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ASYMPTOTIC EFFICIENCY OF MINIMUM VARIANCE
UNBIASED ESTIMATORS!

By STEPHEN PORTNOY
University of Illinois at Champaign-Urbana

Consider a regular p-dimensional exponential family such that either
the distributions are concentrated on a lattice or they have a component
whose k-fold convolution has a bounded density with respect to Lebesgue
measure. Then, if a parametric function has an unbiased estimator, the
minimum variance unbiased estimators are asymptotically equivalent to
the maximum likelihood estimators; and, hence, are asymptotically effi-
cient. Examples are given to show that a condition like the above is needed
to obtain the asymptotic equivalence. )

1. Introduction and preparatory lemma. Although examples where minimum
variance unbiased (mvu) estimators are very poor are well known, these exam-
ples seem to require small sample size. In fact, in all common examples, mvu
estimators appear to be asymptotically efficient. (Here a sequence of estimators,
{T,}, of a parameter, 6, is defined to be asymptotically efficient if n¥(T, — ) —
A0, v(0)) where v(f) is the Cramér-Rao lower bound.) However, the only
general result along these lines is given by Sharma (1973) who proves asymptotic
efficiency of the mvu estimators of a positive integral power of the natural
parameter in certain regular one-dimensional exponential families. This paper
considers the case of p-dimensional exponential families satisfying the following:

ConpITION A. Either the distributions are all lattice distributions (on the same
lattice) or they have a component such that for some k (independent of the
parameter value) the k-fold convolution has a bounded density with respect to
Lebesgue measure (equivalently, for some j the jth power of the characteristic
function of the component is absolutely integrable).

The basic result presented here is the following: in a regular exponential family
satisfying Condition A, if a parametric function has an unbiased estimator then
the sequence of mvu estimators is asymptotically equivalent to the sequence of
maximum likelihood estimators (in the sense that the difference is €,(1/n)); and,
hence, mvu estimators are asymptotically efficient. Furthermore, examples are
presented to show that some hypothesis like Condition A is necessary. It is
interesting to note that asymptotic efficiency of mvu estimators also seems to
hold in nonregular cases (for example, in estimating parameters of a uniform
distribution). However, the methods of this paper would appear to be inappli-
cable to the nonregular case.
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The results will first be proven under the following:

ConpitioN A’. Either the distributions are all lattice, or for some j the jth
power of the characteristic function is absolutely integrable.

The result here depends basically on the following fact: if Xj, X,, - .- are i.i.d.
random variables with finite third moment, mean g, and satisfying Condition A’,
then for any function # with E|X,[!|u(X,)| < +o0, E[u(X))| X, = ¢] = Eu(X,) +
&(1/n) (where X, is the sample mean). This result was first formulated in this
form by Professor Sternberg at Harvard University and is given together with
various generalizations and applications to statistical mechanics and probability
theory in Zabell (1974 and 1976). The result in this paper requires a bound of
the form ¢(@)/n where ¢ is continuous in the parameter ¢ in p dimensions. Al-
though this extension is straightforward, the proof is sketched here since the
result is probably not well known by statisticians.

Consider an exponential family with densities

(1.1) Po(x) = e~9 @O+ xXeR, 0c®CR

with respect to a measure v on R?, where ¢(¢) = log § ¢’ dy(x) and © = {¢:
¢(0) < oo} is the natural parameter space. Let u = ¢’(f) denote the mean pa-
rameter, where ¢’ denotes the gradient of ¢; and let

(1.2) D= {pecRr: p=¢'(0) for some 6¢c 0B}
where ©° is the interior of © (note: D is diffeomorphic to @°).

LemMmA 1. Ler X, X,, - - - be a sequence of i.i.d. random variables with distri-
bution in an exponential family (as described above) satisfying Condition A’. Let
g:D— Randu: R* — R be such that for some k

(1.3) Eu(X, + -+ + X)) = g(p)  for peD
with
(1.4) EJu(X, + -+ + X;)| < 400 for pebD.

Then there is a continuous function ¢ on D such that
(1.5) (X, + -+ X)| B = ) — ()] 5 <)

for all pe D and for n > j + k.

