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SOME VARIATIONAL RESULTS AND THEIR APPLICATIONS
IN MULTIPLE INFERENCE
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Let (M, T, S) be random matrices such that M and S are Hermitian
positive definite almost everywhere. Let M) = [mij; 1 < i,j < 1], Sy =
[sipl<i,j<flandT,s) = [tij;1 <i<r,1 <j<s],and define O, s) =
P[G(Mr)) T (r,5)(S(s)) %) < ] for some G belonging to the class & of
monotone unitarily invariant functions. The main result is that, for any
cand Ge &, O, s) is a decreasing function of r and s. Applications yield
simultaneous confidence bounds for a variety of multivariate and multi-
parameter problems.

1. Introduction. Invariance considerations in multivariate and multipa-
rameter testing problems often suggest that test-functions should depend only
on the singular values of certain random matrices. This study develops a natural
connection between a Sturmian type separation of singular values and stochastic
ordering for members of the class of monotone unitarily invariant test functions,
including functions commonly used in multivariate analysis such as the largest
characteristic root, the trace, and the ratio of determinants.

The principal results are developed in Section 2 as findings in the study of
random matrices. Applications of the results are given in Section 3; each is
concerned with the simultaneous inferences associated with a given test pro-
cedure and, in the spirit of Scheffé’s bounds, each supports the unlimited use
of significance tests at a type 1 error rate not exceeding @. In contrast to the
empbhasis found in much of the literature on multiple inference, our results and
examples underscore the fact that the methods are strictly variational in character
and therefore apply regardless of the underlying distributions.

2. Some variational results. Designate by R™ the m-dimensional real Eu-
clidean space, and by .5, , the linear space of matrices of order (m X n) defined
over the complex numbers, such that m < n. Special arrays are the identity
matrix I, of order n, the unit vector e, having unity in the ith location and zeros
elsewhere, and the matrix E;; € %, whose only nonzero entry is unity in the
(i, j) position. Each A e %, , admits the singular decomposition A = UAYV such

that U(m X m)and V(n X n) are unitary and A has the form A = [D,, 0], where
D, is the diagonal matrix D, = diag (a;, - - -, a,,) containing the singular values
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of A, i.e., the nonnegative square roots of the eigenvalues of AA*, A* being the
conjugate transpose of A. We define a partial ordering (due to Charles Loewner)
on the space of Hermitian matrices by letting A < B whenever B — A is the
matrix of a positive semidefinite Hermitian form.

Inequalities for the eigenvalues of reduced Hermitian forms are provided by
the Sturmian separation theorem (cf. Bellman (1970), page 117). Similar results
hold for singular values. Beginning with a matrix A = [a;;]€.%,,,, and a
Hermitian matrix H(z X 7), we define the matrices A, =[a;51 <i<r,
1 <j<sland H,, = [k, 1 < i, j < r]; we designate by {Sy(A) = -+ = S,.(A))
the ordered singular values of A; and we denote by {C,(H) = ... = C,(H)} the
ordered characteristic values of H. Using these matrices we give two separa-
tion theorems for singular values; the second assumes a central role in our
applications.

THEOREM 1. Let Sy(A) be the kth largest singular value of A. Then
Sk+1(A(r+1,S)) = Sk(A(r,S)) = Sk(A(r+1,s)) = Sk(A(r+1,s+1)) :

Proor. The first two inequalities follow upon (i) fixing s, (ii) representing
A 1,001 A 41,04 0 block-partitioned form with A, A% | in the upper left
corner, (iii) applying the Sturmian separation theorem, and (iv) taking square
roots to get singular values. The final inequality follows similarly upon fixing
r + 1 and applying the foregoing steps to A%, . 1, Aq i1 ei0)-

THEOREM 2. Let H(n X n) be a positive definite Hermitian matrix and let H* be
its Hermitian square root. Then for any matrix T ¢ &,

mxXnd

Sk(T(m,s)(H(s))_%) é Sk(T(m,s+1)(H(8+1))_%) *

Proor. Let Q, = L,(L,/HL,)~'L,’ where L, = [I,, 0] is of order (¢ X n). Be-
cause T, ,, = TL, and H,, = L/’HL,, a direct computation yields

T, o(Hi) ' T, ) = TQ, T

and thus it suffices to compare the matrices Q, and Q, +1- But the blocks of Q,
consisting entirely of zeros are also zero elements of Q,, and thus we need con-
sider only the upper left submatrix, namely I,,,(H,,,,)"'L,,,, of Q,.;- Now for
any matrix U* = [U,*, U;*] and a positive definite Hermitian matrix A — [A;
1 < i, j < 2] partitioned conformably, we infer (compare Anderson (1958), pages
28, 42) that

