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REPEATED SAMPLING WITH PARTIAL
REPLACEMENT OF UNITS

By E. MANOUSSAKIS
Hellenic Telecom Organization, Research Dept., Athens, Greece

This paper is concerned with the minimum variance estimation of a
time-dependent population mean, assuming that one is restricted to the
case of linear unbiased estimators.

A number of results are given for a new rotation sampling model
(RSM), in which unequal sample sizes are used on each occasion. Also
results corresponding to the special case of sampling with a fixed sample
size on all the occasions are derived.

~ Finally the optimum structure of the suggested model is discussed and
a comparison of this sampling scheme with Patterson’s and Eckler’s schemes
is made.

1. Introduction. When changes in time-dependent population values are to
be examined several sampling alternatives, as listed by Yates (1960), can be
used. These involve: (i) A new sample on each occasion; (ii) a fixed sample
used on all occasions; (iii) a subsample of the original sample on a second occa-
sion; (iv) a partial replacement of units from occasion to occasion.

The relative merits of these alternative methods will depend on the extent to
which any relationship between the values of a particular character observed,
on the same unit of the population on two successive occasions, can be used to
improve the current estimate of the population mean. This can be done by
using information obtained from samples taken on regular previous occasions.

Although in this paper, as in Patterson’s (1950), repeated sampling with par-
tial replacement of units from occasion to occasion is used, a different procedure
is followed here in order to obtain an estimate of the true population mean on
each occasion (after the first). The repeated sampling or rotation sampling model
discussed here will be referred to as RSM in the following.

The existence of an infinite population U is assumed along occasions (time
points) #, #,, - - -, t,. It isassumed thats; — ¢, , = constant forj = 2,3, ..., .
Any unit, U, say, of the population is associated with a sample value z;; cor-
responding to the #;th occasion. Since the population is infinite, the sample
values z;;, z,; are uncorrelated. The sample values z;; on the 7;th occasion are
regarded as values of a random variable Z; with expected value equal to the
true population mean, ¥, say, and variance ¢® independent of time. Also for
the random variables Z, (j = 1, 2, - . -) it is assumed the correlation coefficient
o(Z;yZ;.,) = p Vj>1 and the partial correlation coefficients p;;.., are zero
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V s between j, j’. These last properties lead to the result:
(2, Z;) = p531, V)

Now the sampling procedure suggested here is as follows: On each occasion
t;, after the first, a random sample s,; of size n,; is selected from the units ap-
pearing on the previous occasion #;_,, and the values of a particular character
observed on these units on both occasions #;, ¢;_; are recorded. The means of
these sample values are denoted by X,;, j,;, respectively. (The sample values
for y,; are already available from the previous occasion.) On the same occasion
t;, another random sample s,; of size n,;, consisting of entirely new units (not
appearing in any previous sample), is chosen. The sample values of these units
are recorded for both occasions #;, #;_, and their means are denoted by X%,;, 7,;,
respectively. (It is usually cheaper to record these sample values z;, z, ;_,, if
possible, on the same occasion rather than to record them on two separate
occasions.)

The sample sizes n,;, n,; are connected by the relations n,; 4+ n,; = n;, n;; =
u,;n; Vv jand for i = 1, 2, where u;; € [0, 1].

We notice that Patterson (1950) did not involve the sample mean J,; in his
sampling scheme, which was called one-level sampling by Eckler. Furthermore
Eckler (1955) did not use the sample means %,;, y,; in his two-level sampling.
The main results of Patterson’s and Eckler’s papers are summarized in the fol-
lowing section for ready reference.

2. One-level and two-level rotation sampling.

2.1. The minimum variance linear unbiased estimator y,*’ of the true popu-
lation mean Y, on the #;th occasion, used by Patterson, is of the form:

JiP =1 — @)% + ¢;%; + A;(PEy— ), Vji> 1.

Although this expression differs slightly from that given by Patterson, it leads
to exactly the same results as follows:

7iP =1 — of%y; + o2y — Ji)} + @i%;, ¥Yj>1,
@1) ¥ =Var (50) = (1 — Afp)oYm), Viz 1,
p;=1— A;/p
where
Aj = pnyny; y{n;ng ;o — nyy(ny oy — myy)p* — nyny;pA; )
with 4, = pu,, (from the initial condition V' = ¢*/n,).

