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PREDICTION FUNCTIONS AND MEAN-ESTIMATION
FUNCTIONS FOR A TIME SERIES

By LAWRENCE PEELE' AND GEORGE KIMELDORF?

Florida State University

Let T < I be sets of real numbers. Let {Y(¢): ¢ € I} be a real time series
whose mean is an unknown element of a known class of functions on 7 and
whose covariance kernel k is assumed known. For each fixed se I, Y(s) is
predicted by a minimum mean square error unbiased linear predictor Y(s)
based on {Y(¢): t € T}. If y(s) is the evaluation of Y(s) given a set of obser-
vations {Y(¢) = g(¢): t € T}, then the function  is called a prediction func-
tion. Mean-estimation functions are defined similarly. For certain pre-
diction and estimation problems, characterizations are derived for these
functions in terms of the covariance structure of the process. Also, relation-
ships between prediction functions and spline functions are obtained that
extend earlier results of Kimeldorf and Wahba (Sankhya Ser. A 32 173-180).

I. Introduction. Let / denote a set of real numbers and let {Y(¢): te I} be a
real time series of the form
(1.1) Y(1) = my(d) + X(1),
where {X(7)} has mean 0 and known positive definite covariance kernel k(s, 1) =
E[X(s)X(7)]. The mean function m, for {Y(¢)} is an unknown member of a known
class M of functions on /. Given any subset T of I, let L[Y(¢): t € T] denote the
vector space of finite linear combinations of elements of {Y(7): ¢ € T} with inner
product given by (U, V') = Cov (U, V). Denote the completion of this inner-
product space by L’[Y(f): teT], so that L'[Y(#): teT] is the Hilbert space
generated by {Y(f): re T} with inner product determined by (Y(s), Y(1)) =
k(s, t). For each s e I'let Y(s) be predicted according to some optimality criterion
by an element P(s) € L[Y(¢): te T]. Let g be any particular real-valued func-
tion and suppose for each 7 ¢ T it is observed that Y(r) = g(r). We call y(s) the
evaluation of P(s) given {Y(r) = g(¢): te T} if P(s) = 3 ci(s)Y(t,) implies j(s) =
> c(5)g(t,); the evaluation j(s) for infinite T is defined in Section 5. The func-
tion y whose value at each s e I is (s) is called a prediction function. Similarly,
for each se/, let my(s) be estimated according to some optimality criterion by
an element Z(s) € L[Y(r): te T]. If for each se I, #(s) is the evaluation of 2(s)
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710 LAWRENCE PEELE AND GEORGE KIMELDORF

given the observations {Y(r) = g(f): te T}, the function Z is called a mean-
estimation function.

The goal of this paper is to examine prediction functions and mean-estimation
functions for a time series with a known covariance and an unknown mean
function. Under various assumptions on M and the set {g(r): t € T} of observa-
tions of the random variables {Y(): t € T}, prediction functions and mean-esti-
mation functions are characterized in terms of the covariance structure. Exam-
ples are given where prediction functions are certain types of spline functions.

For fixed s ¢ I, a random variable P(s) is called a minimum mean square error
unbiased linear (MEUL) predictor for Y(s) if among random variables W satisfying
the conditions

(1.2) unbiasedness: E,. (W) = m(s) forall meM;
(1.3) linearity: WelfY(t): teT],

the minimum of E[W — Y(s)]* occurs when W = P(s). Similarly, a random
variable Z(s) is called a minimum variance unbiased linear (MVUL) estimator for
m(s) if Z(s) is a random variable ¥ which has minimal variance among random
variables W satisfying (1.2) and (1.3).

