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A CONCEPT OF POSITIVE DEPENDENCE FOR
EXCHANGEABLE RANDOM VARIABLES!

By MOSHE SHAKED
University of New Mexico

An n-variate distribution function is said to be positive dependent by
mixture (PDM) if it is a mixture of independent n-variate distributions with
equal marginals. PDM distributions arise in various contexts of reliability
and other areas of statistics. We give a necessary and sufficient condition,
by means of independent random variables, for an n-variate distribution
function to be PDM. The distributions and the expectations of the order
statistics of PDM and of independent n-variate distributions which have
the same marginals, are compared and the results applied to obtain bounds
for the reliability of certain ‘. out of n” systems. A characterization of
vectors of expectations of order statistics of PDM distribution is shown.
Surprisingly many exchangeable distributions are found to be PDM. We
prove a closure property of the class of PDM distributions and list some

examples.

1. Introduction. In this paper we consider n-variate distribution functions
(df’s) which admit the representation
(1.1) F(xy, 5 %) = §o [Tl F(x;) de(0)
where {F), w € Q} is a family of univariate df’s, Q is a subset of a finite dimen-
sional Euclidean space and 7 is a df on Q. Such df’s, which are mixtures of in-
dependent n-variate df’s with equal marginals, will be called positive dependent
by mixture. A random vector will be called PDM if its df is PDM.

By definition PDM df’s are exchangeable (that is F(x,, - - -, x,) = F(xgq), =+ +>»

Xg) for every permutation II of the integers 1,2, - .-, n) and all the marginals
are equal to
(1.2) F(x) = g F)\(x) dr(w) .
Note that the family of n-variate PDM df’s contains the joint df’s of ni.i.d.
random variables and also contains the other extremity: the df’s whose mass is
concentrated on the line x, = x, = ... = x,. We do not consider the more
general family of df’s that admit the representation {, []r, F,'(x;) dr(w) be-
cause every n-variate df admits such a representation. .

PDM df’s arise in a variety of circumstances. Tong (1970, 1977) and Sidak
(1973) observed that in some cases the joint df’s of test statistics of some de-
pendent hypotheses are PDM. PDM df’s have been suggested as a useful class
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of priors by Ericson (1969a, b), Lindley and Smith (1972) and Shaked (1975b).
A well-known theorem of de Finetti (1937), which was generalized by Hewitt
and Savage (1955) (see also Olshen (1974)), states that a necessary and sufficient
coudition for n random variables (rv’s) to be embedded in an infinite sequence
of exchangeable rv’s is that they are PDM. Various inequalities which are
satisfied by PDM df’s are discussed in Dykstra et al. (1973) and some closure
properties of the family of PDM df’s are given in Shaked (1974, 1975a).

Of particular interest for our applications are PDM df’s that arise in reliability
theory. If X, - .-, X, are the lifelengths of » identical components of a complex
system which operates in a random environment, and if, given the “environ-
ment” of the system (i.e., the user of the system, the weather conditions, etc.),
X, - -+, X, are i.i.d. then (X;,- - -, X,) is a PDM vector. Often system life dis-
tributions are computed under the assumption that the components lifelengths
are independent. In Section 2 we show that in some circumstances it is possible
to determine whether under or over estimates result from the assumption of
independence when in fact the component lifelengths are PDM.

2. Inequalities for the df’s of order statistics of PDM rv’s. Let X, -, X,)
be a PDM random vector with the df F. Let F be the marginal df of X;. In this
section we compare the df’s and the expectations of the order statistics X,,, - - -,
X,,, to those of i.i.d. rv’s Y, - -+, Y, having F as their common df. As usual,
denote their order statistics by Y, ---, Y,,,. These comparisons enable one
to determine whether over (or under) estimates occur in various probabilistic
computations when a set of rv’s is PDM but one acts as if the rv’s are inde-
pendent. Exact expressions for the df of subsets of order statistics when the
joint distribution of (X;, - - -, X)) is known can be found in Maurer and Margolin

(1976).

2.1. Comparison of the tails of the df’s of X,,, and Y ,,. The following results
indicate that the df of X,,, 1 < k < n, has in many useful cases heavier tails
than the df of Y,,. Theorem 2.1 is useful when there is a positive mass on the
endpoints of S(F)—support of F (this is the case, e.g., if the X’s are discrete
rv’s with support which is bounded from below and/or from above). Corolla-
ries 2.1 and 2.2 are useful when there is not a positive mass on the endpoints
of S(F) (e.g., when Fy ,, 1s absolutely continuous).

To introduce the notation of Theorem 2.1 recall (see, e.g., Barlow and Pro-
schan (1965), pages 216-217) that for every two integerskandn (2 < k < n — 1,
n = 2) the function

2.1) hea(p) = X (P — p)r~t = Dk w1 — wyr=* du

is increasing on [0, 1], is convex on [0, p,] and concave on [p,, 1] where p, =
(k — 1)/(n — 1) (see Figure 2.1). Let p be the (unique) point in (0, 1) which
maximizes (1 — A(p))/(1 — p) (we will not specify the subscipts k and n when
it is obvious or unnecessary). Similarly let p be the (unique) point in (0, 1) that
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that maximizes A(p)/p. Fork =n(n=2)letp=p = 1landfor k =1 let p =
p=0.

THEOREM 2.1. Let x be a real number. (a) If F(x) < p then Fy (X) = Fy , (X)-
(b) If F(x —) = p then Fy, (x —) < F,  (x —).

The proof is given in the Appendix.