U*A~U = Ul*Al_llUl =+ (Uz - A21A1_11U1)*A2_2%1(Uz - A21 Al_llUl)

where Ay, = Ay, — A, AG'A,,. Tt follows that U*A-1U > U, *A;'U, because A,, ,
is positive definite. In particular, letting A = H,, +p» and U =1, we have
shown that (H,,,)™* > diag ((H,,)"%, 0) and hence that Q, < Q,,;, which im-
plies TQ,T" < TQ,,, T’, which, by Theorem 3, page 117 of Bellman (1970),
implies C,(TQ,T’) < C(TQ,,,T’). The theorem now follows from successive
use of the fact that Sy(T,,, ,,(H,,)™?) = [C,(TQ,T")]%, for t = sand r — s + 1.
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We are concerned with stochastic ordering for a class of monotone invariant
functions on .% . A function G: ¥, , — R'is said to be unitarily invariant
if, for each unitary pair U(m x m) and V(n x n), G(UAV) = G(A). We call
such a function monotone if, as a function of the invariants, it is monotonic in
each argument. As the maximal invariants under A — UAV are the singular
values of A, it suffices to generate the required functions on .., by means
of a suitably endowed class of functions on R™. Details of this construction

follow.

DEerFINITION 1. Let @ be the class of functions mapping R™ — R* such that,
if ¢ is in @, then

(1) ¢(xy ---5x,) = 0;

(i) P(erxy, - s emx; ) = P(Xy, -+ -, x,), Where ¢, = 1, 1 <i<m, and
(iy By, - - -, i) is any permutation of (1, 2, - - ., m);

(i) If |x| < |y, 1 <7< m, then ¢(x;, -+, x,) < (1, -+ -, y) and, if
0=<u<w, then ¢(u,0, -.-,0) < ¢(v,0, ..., 0);

@iv) oé(x,0,---,0) = |x].
Further let @, be the subclass of functions in @ which have the additional
properties

(V) lexy, -+ -5 ex,) = [e|g(xy, - -5 Xp);3

(Vi) ¢(X1 +y1’ ceey Xy + ym) é ¢(x1’ tt xm) + ¢(y1’ . ,)’m)

ReMARK 1. For any ¢(+) having properties (i)—(iii) and any even function
§: R*— R* which is strictly increasing on R,! = [0, co) such that £(0) = 0,
the exterior composition (¢ A )(x;, - -+, x,,) = P(§(xy), - - -, §(x,,)) also has prop-
erties (i)—(iii).

REMARK 2. Although not completely descriptive, we call @ the class of sym-
metric monotone functions. Each ¢ ¢ ® essentially is determined by properties
(i)—(iii); property (iv) avoids the need to consider monotonic functions of mono-
tone functions in our applications. To support these assertions consider any ¢ :
R™ — R*having properties (i)—(iii). To each such function we define an associate
function ¢, : R,* — R, by ¢,(|x]) = ¢(x, 0, -, 0), which is strictly increasing
by property (iii) and thus is invertible. Upon replacing ¢ by ¢ = ¢,7 o ¢, we
find that property (iv) holds and thus ¢ € @, i.e., ¢(x, 0, - - -, 0) = (¢, o ¢)(x,
0, --+,0) = (¢, o ¢)(|x]) = |x|. The exterior composition mentioned earlier
can be given property (iv) in a similar manner by letting ¢ = &7 0 ¢, o (¢ A §),
in which case ¢(x, 0, -+, 0) = (§,7 o ¢, 7 o (¢, A E))(|x]) = |x|.

Turning to functions on .., let ¢: %, , — R™ be the map which as-
sociates with A e .7, its singular values [S,(A), - - -, S,(A)].

DEFINITION 2. Let &7 be the class of monotone unitarily invariant functions
G: .7 ., — R generated by compositions of the type G = ¢ o o such that ¢ ¢ @,
ie., Z={G|G =¢oo,¢ec®} Let &, be the subclass of functions in & of
the form G = ¢ o o such that ¢ € @, ie., &, = {G|G = ¢ o g, p € Dy}
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REMARK 3. In addition to its monotonicity and unitary invariance, & con-
sists of functions standardized such that G(4E,;) = |u| for each Ge <. In par-
ticular, if A has unit rank and the nonvanishing singular value S,(A) = «, then
G(A) = a; this is a consequence of the definition of G and property (iv) of
Definition 1.