Characterizations for prediction functions and mean-estimation functions will
be based on the important concept of a reproducing kernel Hilbert space, devel-
oped by Aronszajn (1950) and used extensively with stochastic processes by Parzen
(1959), (1961), (1970), and others. A Hilbert space H of functions on a set I of
real numbers is called a reproducing kernel Hilbert space (RKHS) with reproducing
kernel k if k is a function on I X I such that for each re/, k(-, f)e H and
{f> k(s, )y = f(¢) for all fe H, where k(., t) denotes the function on I whose
value at seIis k(s, t). Each nonnegative definite symmetric kernel k on I X I
generates a unique RKHS of functions on / with reproducing kernel k. This
RKHS is denoted by H(k). It can be easily seen that the Hilbert space L[k(-, f):
te I] generated by {k(., t): te I} with (k(+,s), k(+, £)) = k(s, t) is the RKHS
H(k). For T < I, let L[k(+,f): teT] denote the closed subspace of H(k)
generated by {k(-,#): teT}. If k is the covariance kernel for a process {Y(?):
tel}, then the isometry (1-1 onto inner-product preserving map) that takes
Y(?) to k(., t) for each ¢t maps L}[Y(¢): te I] onto H(k) and L’[Y(f): te T] onto
Lk(+,0): teT].

Section 3 characterizes prediction functions and mean-estimation functions in
the case in which T is finite and M is a finite-dimensional vector space of func-
tions. The case in which M is a certain convex set of functions is considered
in Section 4. Section 5 extends previous results to the case in which T is an in-
finite set and M is a vector space of functions, not necessarily finite dimentional.

2. Background material. MEUL prediction functions were first studied by
Kimeldorf and Wahba (1970a), (1970b). Their latter paper considered differen-
tial operators of the form

@.1) L= Yi,6,D",
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where &7 is the differentiation operator, the functions a; have g continuous
derivatives on (0, 1), and a, = 1. They showed that in certain casesan MEUL
prediction function y is an #“spline of interpolation to a finite set of points
{(t;;2;):j=1,2, ..., n}. Thatis, y is the unique functiony e H, = {f: Z*Yf
is absolutely continuous and ~f € L0, 1]} which minimizes

L[y () dr
among functions satisfying y(¢;) = 4; for j = 1,2, ..., n.

The following lemma of Kimeldorf and Wahba (1970b) is used in the proofs
of Theorems 3.1, 3.2, and 4.1 below. A generalization—Lemma 5.1— of this
lemma is used in the proofs of Theorem 5.1 and Theorem 5.2. We will use P
to denote an orthogonal projection operator in Hilbert space.

LeEMMA 2.1. Let H = H, + H, be the direct orthogonal sum of a finite-dimen-
sional real Hilbert space H, and any real Hilbert space H,. Let P; be the projection
operator onto H; and J be a finite-dimensional subspace of H such that P,(J) = H,.
Then for any given elements, W, 6 € H.:

(a) there exists a unique element w = W € J which minimizes ||Ww — w||* subject to
the constraint P (W — w) = 0;

(b) there exists a unique element u = i € H for which ||P,u||* is minimized among
elements u satisfying 4 — ueJ*;

(c) <a, wy = i, w).

3. A finite-dimensional space of possible mean functions. In this section,
{Y(¢): tel} is assumed to have the model (1.1) where M is a finite-dimensional
space of functionson /. Let M, = M n H(k). Let M, be a subspace of M com-
plementary to M,. That is, M, and M, satisfy

(3.1) M, C H(k),
(3.2) M, n H(k) = {0},
and

(3.3) M, +M=M.

Let{f,:i=1,2,--.,q} be abasisfor M,. Fors,tel,letk(s,t) = 3, fi(5)fi(?)-
With the inner product defined by requiring {f;, f;> = d;;, M, becomes a Hilbert
space; in fact, M, = H(k,), Let k, =k, + k. It can be easily seen from the
definition of an RKHS that the RKHS H(k,) is the orthogonal sum of the RKHS’s
H(k,) and H(k). Since M is a finite-dimensional subspace of H(k,), M is a closed
subspace of H(k,).

Prediction and mean estimation in this section are based on a finite number
of observations; that is, T is assumed to consist of finitely many elements
ty, ty, - -+, t, € 1. The estimators or predictors considered are those of the form

(3.4) 231 6Y(25)
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(thatis, elementsof L[Y(z;): j=1,2,..-,n]). LetJ, = Llky(+, t;): j=1,2,---,
n]. For me M, E, (Y(s)) = m(s) = {m, ko, ) Hikgr> and E, (2%, ¢;Y(¢;) =
{m, 31 ¢iko(es 1)) na, Hence, 7., ¢;Y(¢;) is an unbiased predictor for Y(s)
if and only if P,(337_; ¢;ko(+, t;)) = Py(ko(+, 5)). It follows that the condition
(3.5) Py =M

is equivalent to the condition that, for each s ¢ /, there exists an unbiased linear
predictor (that is, a random variable satisfying (1.2) and (1.3)) for Y(s). The

following theorem extends a result of Kimeldorf and Wahba (1970b), and the
proof is similar to their proof.