In the case of sampling with fixed sample sizes n,; = u;n, V i, j, the expression
for A; becomes:

(2.2) A; = puy/(1 — 0* + 20%u, — pu A; ), Vj>1.
.The limiting value 4 of 4, for j — oo, is

A=[1— g+ 20 — {(1 — p)(1 — p* + o' u)}]/(20m) -
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REMARK. It may often be more convenient to use ¢ = lim;_, ¢, in place of
¢; after any occasion #; (i = 1). The previous results are then simplified with
little loss in efficiency. The true variance of the corresponding estimator of ¥,
may be denoted by k;(d°/n;), where

2-3) ki=o(l — &) + L.y, Vi>i, (ki=¢).

This is an alternative, simpler expression than that given by Patterson (1950),
which can be proved as follows.
Patterson proved that

uk; = (1 — oHMuy(1 — 0% + wp’k;} + >, Vji>i.
Since 4 = p(1 — ¢) this equation can be written as:
kj =S + Aakj_1

S=¢'+ (1 —p)(1 — ¢)'usfu, .
It is obvious now that it is sufficient to prove that § = ¢(1 — 4%). Actually by
eliminating ¢ from S, after some algebraic manipulation, we have o', S =
wp(o — 24) + [A(1 — u,0%)]A4.

By taking limits of both sides of equation (2.2) we can obtain the following
results: A(1 — u,0%) = pu,(A* — pA + 1). Because of this result, o’ S can be
written as pu,(0 — A)(1 — A?) which eventually leads to the desired result S =
o(1 — A7), since ¢ = (o — A)/p.

2.2. Eckler (1955) used the following minimum variance linear unbiased
estimator y;® of the true population mean ¥, on the 7,th occasion:

JiP =% + A/ (FEL — ), V> 1,

where

whence he found:
(2.4) V,® = Var (3;2) = (1 — pA/)d*ny;), Yj=1,
where ;

Af = pny ;af(ny; + 1y jq — pg; A7), Vi>T,
with 4/ = 0 (from the initial condition V'® = ¢*/n,,).

The previous results are simplified in the case of sampling with fixed sample
size ny; = ng, Vj. If V¥ = lim,_,, V;* then it can easily be proved that V'*® =
(1 — 0)¥(d*[ny).

A further simplification may be possible by substituting 4’ = lim,_, 4,/ for
A} in the estimator y,;*’ after any occasion ¢, (i = 1). The true variance of the
corresponding estimator of ¥; may be denoted by (1 — pk,’)/(o*/n,) where k;’ =
A(1 — A" 4 Ak, ¥ j > i with the initial condition k,/ = 4.

3. The new rotation sampling model. We denote by y; the minimum variance
linear unbiased estimator of the true population mean ¥; on the occasion ¢; and
define it as follows:

Ji= A = w)xy; + w;Xy; + a;(F;o0 — ;) + b,y — Fay)s V> 1.
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By minimizing the Var (y;) = V; this equation becomes

(3.1) Vi =Xy + Uy %y, — pu(Fr; — Fog) + a;(Pio1 — Fa)

where
a; = pa’[(e® + ny; V; ).

The variance V; can be expressed as:

3.2) Vi={l — (1 — p®u; — pa;}(e*/n,;), Vj=1,
whence we can find the following recurrence formula for a;:
(3.3) a; = pn;_in, ; o[{(n:; 4 ny;_0)n;_,

— (I — p)ngmy iy — pmyniaa;}, Vj>1,
with a, = pu,, (because of the initial condition V, = ¢*/n,).

We notice here that, among the variances V,®, V,®, ¥ of the three sampling
schemes described in the present paper, the following inequalities hold:

ViP(ng) < Vilnj wy) < V00, uy) .

These results give a comparison of the three models without considering cost.

4. Sampling with fixed sampling sizes. Here we consider the case of sampl-
ing with fixed sample sizes on each occasion. By using the restrictions n; = n,
n,; = u;n for i = 1,2 and V j the main results (3.3), (3.2) are simplified, respec-
tively, as follows:
(a.1) a; = p){2 — (1 — o, — pa;_}, Vj>1.
(4.2) Vi={1—-(0—p)u — pa{{e*/(nuy)}, Vj=1.

