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A CHARACTERISTIC PROPERTY OF THE
EXPONENTIAL DISTRIBUTION
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Let X be a nonnegative random variable with probability distribution
function F. Suppose Xi,n (i = 1, ---, n) is the ith smallest order statistics
in a random sample of size n from F. A necessary and sufficient condition
for F to be exponential is given which involves the identical distribution
of the random variables X and (n — i) (Xiy1,» — Xi,4) for some i and n,
(1=i<n). '

1. Introduction. Let X be a random variable (rv) whose probability density
function fis given, for some ¢ > 0, by

(1.1) Sfo(x) = O texp(—x/0), x>0,

=0, * otherwise.

Suppose X, X,, - -+, X, is a random sample of size n from a population with
density fand let X, , < X, , < --- < X, ,, be the associated order statistics.

Kotz (1974) and Galambos (1975) discussed extensively the characterization
of exponential distribution by order statistics. Desu (1971) showed that the
exponential distribution is the only one with the property that for all K, K
times the minimum of the random sample of size K from the distribution
has the same distribution as a single observation from the distribution. Arnold
(1971) proved that the characterization is preserved if in Desu’s theorem “for
all K” is replaced by two integers K, and K, relatively prime and distinct from 1.

Puri and Rubin (1970) proved that if X; and X, are independent copies of a
rv X with density f then X and |X; — X;| have the same distribution if and only
if fisas givenin (1.1). Barlow and Proschan (1966) considered many interesting
properties concerning order statistics and their spacings from certain restricted
families of positive random variables.

In this paper we will give a characterization of the exponential distribution
that requires X and (n — i)(X;,,, — X ,) to be identically distributed for some
iandn, 1 <i<n.

2. Notation and result. Let F be the distribution function of a nonnegative
rvandlet F = 1 — F, for x > 0. We will call F “new better than used” (NBU),
if F(x +y) < F(x)F(y), x, y =0, and F is “new worse than used” (NWU) if
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F(x + y) = F(x)F(y), x, y = 0. We will say that F belongs to the class C, if F
is either NBU or NWU.

THEOREM. Let X be a nonnegative rv having an absolutely continuous (with re-
spect to Lebesgue measure) distribution function F that is strictly increasing on
[0, c0). Then the following properties are equivalent:

(a) X has an exponential distribution with density as given in (1.1),
(b) for someiandn, 1 < i < n, the statistics (n — i)(X;,, — X, ,) and X are
identically distributed and F belongs to class C.

Proor. It is well known [see, e.g., Galambos (1975)] that (a) = (b), so we
prove only that (b) = (a). .

From the density of Y; = X,,, , — X, , which is given, e.g., by Pyke (1965),
it follows that Z = (n — i) Y, has the density

@.1) f2) = Lin, ) §5 (F@)(1 — Fu + z(n — i) )=~
X f)fu + 2(n — i)™ duf(n — i),

where L(n, i) = nl/((i — 1)! (n — i — 1)!).
By using the hypothesis f, = f and writing (n — i)/L(n, i) = {§ (F(u))*"}(1 —
F(u))"~if(u) du, it follows that

(2.2) 0 = {& (F(u)f(w)g(u, z) du , for all z,
where
9(, 2) = f()(L — Fu)*=* — (1 — F(u + z(n — 7)) fu + 2(n — i)7) .

Integrating (2.2) with respect to z from 0 to z, and interchanging the order of
integration (which is permitted here), we get

(2.3) 0 = (& (F(u) (1 — Fu)"“f(u)G(u, z,) du , forall z,
where
G(u, z) = (1 — F(u + z(n — 7)1 — F))~" — (1 — F(z)) -

Now if F is NBU, then for any integer k > 0, F(x/k) = (F(x))"*, so G(0, z,) =
0. Thus if (2.3) holds, it must be G(0, z,) = 0. Similarly, if F is NWU, then
G(0, z,) < 0 and hence for (2.3) to be true G(0, z;) = 0. Writing G(0, z,) in
terms of F, we get, ’

(2.4) 1 — F(z;) = (1 — F(zy(n — ))™Y))*¢, for all z .

Substituting F(z,) = 1 — F(z), and n — i = k, we get from (2.4),

(2.5)  F(z,Jk) = (F(z)))"", forall z >0, andsome integer k >0.
The solution of (2.5), Aczél (1966), is for k > 1,

(26) F(z)=1—F(z)=e*1, forsome 2, >0 andall z >0.
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If

k=1, then G(u,z) = (F(u + z))(F(1))™* — F(z}) and (2.3) gives 0=

V& (F(w)*~*f(u)F@)[(F(u 4 2,))(F(1))* — F(z,)] du, for all z,, and with FeC.
This means (F(u + z,))(F(x))™* = F(z,), so again we get (2.6).
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