THEOREM 3.1. Let {Y(f): t€ I} have the model (1.1) where M is a finite-dimen-
sional space of functions on I. Suppose that (3.5) is satisfied, and for each t ¢ I, let
(1) = X2, é,()Y(t;) be the MEUL predictor for Y(f). Then the MEUL prediction
function , given particular observations {Y(t;) = A;: j = 1,2, - -, n}, is the unique
function minimizing

1P s 2 cay

among functions satisfying

(2) y € H(k,)
and
(b) y(t;) = 2; for j=1,2,..-,n.

Proor. Let H = H(k,), H = M, H,= M*,J = J,,and w = k(+, t). Letabe
any function satisfying (a) and (b) of the theorem. (Since k is positive definite,
the matrix [k(t;, ¢,)],x, is nonsingular and there exists such an element #.) Now
apply Lemma 2.1 as follows. A random variable }}7_, c;Y(t;) is an unbiased
predictor for Y(#) if and only if P, (37, ¢;ko(+, 1;)) = Py(ko(+, 1)). Since H(k,)
is a closed subspace of M, it follows that if P,(X 7., ¢iko(+, t;)) = Py(ky(+, 1)),
then PH(k,)(ZLl cjko(” 1)) = PH(kl)(kO(" 1) and IIZ?:I ] ko(+, tj)_ko(' ’ t)”gi(ko)=
12051 €5k (s ) — k(s Dz = E[X7-6,Y(85) — YOI 1 25 Ci(n)k(+, 1) i
the unique element w = W € J minimizing ||w — wng,(,,o, subject to the constraint
P,(w) = P, (W), then 3", ¢,(t)Y(t;) is the MEUL predictor for Y(f). Since
@# — ueJ* if and only if 4 and u agree at t,, t,, - - -, t,, it remains only to show
that the prediction function y is the function # of Lemma 2.1. For fixed t e/,

() = Zi 6,02
= Z;:l é‘j(t)<12, ko(" tj)>
= {8, 2ja éj(t)ko(" tj)>
= (&, W)
= {4, w)
= (@, ko=, 1)) = i(r) .

REMARK 3.0. Note that condition (3.5) is independent of the choice of the
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space M, satisfying (3.2) and (3.3) and of the choice of basis for M,. To see
this, it is sufficient to verify that condition (3.5) is equivalent to the nonexistence
of a nonzero element m € M for which m(t;) = 0 for j=1,2, ...,n. Also, if
M* is the orthogonal complement in H(k) of M n H(k) so that each function
y € M 4+ H(k) has a unique representation y = y, + y, where y, € M and y, ¢ M*,
then the MEUL prediction function y of Theorem 3.1 can also be characterized as
the unique function y = y, + y,e M + H(k) which minimizes || y,||%, subject to
the constraints y(¢t;) = 4, for j = 1, 2, - .., n. Therefore, the MEUL prediction
function p is also independent of the choice of M, and of the basis for M,.

REMARK 3.1. Let 4 = [fi(t;)],xa- If M, = {0}, then condition (3.5) is equiv-
alent to the condition that rank (4) = ¢. If {m*, m,*, ..., m}} is an ortho-
normal basis for M,, then condition (3.5) is equivalent to the condition that

A
lank oo =
Whel'e .B = lm.,' (t ‘)]th,v

REMARK 3.2. Theorem 2.1 of Kimeldorf and Wahba (1970b) is the special
case of Theorem 3.1 when M, = {0} and a differential operator " has M, for a
null space and maps H(k) isometrically onto Lf0, 1]. The model of Kimeldorf
and Wahba (1970b) led to an MEUL prediction function which was an Z~
spline, If that model were altered by letting the covariance kernel for {Y(¢):
t [0, 1]} be k, rather than k, then the MEUL prediction function would be the
same #“spline. If Iis an interval of infinite length and H(k,) = {f: 2 is
absolutely continuous on compact subintervals of I and & € L¥(I)}, then the
differential operator theory of Dunford and Schwartz (1963) can be used to derive
a result similar to Theorem 2.1 of Kimeldorf and Wahba.