REMARK 4. Apart from standardization, the class @, consists of the symmetric
gauge functions on R™, and & is the class of all standardized unitarily invariant
norms on .% ,,..; von Neumann (1937) showed that these classes generate each
other. For further comments see Schatten (1970).

REMARK 5. Examples of functions in @, are the L, norms ¢ ,,(x;, - -+, X,,) =
(ZZ’”:l |xi|p)1/p, 1 = p < oo, and the functions ¢[s](x1’ Ut xm) = Z;}:l X5y 1 <
s < m,where{x, = X, = -+ = X} are the ordered values of {|x,|, [X,|, - - -, [X,|}-
These functions include the [, norm ¢(x,, - - -, x,,) = max{|x, - - -, |x,[}, which
generates the largest-root statistic of S. N. Roy in multivariate analysis, and the
Euclidean norm ¢, (x,, - - -, x,,) = (x> + - - - 4 x,,2)}, which generates the Lawley-

Hotelling trace statistic.

REMARK 6- Examples of functions in @ but not @, are ¢(x,, - -, x,,) =

[T (1 + x;%) — 1]* and

G(xp, + s X)) = {2 XL 4+ x /[ — D, x /(1 + xH)]}E.
The first of these generates the likelihood ratio statistic and the second another
trace statistic used in the analysis of multivariate linear models.

Against this background we now investigate the stochastic ordering of func-
tions G ¢ & which follows as a consequence of the almost sure ordering of
the singular values of their random arguments. More precisely, let T =
T sm X T xn X F nuws SUppose (M, T, S) e .7 and let (F, FZ(F ), P) be

mXm mxn

a probability space such that M and S are Hermitian positive definite a.e.
THEOREM 3. For each G ¢ & and each fixed ¢ > 0 define
Q(r, 5) = P[G((M,,))*T, (Sp))}) = ¢]; lsr=ml<s<n

such that M and S are positive definite a.e. Then Q(r, s) is a decreasing function of
r and s.

Proor. Designate by S,(r,s) the kth Ilargest singular value of
[(M,))"*T,, . (S.)"t]. Theorem 2 applied twice assures that, for almost all
M, T, S)e .7,

Sp(ry 8) S {Su(r + 1,5), Si(r, s + D} =< Si(r + 1,5 4+ 1)

where each of the central expressions is understood to satisfy both inequalities.
Because G is a monotonic increasing function of the singular values of its argu-
ment, it follows that

{G((M(r))—QT(r,s)(S(s))_b) é C} = {G((M(r’))_éT(r’,s')(S(s’))—%) é C}
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for all 7’ < r and s’ < 5. The fact that measures are monotone with respect to
set inclusion establishes the result.

A version of Theorem 3 directed specifically toward our applications is the
following.

CorOLLARY 1. Corresponding to each G € & let ¢, > 0 be a constant such that

P[GIM™*TS- ) < c¢,] =1 — a. Then
P[supy cyc .-y G(H*MH)*H*TC(C*SC)}) < ¢,] = 1 — «

where 7\ = {F .0 X F s | £h < m, 1 < ¢ < n}such that H and C are of
rank h and c, respectively.

Proor. It suffices to show that ,

sup -, G(H*MH)*H*TC(C*SC)~?) = G(M~*TS™¥) .
If necessary let E = [H, F] and B = [C, D] be the full-rank completions of H
and C of orders (m x m) and (n X n), respectively. It follows that
(H*MH)~*H*TC(C*SC)~* = ((E*ME),))"4E*TB),, ,(B*SB),)~* .

Moreover, the increasing character of the singular values of the foregoing ex-
pressions as functions of # and ¢, together with the monotonicity of G, now
assure that

sup_-, G((H*MH)~tH*TC(C*SC) %) = G((E*ME)!E*TB(B*SB)~?) .
But the expression on the right is precisely G(M~*TS~%), and the proof is complete.

3. Some applications. This study was motivated largely by interest in the
simultaneous inferences generated by certain statistical procedures, including
those which we now investigate. In all cases the matrices in question are real.