Proor. The proof will be sketched for the case of densities in Condition A.
The lattice case (involving integrals of characteristic functions over compact
sets) would be even simpler. So let f,,(x) denote the density of S,, = X, 4 --- +
X,, — my and (by change of variable) write

1.6 E[u(S,)|S, = np] = Vfil=2)utkp — 2)f,-(2) dz
(1.6) [4(Se) | S, = ny] 0
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By Parseval’s relation, the numerator integral equals

(1.7) (5) a0 dr = () § Ryer(e) e
where A(t) = h(t)p~*(f) and
(1.8) h) = § u(kp + 2)f(2)e= dz

and where ¢(f) = ¢,(f) is the characteristic function of the distribution in the
exponential family with mean, g, subtracted.

Let ¢(x) be the largest value ¢, < 1 such that Re ¢,(r) = § for ||f]| < &(p).
Since ¢,(#) is uniformly continuous in g, ¢(y) is continuous in g on D. Thus,
since X has finite third moments, we have the Taylor series expansion

nlog ¢, (sn~t) = —LsEs’ + n~iPys)
for ||s]| < nte(). Therefore, for ||s|| < nte(y)
(1.9) @ (snt) = e 12 (1 4 ntP(s))

where X is the covariance matrix of X and P(s) is a linear combination of powers
of coordinates of s with coefficients uniformly bounded in terms of E,||X]|*.

Next, break the integral in (1.7) into the integral over {||¢|| < ¢} and {[|7]| > e}
The latter integral can be bounded by

(1.10) - §yese [ (D)™ *-3(0)] dt < § [R(0)]|@7(r)] dit - e=(n=k=dorw

where ¢,(¢) = —10g SUP,yzeq [94(5)] > 0; ¢,(12) is continuous in s since ¢, (1) —
Pu,(7) as p — p; uniformly in ¢.

Since Elu(S,)| < +oo, differentiating a Laplace transform shows that
ES,’[u(S,)| < +oo. Hence, A() has uniformly bounded second partial deriva-
tives; and the remaining integral in (1.7) can be written

(10 (52 Sise (HO) + () + " €)r)om(e) dr

By replacing the integral over {||7]| < ¢} of the first term by the integral over R?
(as above), this first term contributes

w0) (5 ) § 970 dt = Eu(S)1.(0)
For the remaining terms, let + = sn~%. The second term becomes
(1.12) 1P isent BT EsH (0)p™(sn) ds
= 170 L gt A Q)5 ds % Sioisent S (O)P(s)e~t ds]
(where (1.9) is used). Since § sexp{—4sZs'}ds =0, the first term in (1.12)

contributes an error like (1.10). The other term is bounded by n=?/2 . n-lc,(y),
where ¢,(¢) depends only on moments and, hence, is continuous in . Since
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n*/3f,(0) converges to a (27)~*", the term (1.12) divided by £,(0) is bounded by

(1.13) Cs(lu) + 04(/1)’11’/26_"'61(") é Ca(y) .

n n
Equation (1.9) can similarly be used in the last term in (1.11) to obtain a bound
of form (1.13); and this completes the proof. []

ReMmaRrk. It should be noted that exponentiality is not actually required in
the lemma. Indeed, for fixed values of the parameter, the result is given by
Zabell (1974 and 1976) and only requires (essentially) Condition A’ and finite
third moments. It would be possible to prove the continuity of the bound ¢(y)
under appropriate regularity conditions, but these conditions would be somewhat
complicated. More important, the only application would be to families of dis-
tributions where the mean is sufficient, and this would essentially imply that the
family is an exponential one.

2. The basic results and counterexamples.

TueoreM 1. Let X,, X,, - - - be a sequence of i.i.d. random variables from a mem-
ber of an exponential family in R (see (1.1)) satisfying Condition A’. Let g: D —
R be a parametric function for which there is an unbiased estimator (X, -+, X})
satisfying E,|1(X,, - -+, X)| < +oo for all pe D. Let Ty, T,, --- be the sequence
of mvu estimators, T,(X,) = E[{(X,, - -+, X) | X,] (where X, = n~* )17, X;).

Let V,, be the maximum likelikood estimator (mle) of g(p) if it exists. Then if
peD, V, exists with probability tending to one, T.(X,) = 9(X,) + &,(n™"), and
n(T,(X,) — 9(¢)) — A0, v(p)) where v(p) is the Cramér—Rao lower bound (and,
thus, the sequence {T,} is asymptotically efficient).