The next theorem characterizes an MVUL mean-estimation function for the
same model as that of Theorem 3.1.

THEOREM 3.2. Let {Y(t): t € I} have the model (1.1) where M is a finite-dimen-
sional space of functions on I. Suppose that (3.5) is satisfied, and for each t € I, let
2(t)y = 5r., di(1)Y(t;) be the MVUL estimator for my(r). Then the MVUL mean-
estimation function £, given particular observations {Y(t;) = 2;:j= 1,2, ---,n},
is P\,() where y is the MEUL prediction function.

ProOF. Letzel. Asin the proof for Theorem 3.1, >1%_, d,Y(¢;) is an unbiased
linear estimator for my(t) if and only if P,(332_, d;ky(+, t;)) = Py(ko(+, t)). Mini-
mizing Var (37, d;Y(t;)) subject to this constraint is equivalent to minimizing
[| 2271 d;ko(+5 t;) — Py(ko(+, 1))||* subject to the same constraint since

Var (5., d;Y(1))) = [| D31 d;k (e 1) 3
= |25 diko(s ;) — Py(B 3o dikol s s 1))k
+ ”Pu,(Z;"ﬂ diko(°’ tj))”il(ko)
= IIZ?=1 dik(e, 1;) — Py(ko(-, t))”?‘l(ko) + ||Pu,(ko(" t))”il(ko) .
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Now apply Lemma 2.1 with H = H(k,), H =M, H,=M*, J=J, W=
P,(k+, ?)), and @ any element of H(k,) such that 4(¢;) = ;forj=1,2,...,n.
It follows from the proof of Theorem 3.1 that the element denoted # in Lemma
2.1 is the MEUL prediction function y. For fixed te I, if w = X7_, d;(t)ky(+, t;)
then Y17_, dy()Y(¢;) is the MVUL estimator for my(f). The MVUL mean-esti-
mation function 2 is defined for 7 € I by

1) = N1 di(0)2;
= Z?:l jj(t)<a’ ko(‘ ’ tj»
= <@, D1 di(Ok(+, 1;))

= (@, W)
= (i, Wy

= (P Pylky(+» 1))
= (Pu(P), k=5 1))
= [Pu(D)]C) -

REMARK 3.3. Suppose that the hypotheses of Theorem 3.1 are satisfied. Let
m =f fori=1,2,...,9,and let {m;:i=q+1,9+2,---,9+ q*} be a
basis for M,. Then m, has a unique (but unknown) representation Y4 8, m,.
If B, denotes the MVUL estimator for f;, then for each t e/, Y% Bymy(f) =
Z(t), the MVUL estimator for m,(f). A similar equivalence holds if M, is {0} and
M, is a closed (infinite-dimensional) subspace of H(k)—see Theorem 5.3 and
Remark 5.4.

4. A minimax mean-estimation result. The main result of this section differs
from the results of the previous section in that the set M is no longer a linear
space and the method of estimation of m(¢) is minimax rather than MVUL.
Suppose that {Y(¢): ¢ € I} is of the form (1.1), and the mean function m, is known
to be bounded by the variance in the sense that
4.1 sup {|E, (V)| - [Var (V)]"#: ¥+ 0 and Vel[Y(t):tel]} < a,
where a is a known positive number. If m ¢ H(k), then
(4-2) llm|| = sup {|<m, v)| - [[v]|™*: 0 # v e H(k)}.

For Ve L[Y(?): t e I], let v denote the isometric image of V' in H(k) under the
isometry taking Y(f) to k(., t) for te I. Then for m e H(k)

(4.3) E. (V) = (m,v).
In view of (4.2) and (4.3), it can be seen that assumption (4.1) is equivalent to
the assumption that m, ¢ M where

4.4) M = {me H(k): ||m|| < a}.