3.1. Multivariate linear models. Suppose Y = X@ -+ E such that (i) the rows
of Y(n X m) are mutually independent Gaussian vectors all having the same
definite dispersion matrix Z(m X m), (ii) E(Y) = X@, where (iii) X(n X r) is a
known matrix of rank r < n and (iv) ©(r X m) is a matrix of unknown pa-
rameters. The problem of testing H: ® = @, can be reduced by invariance
considerations (cf. Lehmann (1959), Section 7.10), the maximal invariant sta-
tistics being essentially the singular values of M—%((:) — 0,)S-#, and the maximal
parametric invariants being the singular values of M—#(® — @,)2-%. Here 0, is
fixed, ® = (X'X)"X'Y, S = (Y — XO)(Y — XO)/(n — r), and M = (X'X)".

For each test function G ¢ & choose ¢, such that

(3.1) P[GMM4® — @)SH <c]=1—a.
An application of Corollary 1 immediately gives
(3.2) P[sup,., G(H'MH)~iH'(® — ©)C(C'SC)#) < c] = | — a

where (H, C)e &) = {7, x F ;1 < h <r, 1 <c< m); this expression
in turn generates simultaneous confidence sets as preimages in the parameter
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space .% ,,,. Equivalently, the same expression generates simultaneous tests
for all hypotheses
(3.3) H:H@® —-0,)C =0, (H, C)e &,

at a type 1 probability error rate not exceeding a, using any test function G ¢ &.

Confidence sets generated by (3.2) are especially useful in some particular
cases. When the argument of G has unit rank there is but one nonvanishing
singular value, in which case the standardization G(uE,;) = [u| enables us to
invert the corresponding probability statement explicitly; the end results are
ellipsoidal confidence sets obtained as follows.

Specializing first to the case H = a ¢ R", and then to the case C = be R™,
we have

(3.4) a0 — 8)C(C'SC)IC'(O — Oya < c,a’Ma
and
(3.5) v(® — O)YHH'MH)"'H'(® — ©)b < c,’b'Sh

simultaneously for all (a, C) e &, and (H, b) € .57, respectively, all such state-
ments holding with confidence coefficient at least 1 — @. Now writing the
columns of ® as ® = [@,, - --, 8,] and its rows as @ = [7,, - - -, 7,], choosing
C = I,,, and letting a successively take the values {e, -- -, e,}, we obtain from
(3.4) the confidence ellipsoids of Hotelling’s type

(3.6) (Fi — 7 )STHF — 1) = c'mus l=sisr
A similar development from (3.5) yields the confidence ellipsoids
(3.7) 0, — 0,yXX(@; - 0,) < ;5. l<jsm

simultaneously for 8,(r x 1), 1 £ j < m.
Further letting H = a e R” and C = be R™, we get confidence limits of the
type of Roy and Bose (1953)

(3.8) a’@b c {a’Ob + c,(a’Mab'Sh)}}

simultaneously for all (a, b) € R” x R™ with coefficient at least 1 — a, for each
Ge¥. /

REMARK 7. If inferences are required only for a finite collection of statements
such as (3.5) and (3.6), it sometimes is possible to evaluate the actual joint con-
fidence coefficient in terms of the joint distribution of appropriate statistics. In
this setting Khatri (1967) provided tighter bounds than 1 — a for confidence
sets of type (3.5) and, assuming special structure for Z, for sets of type (3.6)
as well.

As all invertible confidence sets given here have the coefficient 1 — « for
each G, it is pertinent to ask whether tightest bounds can be achieved through
choice of G e &. Results are known for the bilinear functions a’®b; Mudholkar
(1966) showed that the Roy-Bose bounds at level 1 — « are tightest, in the class
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&,, when G is generated by é,(x;, - - -, X,,) = max {|x,|, - - -, |x,|}, and Gabriel
(1968) reached identical conclusions in a larger class of test functions depending
only on the eigenvalues of certain random matrices. These findings are now
extended to any region Ry(®) of the types (3.4) through (3.8).

THEOREM 4. Let G* be the test function generated by ¢p(x,, -+, X,) =
max {|x,|, - - -, |x,|} and, for each G ¢ &, let Ry(®) represent any one region of the
types (3.4) through (3.8). Then the infimum for all regions of the type Ry(®) having
probability 1 — a is given by inf_ Ry(®) = M, Ry(O) = Ry(O).

