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For x; ~ N(¢, 0:?) (i = 1,2, - -+, n) and the x;’s independent, this paper
gives necessary and sufficient conditions under which the weighted average

of the x;’s, with weights proportional to inverses of the sample variances,
has uniformly smaller variance than any of the x;’s.

.

1. Introduction and summary. If n independent samples are available from
normal populations with a common mean but different variances, a natural
estimator for the common mean is the weighted average of the sample means
with the weights proportional to the inverses of the sample variances. To be
more specific, if x,, ---, x,, 5% ---, s5,* are mutually independent random vari-
ables such that x, ~ N(g, ¢,*) and m;s?/o? ~ Xm; for i =1, ..., n, then the
estimator

(1.1) = 20y (XifsH)(X5=1 1/57)

is a natural estimator for . When the variances are known the minimum vari-
ance unbiased estimator for p is

B = 2 (xifo8)(Ziea 1/ed) »

so the appeal of /i is apparent. Many authors investigated the properties of this
estimator or variations of it; among these are Cochran (1937), Meier (1953),
Cochran and Carroll (1953), Graybill and Deal (1959), Zacks (1966), Bement
and Williams (1969), and Rao and Subrahmaniam (1971). In this paper necessary
and sufficient conditions are given under which 2 has uniformly smaller variance
than any one of the x,’s. These conditions are different from those given by
Graybill and Deal (1959) for n = 2 and from a correction to their results quoted
by Bement and Williams (1969).

2. Twolemmas. The following lemmas are needed to establish the main result.

LeMMA 1. Let W be a continuous random variable with support (0, ®) and X be
a continuous random variable with support (¢, o), ¢ < 0. If for every t > 0 and
$p<a=x0Zb PW>t|X=a)=PW>t|X=>b) then EX) <0 implies
E(WX) £ 0 provided E(X) exists.

LeEMMA 2. Let Y, (i = 1, 2, 3) be mutually independent random variables with
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distribution function F; and density function f;. If fi(x) > 0 for 0 < x < o0, =0
otherwise, is continuous, then

PYJY, < Y)Y, = gy = SEAL= F/OVAA) dx
Wt <eInte =2 Ve xfu(x/)fi(x) dx

The proof of Lemma 1 is based on the relationships

E(W|X:a)=§;f’P(W>t|X=a)dt, < a

and
EWX) = {3 xE(W | X = x)9(x) dx ,

where g is the density of X.
To prove Lemma 2 one obtains the joint distributidn function of Y,/Y, and
Y,/Y;, then the required conditional probability in the usual manner.

3. Main theorem.

THEOREM. (i) The estimator fi of (1.1) is unbiased for p. (ii) Var (2) < o
for all values of 6> (i = 1, - - -, n) if and only if either

Ay mi>9(i=1,..-,n)
or
B) m, =9 for someiandm; > 17 (j=1, ---, n;j + i).

Proor. Let p, = 0%/, and p, = s,%/s*fori =1, ..., n so that
B= 200y Xifs] 22t B and B = 2oy %04 201 04 -
(i) Since the p,’s are distributed independently of the x,’s, the conditional

expectation of f given p,, -- -, g, is ¢, and £ is unbiased.
(ii) Sufficient conditions. It is not difficult to show (Norwood, 1974) that

(3.1) f— f* = Xicw (xi — Xp)(Bipy — piPo)|(21=1 0:)( 2071 P2) >

and

32 Cov (4 — fi*, p*) = E{(f — f*)p*} = 0.
Hence,

(3.3) Var (g) = Var (3%) + E{(2 — £*)} .
Clearly,

(3.4) Var (8*) = o)(X71 07"

and evaluating E{(& — £i*)*}, which may be interpreted as the part of the variation
of g which is due to estimating the p,’s, we first obtain

(3.5) E{[Zicor (i — Xi)(Pipir — 060)]*| P1s -+ -5 P}

= 6,011 05) Do 10 (fi — fir)
where f; = p,/p;, so that from (3.1) and (3.5)
(3.6)  E{(A — f*)}) = o (Ll 0) T E{ Licwr 000 fi — [i)'(Zica 02 f)} -
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Now, after some manipulation and using o, = g, = 1,
E{Y i< 0200(fo — [o) /(X 0: £)')
< il + Xioyiz 0 E{(f* — 2[)N(Zi 0 /)
so from (3.3), (3.4), and (3.6)
(3.7)  Var () < o (Lin p) [ Lt 0
+ Xt 0 Dimssiz P E{(f* — 2f)(Zica 0 fi)}] -

Obviously, Var (2) < o if E{(f? — 2f)/(Ttap:f} <O for i=2, .- n.
Letting X = f* — 2f;,, W = (27, 0, f;)~* and assuming m; > 4, Lemma | may
be applied provided )

(3.8) PW >t|X=a)>PW >t|X=0>)
forall t >0and —1 < a < 0 < b. To demonstrate this we show that

3.9) PW > t|fi=a)>PW>t|f,=ay),
for 0<a <a,, usingLemma 2.

It is not difficult to show that (3.9) implies (3.8), so that, from Lemma 1, a suf-
ficient condition for f to have uniformly smaller variance than x, is

E{fi2_2f;,}<09 for l":z,...’n.

Since f; ~ F,, ., the above condition is equivalent to

Méz, for i=2,---,n.
ml(mi - 4)
Hence,
Var (g4) < min (¢, - -+, 0,7
if for all pairs (m;, m;) (i, j = 1,2, - -+, n;i )
mm; +2) 5
my(m; — 4) —
This holds whenever all the m,’s are greater than 9 or one of the m,’s is equal
to 9 and the others are larger than 17.

Necessary conditions. To prove that these conditions are also necessary, sup-
pose that for some j =2, ..., n
E{fi* —2f;} > 0
or this expectation fails to exist. One can show that then Var (g2) > ¢ for

sufficiently small values of p,, - - -, o,.
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