For each rc I, my(z) is estimated by an element ¥V = Y*_, b.(1)Y(¢;) € L[ Y(1,),
Y(t,), - - -, Y(t,)] which minimizes

(4.5) sup {E, [V — m(§)]*:me M} .
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The following two remarks can be seen from (4.3) and the fact that

Var (V) = [Pl = sup {<v, f*: fe Hk), |IfIl = 1} -

REMARK 4.1. For Ve L[Y(f): tel] and fixed te I, the quantity (4.5) is
equal to
(4.6) Var (V) + a®*sup {[E.(V) — m(t)]* - ||m||*: 0 = m e H(k)} .

REMARK 4.2. For fixed ¢ € 1, the quantity (4.5) is also equal to
4.7 Var (V) + a* Var (V — Y(2)).

THEOREM 4.1. Let {Y(t): t € I} have the model (1.1) where, for a known positive
number a, M is given by (4.4). For fixed te I, let V(t) = ", b,(1)Y(t;) minimize
(4.5) for Ve L[Y(t), Y(t,), - - -, Y(t,)]- Given particular observations {Y(t;) = 4;:
j=1,2, ..., n}, the minimax mean-estimation function ¥, where for t ¢ I

o(r) = L1 b0,

a2

1 +a’f’

is

where f” is the unique function f € H(k) that minimizes || f|| among functions satisfying
f(tj) = ijorjz 1,2, ...,n.

Proor. For Ve LY[Y(t): te ] let v denote the isometric image of ¥ under
the usual isometry from L[Y(¢): t € I] onto H(k). Let J denote the isometric
image of L[Y(t,), Y(t,), - - -, Y(¢,)]. It follows from Remark 4.2 that the quantity
to be minimized for v € J is

(4.8) IPII* + a®ffv — k(o5 D)
Since v € J, it follows that for some ¢ = [¢, ¢,, - -+, ¢,]’,
V= 2 k(e 1)
Let K be the n X n matrix whose ijth element is k(¢;, t;). Then (4.8) becomes
4.9) c¢’Ke + a*(c’Ke — 2¢’k, + k(¢, 1))
where k,/ = [k(t,, 1), k(t5, ), - - -, k(t,, )]. Expression (4.9) is minimized by

2
A a
¢ = Kk,

1 4 a?
so that P(r) is given by
2
4.10 Pty = 2 kK'Y
(4.10) 0=k

where Y' = [Y(1,), Y(1,), - - -, Y(¢,)]'. It follows that the minimax mean-esti-
mation function ¥ satisfies

o
14 a?

o(t) = k/K-12
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where 2’ = [4,, 4,, - - -, 4,], and consequently
~ al 2

V= .
14 a? J

5. Extensions. Under certain conditions, Theorem 3.1 and Theorem 3.2 can
be extended to the case when T has infinitely many elements and M is an infinite-
dimensional linear space of functions on /. In an application (see Example 5.1)
of Theorem 5.1, for a certain process {Y(¢): t € [0, 1]} and a differential operator
2 of the form (2.1), an MEUL prediction function y, given (infinitely many)
particular observations {Y(f) = g(#): t € T}, is an Z“spline of interpolation to
the (infinitely many) points {(¢, g(#)): t € T}. A function  is called an Z~spline
of interpolation to {(t, g(?)): t € T} if y minimizes

§s [(ZY)(OT dr
among functions y € H, satisfying
5.1 (1) = g(t) for teT.

(The set H, is defined in Section 2.)

Just as Lemma 2.1 led to the results of Section 3, Lemma 5.1, which is an
extension of Lemma 2.1, leads to the results of Section 5. The main difference
between the proof of Lemma 5.1 and the proof by Kimeldorf and Wahba (1970b)
of Lemma 2.1 is the need in proving Lemma 5.1 to show that the sum of two
particular closed subspaces of a Hilbert space is closed. In general, if either of
two closed subspaces is finite-dimensional, then their sum is closed; an example
by Halmos (1951) shows that if neither closed subspace is finite-dimensional,
then their sum is not necessarily closed.

LeEMMA 5.1. Let H = H, + H, be the direct orthogonal sum of real Hilbert spaces
H, and H,. Let P, be the projection operator onto H, and J be a closed subspace of
H such that P(J) = H,. Then for any given elements, w, it € H:

(a) there exists a unique element w = W € J which minimizes ||w — w||* subject to
the constraint P(Ww — w) = 0;

(b) there exists a unique element u = i € H for which ||Py(u)||* is minimized among
elements u satisfying # — ue J+;

(c) <&, #) = i, w).