Proor. Let {a, = .-+ = @, = 0} be the ordered singular valuesof Ae .5,

and, for each Ge &, write G(A) = ¢(a,, - -+, a,,) for’ some ¢ e ®. Clearly
G*(A) = ¢py(ay, -+, a,) = a, and, owing to properties (ii) and (iii) of Definition
1, it follows that ¢(a;, 0, - -+, 0) < &(ay, - - -, a,,) for each ¢ € ®@. But property
(iv) assures that ¢(ay, 0, - -+, 0) = a,. That G* is stochastically minimal in the

class & is now clear; we have G*(M~{TS~%) < G(M-#TS~%) for almost all
(M, T, S) e &, so that .

sup, P[GM~#TS ) < c] = P[G¥(MITS™#) < ]
for each ¢ > 0. The proof is completed upon noting that each region R;(®)

consists of the boundary and interior of an ellipsoid, these having the same
center and orientation for all G and radius depending on c,, a function of G.

3.2. Canonical correlations. Let Y,(m X 1) and Y,(n X 1) be jointly Gaussian
vectors having the nonsingular dispersion matrix X = [Z,;] partitioned con-
formably, and let S = [S,;] be a sample dispersion matrix havingy > m + n
degrees of freedom such that m < n. The problem of testing H: X, = 0 is in-
variant under nonsingular linear transformations acting separately on Y, and
Y,; the maximal parametric invariants are the canonical correlations {p, =

Py = -+ = p, = 0}, and the maximal invariant statistics are the sample coef-
ficients {§, = p, = - -+ = p,, = 0} (cf. Eaton (1972), page 10.37). These maxi-
mal invariants in turn are the singular values p, = S, (Z;!Z,,Z3) and

Pr = Su(Su?S1Sx}).

The simultaneous inferences generated by invariant tests for Hare summarized
in the following corollary.

COROLLARY 2. For some G e & choose c, such that {G(Si?S,,S5}) < ¢,} is an
a-level acceptance region for testing H: X, = 0. If

{G((H'S,,H)"tH'S,C(C'S,,C) %) < ¢,}
is used as an acceptance region for testing H: H'Z,;C = 0, then all such invariant
tests hold simultaneously at level a for (H, C) e &,

Proor. Invariant tests for each hypothesis of the type H: H'Z,C = 0 depend
only on the singular values of the matrix (H'S,,H)~*H’S,C(C’S,,C)~%t. That the
type 1 probability error rate for the family of such tests is equal to a, follows
from Theorem 3 and Corollary 1.
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It may be noted that the singular values of (H'Z,H)~!H'Z,,C(C'Z,,C)~%, for
all (H, C) e &, constitute the totality of canonical correlations between linear
functions of the elements of Y, and Y,; these include the canonical correlations
between all subsets of Y, and Y, and, in particular, all pair-wise simple corre-
lations between their elements. Corollary 2 supports tests regarding all such
parameters, these tests holding simultaneously at level a.

REMARK 8. A test function belonging to &, is the often used largest sample
coefficient G ;;(S;#S,,S5!) = 6. A function belonging to & but not & is
G(S;#S,,S5Y) = [1 — I, (1 — )], which is a monotonic function of the
likelihood ratio statistic for testing H: Z,, = 0.

3.3. Generalized Friedman tests. LetY,; = [Y};, ---, YT]' be the vector re-
sponse at the jth of k treatments on the ith of N replications in a complete
two-way classification scheme, and let {F,;(z); 1 < j < k, 1 < i < N} designate
their cumulative distribution functions, assumed here to satisfy conditions set
forth in Gerig (1969). The problem is to test {H: F;, = F, --- = F,;, = F,,
1 < i < N} against the translation alternatives {4: F;;(z) = Fy(z — p;), | <
J<k, 1 <i<N})

Following Gerig (1969), for each se{l,2, ..., m} and ie{1,2, ..., N} we
replace {Y%, ---, Y3} by their respective ranks {Rj, ---, R;,} and define the
matrices T, (k X m) and Vy(m X m) in terms of their typical (s, s’) elements
as Ty = [(N' I R, — 3k + 1))] and Vy =[S, (S R R — k(k +
1)?/4)/N(k — 1)]. The following class of invariant tests for H is based on the
joint permutation distribution of {R{;; | < j <k, 1 <s<m,1 <i< N}.

YR

DEFINITION 3. A generalized Friedman test is any invariant permutation test
for H having acceptance region of the form {G(N*T,V,~}) < c,} forsome G ¢ Z.

Our terminology stems from the fact (using G(E;;) = 1) that each such test
is equivalent, when m = 1, to Friedman’s (1937) test. Gerig (1969) studied one
such test in detail using essentially the test function G, (N!T,V, %) =
(Ntr T,/T,V,~ )} belonging to Z,.

