cut (p° - - -, p¥) in which j, of the p’ are less than r and j, of
the p’ are greater than (1 — r). Since X has finite variance, if r is chosen suf-
ficiently small, the contribution to B(X,, p) from the j, + j, cut points in the
tails is less than ¢[P, n]. As a function of the p’s between r and 1 — r, B(X,, p)
satisfies a Lipschitz condition [P, n]. Thus sup, B(X,, p) < B(X, p,) + ¢[P, n]
where the sup is taken over all p with j, less than r and j, greater than 1 — r,
and where p, denotes the optimal cut for (k — j, — j,) cut points. Therefore
sup, B(X,, p) < B(X, p,) — ¢[P, n], unless j, = j, = 0. If j, = j, = 0, use of the
Lipschitz condition on B(X,, p) shows that sup, B(X,, p) < B(X, p,) — ¢[P, n]
where the sup is now taken over all p outside a neighbourhood of p,. The con-
cludes the proof.

The generalisation of Theorem 2 states that p, and B(X,, p,) and R(X,, p,)
are asymptotically normal provided that X has finite variance, that p, is unique,
that Xis continuously differentiable at p, and that 3*B/ap,? is nonnegative definite.
The basic technique is to show that B is approximated by a quadratic form,
uniformly, close to p,. Thus

X' =\ X dpl(p — pioY)

dB* i+l Vi) Xt Vi )
S = (YR X 2x0x(p)
P
At p = p,,
d®B 5 o Xi+ _ Xi)(pi+1 _ pi—l) )
B, = :*,z(XH_X)( — )P =) oy )
dp* dp* 2(pt = )P — P )
d’B < Y i i Y i i i
Bun = e = (09 = D)) — Rof(p+ = p)
B,=-TB __o0 it i—ji>1.

dp? d;f_
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Straightforward calculation gives the analogues of (8) and 9),

B (X p) _ B (X pi) | % + (B + D)(p; — p)Y)

dp dp,
(14) 1<i<k-—1.
dB(X,, AN, .,
B(Xos p) = B(X, py) + 3 (P BN ey
Po n

, + 5 2 (Bi; + A)(p' — p)(p? — po)

Rather than about p,, expand about r, where nr,* is the number of obser-
vations not exceeding X(p,’), %; is the mean of observations between X(p,-*) and
X(py'), and n;= nr,’ — nr,i=' is the number of observations between X(p'™)
and X(p,’). Then n; is multinomial with parameters n, q,, - - -, ¢, and the X are
asymptotically independent normal with means y, and variances o,%/ng,, asspecified
in (2). Then p, is asymptotically normal with a complicated expression for the
variance involving B~'. Since B(X,, p,) = B(X,,r,) + O(n~1), it is sufficient to
consider only B(X,, r,) in determining the asymptotics of B(X,, p,) and R(X,,
p.). Thus B(X,,r,) = 1/n 3 n, X2 — (X n,X)*n is asymptotically normal with
mean B(X, p) = 3 q(¢; — p)* and variance o,%n where ¢, is given in (3).
Letting s,* denote the sample variance of observations between X(p,~!) and
X(po'), and noting that the (k + 1) sets of random variables {n,, - - -, n,}, {%,,
5%, -+, {%4> 5,°} are asymptotically independent, and that %,, 5, have variances
o/q;n, 7;/q,n and covariance v;/q,n, then

R(X,, p,) = X n(X;, — X)X n;s?2
is asymptotically normal with mean R(X, p,) and variance ¢,}/n where ¢,? is
given by (3).