Proor. For Hilbert spaces 4, B and C, the notation 4 = B® C means 4 =
B + Cand Bn C = {0}. Thatis, each ae 4 has a unique representation a =
b + ¢ with be B and ce C. The notation 4 = B®* Cmeans 4 = B® C and
B is perpendicular to C.

If h,, hye H and D is a closed subspace of H, h, + D is called a flat, and the
unique element / € k, + D minimizing ||k, — &||* among k€ k, + D is called the
projection of 4, onto the flat 4, 4 D.
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It will be shown that
(5.2) Py(J*) isclosed and H, = P(J)®*(J N H,).

Observe that H, = (J N H)) L [H,n (J N H)'] = (J n H) @ [H,n (H,+JH] =
(J N H,) @* P,(JY) since H, + J* = H, + P,(JX). The proof that P,(J*) is closed
is presented at the conclusion of the proof of Lemma 5.1.

In view of (5.2) and the fact that H = H, ®+* H, it follows that

(5.3) H = H, @* P(J*) D+ (J n Hy)

where H,, Py(J*), and (J N H,) are mutually perpendicular closed subspaces of H.
It is easily seen from (5.3) that

(5.4) for x,yelJ Py(x) = P(y) = Pp,s1y(¥) = Pp,1y(y) -

Since P(J) = H,, there exists w, € J such that P,(w,) = P,(#). From (5.4) it fol-
lows that # is the projection of w onto the flat w, 4+ (J N H,) and that

(5.5) - P() = P(),  Ppyu,(B) = Ppyyu(w),  and
PJnHa(W) = JnH,(W) :

The element 7 of part (b) of Lemma 5.1 is the unique element x (if it exists) of
the flat # + J* which minimizes ||P,(x)|*. For u e J*, it follows from (5.3) that

(3-6) #+u=P@@+u)+ Ppyu (@ + #) + Pyon,(@)

and that

(3.7) 1Py(@ + W = ||Pp,ss(@ + WP + [|Prar, @I -

It follows from the assumption P,(J) = H, that

(5.8) for x,yeJ* Py(x) = Py(y) = Py(x) = Py(y) .

In view of (5.7) and (5.8), it can be seen that

(5.9) d=1a+ u,

where u, is the unique element u € J* satisfying Pp,;.,(#) = —Pp,;1,(#). Hence

it trivially follows that

(5.10) Poyi(@) =0 and Py () = Proy (@) .
Since w e J and u, € J*, (5.9) implies that

(5.11) W, ay = (W, 4) .

It follows from (5.5) and (5.10) that

(5.12) b, Wy = (i, w) .

Part (c) is an immediate consequence of (5.11) and (5.12).

The prbof that Py(J*) is closed uses the fact that if 4 and B are closed sub-
spaces of a Hilbert space then the map P, from B to A is the adjoint of the map
Py from A to B. Hence the map P, from H, to J* is the adjoint of the map P,
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from J* to H,. Let j:eJ*. Since P(J) = H,, there exists j € J such that P,(j) =
P,(j‘). Since j* — je H, and P,,(j* — j) = j* it follows that P,,(H,) = J*.
Hence the adjoint of the map P, has a closed range and consequently, by VI.6.4
of Dunford and Schwartz (1958), P,(J*) is closed.

REMARK 5.1. Let H, and k, correspond to a differential operator .~ as in
Kimeldorf and Wahba (1970b). Suppose that P, (J;") = H, where T < [0, 1]
and J,° = L[ky(-,): te T]. It follows from part (b) of Lemma 5.1 that a col-
lection of points {(¢, g(f)): t € T} can be interpolated by an #“spline if and only
if there exists y € H, such that y satisfies (5.1). There will always exist such an
element y if T contains only finitely many elements. The #“spline, if it exists,
is unique.