ProoF. Since ¢(f) is convex, if X, e D the likelihood is maximized uniquely
at 0 satisfying ¢'(f) = X,; and, hence, the mle of y is X,. Thus, if X, ¢ D, the
mle of g(y) is 9(X,). So, if g€ D is fixed, with probability tending to one,
X,eD and V, = g(X,) (since D is open and X, —% zz,). Straightforward calcu-
lations show that (under g) n#(V, — g(t)) = A0, v(,)) where v(z,) is the
Cramér-Rao lower bound. Thus {¥,} is efficient, and it remains to show that
T(X,) =V, + &, (™).

So let S, = X, + --- + X, and let u(S,) = E[«(X,, ---, X,)|S,]. Then u(S,)
is an unbiased estimate of g with E[u(S,)| < oo, and T,(X,) = E[u(S,)| X))l
So by Lemma 1,

|Tﬂ(ﬂ)—g(y>|§£<,’;‘-) for peD.

Now fix p,€ D. Since P#O{X’n ¢ D} — 0 and c is continuous, there is a constant
b such that P,{X,e D and ¢(X,) = b} — 0. Therefore P AT (X,) — 9(X,)| =
bjn} < P, {X,¢ D or (X,e D and ¢(X,) = b)} — 0, and the result follows. []

THEOREM 2. The conclusion of Theorem 1 holds if Condition A’ is replaced by
Condition A in the hypotheses.
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Proor. It suffices to consider the case where the dominating measure v may
be written v = v, 4 v, and where, with

e — S eo' du,(x) | = 0, 1 ,

the characteristic function of e=%0®+%%’ dy(x) has its jth power absolutely inte-
grable. In this case, the distribution of the observations (X, X,, --+) may be
represented as follows: let (X, ", X, ...) be i.i.d., according to distribution
e~+0=" gy (x) (I = 0, 1), and define

q(0) = €00 [(edo D +r))

Then X; = X, with probability ¢(d) and X, = X, with probability (1 — ¢(6))
(for i=1,2,...). Now fix n and let J be the random variable defined to be
the number of indices, i, k < i < nsuch that X; = X,©. Then (with z the mean
parameter and § the corresponding natural parameter)

(2.1) E[u(S)|Su] = E[u(Se) | S I Z j1 + P < j| S,]W(S,)
where j comes from Condition A and
22) W(8a) = E[u(S.) |80 < J1 = EJu(S)]5, T 2 j]-

Letp,(i) = P(J = i) = (*7")¢°(0)(1 — q(6))*~*~*. Then (as in Lemma 1, equa-
tion (1.6))

1= 2iss pull) S ulkp — 2)f,(2) dF s, (2)
2.3 E[u(S,)|S, =nu,J=j]= e il ARCA
(2.3) Au(Se) | ne, J 2 ] S P0.0)
From Lemma 1, the numerator of (2.3) can be written
1= PUNSAOE,u(S,) + e(n, i, 1)}

where from the proof of Lemma 1 (see (1.13))

e(n, i, p) < c(r) + cy(p)nrlre=ionw
n

with ¢, (#) continuous in g on D. Therefore
|E[u(S) | Sn = np, I Z j1 — E,u(Sy)|
< ale) | T pud)epneieioat
T on

n—k 7
i=; P #(1)
< alt) | elpn™ (1 — gB)(1 — eyt _ e p)
~on 1 — 2z ) oon
where c,(y) is continuous in x. Hence by the proof of Theorem 1

EJuS) | R0 ) 2] = 98 + @, (L).

To complete the proof, consider the last term in (2.1). Since E,P[ILj|S,] =
PJJ < jl = Lizi puli) = @1 — qO)), Pl < j|S,] = @y(n~). Similarly,
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since E,|w(S,)| < 2E,|u(S,)| (see (2.2)) w(S,) = &,(1); and the proof is com-
plete. []

A remark about the theorems should be made: the condition that the unbiased
estimator, ¢, be absolutely integrable for all x e D is not necessary. If

Dy={peD: E|i(X, + -+ + X,)| < o0}

has nonempty interior, then the same proofs will hold at least on the interior
of D,.