It can be shown that the sequence {a;} is monotone (0 < a; /" < 1 for p > 0
and —1 < a,;,/ < 0 for p < 0) and it converges to the limiting value a, where
a =1+ + pa, — (1 + 1, + pw)* — 40}]/(2p).

Now, the quantities V;, a; can alternatively be written, in terms of the limit-
ing value a, as follows:

- (4.3) Vi ={e(a — a;) + (0 — a)/a}{o*/(nu;)},
4.4 a; = a(l — xa®Y)/(1 — xa*), Vj=1,
where

x = (a — a)/(a — d’a;) .

To prove the result (4.3) we notice that from equation (4.1), for j — oo, we
have a = p/{2 — (1 — p*)u, — pa} whence we find 1 — (1 — p*u, = pa + (o —
a)/a. Using this result in equation (4.2) we obtain (4.3) directly.

Some details are now given to indicate how the result (4.4) was obtained. It
is obvious that (4.1) can be written in the form:

a;=1/(D—Ca;_,), Vj>1.
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Now we use the transformation a; = (D — v;,,/v;)/C, ¥ j = 1, (where v, ( 0)
is arbitrarily chosen) whence we obtain the following homogeneous difference
equation:

4.5) Vi — Dv; + Cv;_, = 0.
By solving this equation we finally obtain (4.4).

REMARK. It is possible, after any occasion # (i = 1), to use a in place of a;
in the estimator y,. The true variance, say V;, of the new estimator of ¥; may
be denoted by

V; = {pla — k;) + (0 — a)ja}{a®/(nu)}, Vj>i
where
(4.6) k; = a(l — a*) + ak;_,, with k;, = «a;.

Of course this replacement simplifies the calculations for the estimate of ¥;
though it increases the true variance of the corresponding estimator.

The loss in efficiency, due to the incorrect weights, is minimal as we can see
by examining the fractional error B; = V, = V)V ¥j>i

We notice that if i > 3 then max B, < 4.49% V |o| € [0, 1] and #, €[0.10, 1].
For i = 2, max B; = 17% for p = 0.95 and #, = 0.10. The sequence {B;} de-
creases with p and increases with u,.

5. Optimum number of units on each occasion for RSM. Some consideration
will now be given to the question “How many units should be used on a given
occasion and how many of these should be new?”

To provide an answer to this question we proceed as follows. Suppose the
results up to the occasion #;_; are known and we wish to estimate ¥; such that
V,=d|N,Vj=1, with a minimum sampling cost on the occasion ¢;.

If we assume that it costs ¢ to obtain a single sample value on the occasion 7,
and ¢(1 + k) to obtain two sample values z;;, z; ;_, on the same occasion 7, where
0 < k < 1, then minimization of the cost function M; = c{n;; 4 (1 4 k)ny;}
leads to the following results, ¥ j > 1 (on the first occasion N units are chosen).
These results designate the corresponding sampling procedure.

i ok — (1 — p))e*thenn; = ny; = N(1 — pY)tanda; = (1 —
(1 — p%}/p*. That is to say, in this case, the RSM degenerates to Eckler’s model.
(i) If
(1 — (1 = )¥e* < k < min{l, ¢*/(1 — p%)}
n; = N1 — o)Ylolk? 4+ (1 — 0%},
my = N(1 — g)¥{Jol/k* — (1 — o)1},
: a; = (o/lehk*(plk* + (1 — )7
(iii) If p*/(1 — p*) < k < 1 (for p* < 0.50), then n; = N, ny; = 0, a; = p.

then

In this case the estimator y; coincides with the sample mean %,;, V j = 1, ascan
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be seen from equation (3.1). Choosing j, properly (for example y, = 7,, if
possible) this coincidence can be avoided. In Table 1 the values of the ratios
P = n;/N, P, = ny/N are recorded for various values of p, k.