Let {Y(#): t € I} have the model (1.1) where M is a closed subspace of H(k)
and M need not be finite-dimensional. Suppose that g is a function on T C I.
Then observing that Y(¢) = g(¢) for all te T is equivalent to observing for all
random variables ¥ = }] ¢;Y(t;) € L[Y(f): te€ T]that V = 3] c;g(¢;). However,
if T contains infinitely many elements it is not obvious what should be considered
to be the observed value of V if ¥ is known only to belong to L[Y(r): te T].
Suppose, however, that there exists f € H(k) such that f(t) = g(¢) for each te T.
If Ve ’[Y(f): teT] and {V,}7_, is any sequence in L[Y(f): te T] such that
lim,_, V, = V, where the limit is in L[Y(f): t e I], then the observed value
{f> v,y of ¥, converges as n — oo to {f, v), where v, and v are the isometric
images in H(k) of ¥, and ¥ under the isometry taking Y(r) to k(-, #). Since the .
value { f, v) is independent of the approximating sequence {V,}7_,, it is reason-
able to take {f, v) as the observed value for ¥, and this procedure is followed
in Theorem 5.1 and Theorem 5.2.

THEOREM 5.1. Let {Y(f): t € I} have the model (1.1) where M is a closed subspace
of H(k). Suppose that P,(J;) = M where J, = L’[k(-,t): teT]. ForeachteT,"
let Y(t) be the MEUL predictor for Y(t) among elements of L*[Y(t): te T]. If for
some function f e H(k), Y(t) = f(t) is observed for each t ¢ T, then the MEUL pre-
diction function ¥ is the unique function minimizing

1P DIP

among functions satisfying

(a) ye H(k)
and

(b) Y(0) = f(t) for te T.

Proor. This proof is similar to the proof of Theorem 3.1. For fixed t e I, let
w denote k(+, t) and @ denote f. For each Ve L’[Y(¢): te T] let v denote the
RKHS isometric image of ¥ under the usual isometry. If Lemma 5.1 is applied
to w and @ above with H = H(k), H, = M, H, = M*, and J = J;, then if 7,
denotes , it can be seen that the MEUL predictor P(¢) for Y(t) is ¥,. For each
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t € Ithe MEUL prediction function ysatisfies p(f) = {f,¥,) = <@, w) = 4, w) =
@, k(+, t)) = 4(t) where # is the unique function u € H(k) minimizing ||P,.(#)|*
subject to the condition that u(f) = f() for each ¢ T.

THEOREM 5.2. Under the hypotheses of Theorem 5.1, let Z(t) denote the MVUL
estimator for my(t). If for each te T, Y(t) = f(t) is observed for some function
f€ H(k), then the MVUL mean-estimation function £ is P,(y) where y is the MEUL
prediction function.

Proor. This proof is similar to the proof of Theorem 3.2. If for fixed rel,
Lemma 5.1 is applied with w = P,(k(-, f)), & = f, H= H(k), H, = M, H, = M*,
and J = J,, then if §, denotes W, it can be seen that the MVUL estimator Z(¢)
is V,, the isometric image of ¥,. For each ¢t €  the MVUL mean-estimation func-
tion £ satisfies 2(t) = {f, 9,) = (@, W) = (0, W) = (&, Py(k(+, 1))y = [Py(@)](?)-
Since @ = y, the proof is complete.

REMARK 5.2. Suppose that the model of Kimeldorf and Wahba (1970b) is
altered in three ways. A subset T of [0, 1] containing infinitely many elements
replaces {#,, 1, - - -, 1,}. The assumption Py, ,(J;") = H(k,), where J;* = L[k(+,
t): t e T], replaces the assumption that rank (4) = g where A = [fi(t;)],xn- The
covariance kernel for {Y(t): t € [0, 1]} is k, instead of k. (The set of mean func-
tions is H(k,).) If, for some function fe H,, Y(f) = f(r) is observed for te T,
then the MEUL prediction function  is the unique .#~spline of interpolation

< to{(t, f(t)): teT).

The following example is an application of Theorem 5.1 and Remark 5.2 in

" which the MEUL prediction function is an ~“spline of interpolation to infinitely

many points.

ExaMPLE 5.1. Let {N(#): ¢ € [0, 1]} be the Poisson process with intensity one.