Counterexamples are now given showing that the results of the theorems
need not hold when Condition A fails. First, let v be concentrated on the set
{—=1,0, 7} with »(—1) = 4, v(z) = 1/27, and v(0) = p, =1 — § — 1/27. Let
D(0) = %e=? + p, + (1/27)e™ so that ¢(f) = log D(#). This gives an exponential
family on R not satisfying Condition A. The problem is to estimate g(f) =
Py(X = 0) = p,/D(#). The maximum likelihood estimator has asymptotic vari-
ance (9'(6))*/¢"'(6). But, if N(0) = #{i: X, = 0} then N(0) is a function of X.
Hence, the mvu estimator is

T(X,) = P(X, = 0| X,} = P(X, = 0| N(0)} = I_V_E:)_) ,

Therefore
nVar, T(X,) = g(6)(1 — g(9)) .

These asymptotic variances are different, as the following table clearly shows:

0 2.5 —~1.0 ~5 0 5 1.0 2.0
(@(O)y/¢"() 0500  .1103  .0488 .0000 .0388 .0353  .0029
g@)(1 — g(f)) 0502 1598  .2035 2247 .1833 .0744  .0040

This counterexample can be generalized as follows: Let v, be the distribution
of the sum of independent random variables taking on the values +r, each
with probability §. That is, v, has characteristic function ¢(r) = I3, cos (#r,)-
Suppose {r,} are chosen so that the convolutions v ** are singular with respect
to v,*i for j > k. Letv = Y2, (3)",*". Then the exponential family generated
by v has

$(0) = log {51 (b TT5=: cosh 0r,)"}.

Let U, be the support v,** (k = 1,2, - ), and assume that {U,} are mutually
disjoint (this can be done since {v,**} are mutually singular). If 6 = 0, the ob-
servations {X;} have distribution v; so if (for i = 1,2, . ..) M, is defined to be
that index, m, such that X, e U,,, then (M, — 1) has a geometric distribution
with parameter 4 (under ¢ = 0). Furthermore, defining L to be that index /
such that S, = )7, X, e U, L ~ 27, M,.

Now consider the problem of estimating g(f) = Py(X, € U;) = Py(M; = 1).
Since L is a function of S,, the mvu estimator, ¢,, satisfies (for any 0)

1,(S,) = P)[M, = 1|8,] = P)[M, = 1|L].
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But, under # = 0, sums of {M,; — 1} have negative binomial distributions; and

hence,
— PM =13, M =1-—1}

P[M,=1|L =1] T

n—1
-1’
Therefore, 1,(S,) = (n — 1)/(L — 1) which is asymptotically equivalent to
1/(Z, + 1) where Z, is the average of ni.i.d. geometric random variables. Thus,
if ¢ = 0 the asymptotic variance of the mvu estimator is §.

However,

9(0) = §y, e+ du(x) = Je?"([]5-, cosh Or,)

which is symmetric about zero. Thus, ¢’(0) = 0, and, again, the maximum
likelihood estimator has asymptotic variance zero at § = 0.

These examples clarify the question of exactly what conditions may be placed
on the distributions so that the results of the theorems hold. For example, one
might hope for a sufficient condition like Cramér’s condition that the charac-
teristic function remain bounded away from zero. However, values for {r,} can
be chosen so that the convolutions of v, are singular and at the same time the
characteristic function of v, has arbitrary asymptotic behavior. For example,
results in Salem (1942) and Kahane (1968, page 169) show how to construct
{r,} for which v *" are appropriately singular and the characteristic function
tends to zero. Also, the symmetrized Cantor distribution (with r, = 3-") has
0 < limsup,_.. ¢, (f) < 1. Since ¢, () = o, (1)/(1 — $¢,(?), a rather general
class of counterexamples can be constructed. It is interesting that for distribu-
tions, v;, generated by {r,} as above, Brown and Moran (1973) have shown that
either the convolutions are singular (so a counterexample can be constructed)
or some k-fold convolution is absolutely continuous (so Theorem 2 would hold).
However, it is not known whether the exponential family generated by v itself
(for example, if v is the symmetrized Cantor distribution) has an inefficient mvu
estimator of a parametric function.
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comments.
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