TABLE 1
Percentage optimal values of P = n;j/N, P; = nz;/N for some values of p, k

100k
100 95 90 85 8 75 70 65 60 55 50 45 40 35 30 25 20 15

1000

95 39 39 38 37 36 35 34 34 33 32 (P=Py=(l— )}
20 21 21 22 23 24 26 27 28 30

90 58 57 56 55 54 53 52 51 49 48 47 45 4
20 21 22 23 25 26 28 30 32 34 36 39 43

85 72 71 70 69 68 66 65 64 62 61 59 58 56 54
17 18 19 21 22 24 26 28 30 33 35 39 43 48

80 84 83 81 80 79 77 76 75 73 72 70 68 66 64 62
12 13 15 16 18 19 21 23 26 29 32 35 40 45 52

75 93 92 91 8 8 87 85 84 82 8 79 77 75 73 71 68
6 7 8 10 12 13 15 18 20 23 26 30 35 40 47 55

70 98 97 96 94 93 91 90 88 8 84 83 80 78 76 73
<P = 100> 2 3 5 7 9 11 13 16 20 23 28 33 40 49 61
65

9 97 94 93 91 89 87 85 82 80 77
1 3 9 12 16 20 26 32 41 53 70

o &

Norte. The first entry in each cell (o, k) corresponds to P and the second to Ps.

6. Comparison of the three models considering cost. In this section we derive
a criterion for deciding when to use one sampling method in preference to the
other two. In order to simplify the results we assume that we have patterns of
infinite length. Asin the previous Section 5, we assume that it costs ¢ to obtain
a single sample value for each occasion #; and ¢(1 + k) to obtain two sample
values z,;, z, ;_, on the same occasion #,, where k ¢ [0, 1]. If we suppose that
we have a fixed amount M = ¢N to spend for sampling for each occasion ¢#; then
the sample sizes n = N(1 + ku,)™*, n, = N, ny = N(1 + k)~* can be used, on all
the occasions, for RSM, one-level or two-level sampling models respectively.
It is also supposed that the same constant fractional replacement rate u, is used
for both the RSM and one-level sampling on all the occasions.

Now substituting the previous sample sizes in the limiting values ¥, V®), V5
of the variances V; (equation (4.3)), V', (equation (2.1)), V& (equation (2.4)),
respectively, we find

* V={(e — a)(1 + kuj)/(au,)}(o’/N) ,

V= {(o — A)(ou))'IN),
VO = {(1+ k(1 — #PN)
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Comparing the above variances in pairs, for various values of k, we obtain the
desired criterion.

6.1. RSM versus one-level rotation sampling. Denoting the solution of the equa-
tion V' = V® by k, we find

kp = {a(o — 4) — o(o — a)}f{ous(p — a)}

where k, is a function of the parameters p, u,. Comparing k with k., we can
decide which model should be used. The required criterion is as follows. For
any k > k, use one-level sampling and for any k < k, use the RSM. Ifk = k&,
then it is immaterial which scheme is used.

6.2. RSM versus two-level rotation sampling. Similarly on requiring V = V&
we find

ke ={(o — @) — au(l — p)}Y{au(l — p°)* — uy(o — a)}

where k; denotes the solution of the previous equation. Now we have the follow-
ing criterion: if k > kg, use RSM and if k < kg, use two-level sampling. If
k = kg it is immaterial which sampling scheme is used.

We notice that solving equation V' = V® in terms of u, we find the solution

w* = {1 — (L4 k)1 — @R + k(1 + k)(1 — oY)

which leads to the following criterion. For any u, > u,* use the RSM and for
any u, < u,* use two-level sampling. If 4, = u,* it does not matter which sam-
pling scheme is used.

The previous expression of u,* is held provided (1 — (1 — p*)¥)?/p* < k <
(1 — (1 — p)H/(1 — p*? since u,* € [0, 1]. The criterion under consideration is
completed as follows. For any k < (1 — (1 — p%))*/0*, use two-level sampling
and for any k > (1 — (1 — p*)¥)/(1 — p’)}, use the RSM, no matter what value
is chosen for u,.

6.3, One-level versus two-level rotation sampling. Eckler (1955) compared one-
level with two-level rotation sampling for the particular value 0.50 of the
parameter u, for which V® becomes a minimum. In the following a comparison
is made between the two sampling schemes for any value of the parameter u,
(=1 — u,)). Equating the variances V', V'® and denoting the solution of this
equation by k.’ we find

ke’ ={(1 — o + 40'uu)* — (1 — p")t — 20%u,u}/ (20w, 1) .

Now, for any pair of values (o, u,) the desirable criterion is as follows. If
k > k', use one-level rotation sampling, otherwise use the two-level scheme.
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