~Let N*(t) denote N(t) — t. Then E(N*(t)) = O for each t ¢ [0, 1], and for s, t €
" [0, 1], Cov (N*(s), N*(t)) = min (s, ). Let the random variable U have mean

zero and variance one and be independent of {N(r): ¢ € [0, 1]}. If for each r €
[0, 1], X(7) is defined to be U + N*(r), then {X(r): t € [0, 1]} has mean zero and
covariance kernel k(s, t) = 1 + min (s, ), which is positive definite on [0, 1].
Now let the process {Y(¢): t € [0, 1]} have the model

Y(t) = 6, + X(¥)

~where 0, is an unknown real number. Let {r,}=_, be a sequence in [0, 1] such

that t, < t,,, for all integers n. With & = &, it can be seen from Kimeldorf
and Wahba (1970b) that H(k) = {f: fis absolutely continuous and &f e L0, 1]}
and if M is the subspace consisting of the constant functions then & maps M+
isometrically onto L0, 1]. With probability one, sup, (N(t,)) < N(1); hence,
with probability one the sequence {N(t,)}_, will be a nondecreasing integer-
valued sequence taking on finitely many values. Let{Y(z,) = 2,}7_, be asequence
of observations. If a denotes the unknown value taken on by U, then for
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n=1,2, ... the value taken on by N(t,) is 2, — 6, — @ + ,. The constant
function 6, + « and the function g, where g(¢f) = ¢ for re[0, 1], are both in
H(k). Unless an event of probability zero has occurred, {1, — 6, — a + #,}3_,
is a nondecreasing sequence with finitely many jumps, and {(t,, 4, — 6, — « +
t,)}a-1 can be interpolated by a linearly segmented function f* e H(k). The
function f = f* 4 6, 4 a — g is in H(k) and interpolates the observed sequence
{(tss 4,)}n-1- Thus, for the model of this example with T = {r,}_,, with prob-
ability one the hypotheses of Theorem 5.1 are satisfied, and the MEUL predic-
tion function  is the unique #=spline of interpolation to {(z,, 4,)}_,.

REMARK 5.3. If the process {Y(r): ¢ € I}is Gaussian and if T contains infinitely
many elements, then it can be shown that the probability of the existence of a
function f e H(k) for which Y(r) = f(¢) for all te T is zero.

The next theorem extends Remark 3.3 to the case when M is a closed sub-
space of H(k) and {m,}y, is an orthonormal basis for M.

THEOREM 5.3. Let{Y(): t € I} have the model (1.1) where M is a closed subspace
of H(k) and {m/}z2, is an orthonormal basis for M. Hence m, has a unique but un-
known representation 3 5., 6;m;. If P,(J;) = M whereJ, = L[k(+, t): teT), then
there exists in L'[Y(f): t e T]an MVUL estimator A, for 0, fori = 1,2, .... For
each tel, the sequence {3*_, A,m(1)}z_, converges in L} Y(t): te ] to Z(1), the
MVUL estimator for my(t). That is, 2(f) = Y., A;my(t) for each te I.

Proor. Under the linear mapping that takes k(+, #) to Y(r), LX(Y(?): tel) is
isometric to H(k), and J, is isometric to L*Y(f): teT). The assumption
P,(Jr) = M implies that the mapping P, from J n (J N M*)* to M is one-to-one
and onto. From a consequence of the interior mapping principle (see 11.2.2 of
Dunford and Schwartz (1958)) it follows that the mapping P,~* from M onto
Jn (Jn M)t is continuous.

If £, = P, (P, (k(~, 1))), it can be seen that Z(¢) is the isometric image of Z,.
If a, = P,,~'(m,), then it can be seen that the MVUL estimator for 6, is the iso-
metric image 4, of a,. Note that Py(k(+, 1)) = 2122, m(t)ym, = lim,_, > 7, m,(f)m,.
It now follows from the linearity and continuity of P,~* that P,~*(P,(k(-, ?))) =
S, a;my(?), and it follows from the isometry that 2(f) = Ji52, A, m,(?).

REMARK 5.4. The previous theorem is still true if {m;};2, is assumed only to
be a Schauder basis, rather than an orthonormal basis. A very similar result is
true when M has an uncountable orthonormal basis {m,} since, for any fixed
te I, m,(f) = O for all but countably many of the basis elements.
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