There is some interest in estimating the term B(X,, p.) — B(X,, r,), the in-
crease in B due to selecting the optimum sample cut, rather than dividing the
sample by the population cutpoints X(p,). Choosing p, to maximize (14)
expanded about r,, the asymptotic expectation of B(X,, p,) — B(X,,r,) is
—1/2ntr (CD~') where C and D are k — 1 X k — 1 symmetric tridiagonal
matrices with

g2 2
¢y = 09, + 0i+1/qi+1/

2
Ciopr = O541/qiss

1 1 )
d, =% <— + > - 2X,(Poz)/(ﬂi+1 — )
9; 9i+1
dipy = 1/(29:4,) -
For example, in the uniform case, ¢,; = 1/6k, c;;,, = 1/12k, d;; = —k, d;;,, =

k/2 so that the expectation is (1/m)§(k — 1)(2k — 1)/12k?, just half of the ex-
pression in Marriott (1970, 1971). (In Marriott’s expansion analogous to (14),
the second order term is neglected, although in the neighbourhood of the maxi-
mum of B it is half the size of the first order term and of opposite sign.)
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7. Generalization to p dimensions. In p dimensions, observations x,, - - -, x,
from a p-dimensional variable X are divided into k groups with means y,, - - -,
Y, to minimize the within group sum of squares

W.(y) = Ziinfig g l|x — 11
By analogy with the one-dimensional case, one expects that W, (y) would be
closely approximated by W, (z) where g are the population means chosen to
minimize
E(infg ;o [|x — p]]*) -

Since W,(g) is the sum of i.i.d. random variables, it will be normal provided
X has finite fourth moment. For example if kK = 2, and if X is from a p-
dimensional normal with mean 0 and diagonal covariance matrix with variances
o2 0 -, 0,2 where 6> > a2, .-, ¢,% then it is conjectured that the optimal
split takes place along the first dimension, and so asymptotically

W.(y) ~ N} 0 — 20}r,2 3 0ln — 16no}/nz?) .

Expressions for F-ratios are given in Hartigan (1975), page 100.

On the other hand, if the optimal g are not unique, as when sampling from
a bivariate circular normal, k = 2, the approximation by W, (¢) may no longer
be valid; in this case W,(y) is conjectured to be asymptotically distributed as
the minimum of the normal process Z(f) on the circle 0 < 6 < 2z, where Z(f)
has mean (2 — 2/r) and covariance with Z(¢),

8 16 16/ T
{4__._7+F<s1na—<a—?>cosa>}/n, a=10—9¢<m.

T T
Much work remains to be done in p-dimensions.

Acknowledgments. I am indebted to David Pollard for suggesting the weak
convergence argument in the proof of Theorem 2.

REFERENCES

[1] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

[2] DAy, N.E. (1969). Estimating the components of a mixture of normal distributions.
Biometrika 56 463-474.

[3] ENGELMAN, L. and HARTIGAN, J. A. (1969). Percentage points of a test for clusters. J.
Amer. Statist. Assoc. 64 1647-1648.

[4] FisHEr, W.D. (1958). On grouping for maximum homogeneity. J. Amer. Statist. Assoc.
53 789-798.

[51 HARTIGAN, J. A, (1975). Clustering Algorithms. Wiley, New York.

[6] HENDERSON, A. S., HARTIGAN, J., DAVIDsSON, J., LANCE, G. N., DUNCAN-JONES, P.,
KoLLErR, K. M., RitcHiEe, KAREN, McAuULEY, HELEN, WiLLiaMs, C. L. and
SLAGHuUIs, W. (1977). A typology of parasuicide. Brit. J. Psychiat. 130.

[7] KiEFER, J. (1967). On Bahadur’s representation of sample quantiles. Ann. Math. Statist.
38 1323-1341.

[8] MACQUEEN, J. (1967). Some methods for classification and analysis of multivariate obser-
vations. Proc. Fifth Berkeley Symp. Math. Statist. Prob. 1 281-297.

[9] MarriorT, F. H. C. (1970). A problem of optimum stratification. Biometrics 26 845-847.



ASYMPTOTIC CLUSTERING DISTRIBUTIONS 131

[10] MARrrIOTT, F. H. C. (1971). Practical problems in a method of cluster analysis. Biometrics
27 501-514.

[11] Rao, C.R. (1973). Linear Statistical Inference and Its Applications. Wiley, New York.

[12] ScorT, A.J. and KNoTT, M. (1974). A cluster analysis method for grouping means in
analysis of variance. Biometrics 30 507-512.

DEPARTMENT OF STATISTICS
YALE UNIVERSITY
New HAveN, CoNNecTICUT 06520