Each generalized Friedman test generates simultaneous tests for equality of
k marginal distributions as follows at level not exceeding a. Let {C,; t € 7} be
the collection of 2 — 1 matrices of order (m X r), 1 < r < m, which operate
to delete elements of Y ¢ R™; let {Fi;(+); i < j < k; 1 < i < N, t e r} be the cor-
responding marginal distribution functions; and consider the family {H,: F}, =
Fty= ... =Fi{, =F/! 1<i<N,;ter}of hypotheses. The principal result is
the following.

THEOREM 5. For some Ge & let {G(N'T,V, %) < c,} be an a-level ac-
ceptance region of a permutation test for H. Then acceptance regions of the type
{G(N*T,C,(C/V,C)}) < c,} provide tests for all {H,; t € v} simultaneously at a
type 1 error rate not exceeding a.

Proor. The required permutation test for H follows constructively for any
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G ¢ ¥ along the lines of Gerig (1969). Because such tests depend explicitly on
{Ri51 <j<k 1<s5s=<m 1<i< N} the exact conditional permutation dis-
tribution of G(N*T,V,~t) can be found for small samples, thereby determining
a randomized test for H which is strictly distribution-free under H and which
has exact size . For large samples, a normal-theory approximation to the
distribution of G(N*T,V, ) stems from the limiting Wishart character of
NT,'T,V,™* having parameters k — 1 and I,,; further details are supplied in
Jensen (1974). Accordingly, choose ¢, such that P(G(N!T,V, ¥ < c,) =1 — a;
that the type 1 probability error rate for testing {H,; t € r} is at most a follows
from Theorem 3 and Corollary 1.

REMARK 9. Letting C, successively take the values {}al, -+, e,}, we get the
Friedman (1937) statistics {Ne,/T,'T e (e/Vye,)"!; 1 < s < m}for testing equali-
ty of treatment effects in each one-dimensional marginal distribution. The square
roots of these functions belong to &,

3.4. Pearson’s tests for goodness of fit. Consider a multidimensional array of
frequencies obtained upon cross-classifying each of N independent observations
taken from some multivariate distribution. Letn = [n, ---, n,]’ be the vector
of frequencies from such an array arranged in arbitrary order, and let 7(8) =
[7(8), - -+, 7,(0)] be the corresponding cell probabilities, assumed here to be
determined completely by some parameter @ € R*. The problem of goodness of
fit is to test H: m(6) = =(8,) for fixed @,. In addition to H, suppose we are con-
cerned with testing goodness of fit for various marginal distributions associated
with the original array. Suppose {T,; €t} is a collection of matrices of order
(v X &,) having zero and unit elements such that n, = [n,, - - -, n,) = T/nis
multinomial having the probabilities z,(f) = T,’z(#), and consider the family
{H,: =,(0) = =,(0,); t € v} of hypotheses for these marginal arrays. Simultaneous
tests at level « are generated by using the Pearson (1900) test statistic

Xyt = 2521 (ny — Nmy(6,)))/Nr(6,)
in conjunction with the marginal statistics
Xy = Z:il (n; — Nﬂti(ao))z/Nnti(ao) s ter
as follows.

COROLLARY 3. For each N let {X,* < c,} be an a-level acceptance region for
testing H. If {X%, < c,} is used as an acceptance region for testing H, for each
t e, then the type 1 error rate is no greater than a.

Proor. Replace r, by r and let L’ = [I,_,, 0] and L,/ = [I,_,, 0] be of orders
(v — 1) X v and (r — 1) X r, respectively. Upon writing X = diag (7,(), - - -,
7,(0)) — m(0)x'(#) and using a standard construction (cf. Kendall and Stuart
(1963), pages 355-356) for removing the singularity of X, we infer that X,* =
z2’Q-'z, where z = N~!L'(n — Nz(6,)) and Q = L’ZL. It follows similarly that

X%, = N7'(n, — Nm(6,)yL,(L,/Z,L,)L,/(n, — Nz ,(6,))



INEQUALITIES AND THEIR APPLICATIONS 931

where X, = T/ZT,. But (n, — Nz,(6,)) is a linear function of (n — Nz(8)); thus
L/(n, — Nz ,(0,)) is some linear function of L'(n — Nz(6,)) which we can ex-
press as z, = NiL/(n, — Nz (6,)) = C/z for some C,((v — 1) X (r — 1)). It
follows that

X%, = 2C(C/QC)C,'z .

An application of Corollary 1 completes the proof.
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