Of particular interest are the cases when x = L = inf §(F) and x = R =
sup S(F). Thus if F(L) < p then Fy , (L) = F, (L) and if F(R —) = p then
Fy (R —) = Fy, (R —). Note that for some F’s there does not exist an x such
that 0 < F(x) < p; then it may happen that F , (L) < Fy , (L), as the following
example (in which L = 0) shows. Consider the following df’s:.

F(x)=0 x<0 and  FO(x)=0 x<0
=04 0<x<1 =07 0<x<1

Then F(x,, X,, x3) = $FV(x,)FP(x,)F(x5) 4+ LFP(x,)F(x,) F®(x;) is PDM ac-
cording to formula (1.1). Taking kK = 2 (n = 3) one can verify that FXW(L) <
F v, (L)- A similar remark applies also to the right endpoint.

The following corollaries are useful for comparison of the tails when there
is no mass on the endpoints. We exclude from Corollaries 2.1 and 2.2 the cases
k =1and k = n. Itis easy to verify that F, [F, 1] is stochastically larger

[smaller] than F, [Fy ]and the comparison of the tails is trivial.

CoROLLARY 2.1. Let2 < k < n — 1. (a) If there exists a real number ¢ > — co
such that Fy  (x) # Fy , (x) on (—oo,c] and Fy  and Fy, are continuous on
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(—o0, c] then
(2.2) Fy ) > Fy (), x=c.

(b) If there exists a real number d < oo such that Fy  (x) # Fy , (x) on [d, o0)
and Fy  and Fy , are continuous on [d, co) then

(2.3) Fy,(x) < Fy, (%), x=d.

Proor. To obtain (2.2) choose x, < ¢ such that F(x,) < p so by Theorem 2.1
Fy(X0) = Fy , (x). But, by assumption, Fy  (x) # Fy , (x,), so (2.2) follows
for x,, and hence for all x < ¢ by continuity and the assumption that F,  (x)
Fy  (x) for all x < c. Part (b) is proved similarly. []

COROLLARY 2.2, Let2 <k <n—1. (a) Iff'X(k) and Fy = are absolutely con-
tinuous and Fy | (x) # Fy  (x)on (—oo,c] N S(F) for some ¢ > —oco then (2.2)
holds. (b) If Fy ,, and Fy are absolutely continuous and Fy, (%) # Fy , (x) on
[d, 00) N S(F) for some d < oo then (2.3) holds.

Proor. By making a 1 — 1 order preserving transformation of the support
of F onto the extended real line that takes L into — oo we reduce the conditions
of this corollary to the conditions of Corollary 2.1 and the result follows. []

We remark that if 7 of representation (1.1) gives mass to at most two points,
then a stronger result than Theorem 2.1 and Corollary 2.1 can be achieved. In
this case Fy , (x) crosses Fy  (x) at most once and if it does it crosses from
above (Shaked (1975a)).

2.2. An application in reliability theory. A typical application of the previous
results is the following. Consider a “k out of n” system (that is, a system
which functions if and only if at least k of its n components function) with
identical components, which operates in a random environment (see discussion
in Section 1). If X, - - -, X,, are the component lifelengths then the system reli-
ability W(t) = P(X(,_;41, > t) is often approximated by assuming the X,’s are
independent. If Iif(t) is such an approximation then (recalling from Section 1
that (X, - -, X,) is PDM) there exist ¢ and ¢, such that for t > 1, W(r) = ¥()
and for ¢t < ¢,, ¥(r) < ¥(r).

2.3. Comparison of the closeness of df’s of order statistics. The next theorem

shows that the df’s of X,,,, k =1, ..., n are “closer to each other” than the
df’sof Y, k = 1, ..., n. In its corollary we obtain the intuitively clear result
that the vector (EX,,,, - - -, EX,,) is “more homogeneous” than (EY,,,, - - -, EY,,)).

The following definition enables us to compare the homogeneity of two vectors
(for more details see, e.g., Hardy, Littlewood and Pélya (1952), page 45, or
Marshall and Olkin (in preparation)). A vector (a,, - - -, a,) is said to majorize a
vector (by, - - -, b,) written (a,, - - -, a,) > (by,- - -, b,) if, after the components have
been ordered such thata, > a, > --- = a,, b, = b, > ... = b,, the relations

(2'4‘i) Zi’czlai g Z?:l bz ’ k = 192, ey h — 1
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and
(2.4.ii) T a = 2 b
prevail.

THEOREM 2.2. Let X,, ---, X, and Y,, - - -, Y, be, respectively, PDM and i.i.d.
tv’s having the same univariate marginal F. Then for every x € R

(2.5) (Fy %)y o5 Fy (X)) < (Fy (%), -+, Fy (%)) -
The proof is given in the Appendix.

COROLLARY 2.3. Let X, ---, X, and Y,, ---, Y, be as in Theorem 2.2, then for
every measurable function g which is monotonic on the support of X,

(2.6) (E9(Xy), -+ Eg(Xw)) < (E9(Yy), -+ -5 E9(Y () -

Proor. Using the fact that for every rv Z withdf F,, EZ = {7 (1 — F ,(x)) dx —
" o F,(x) dx and using Theorem 2.2 it is easy to see that

(2‘7) Z?—l EX(i) g Zf—l EY(i} ’ k = 1’ 2, R
Slnce Zz 1 (t} - Zz IEY(Z}’ (2 7) lmphes Zl =n—3 X(z) é Zz n—3 EY(Z)’ ] -
0,1, ..., n — 2. Noting that EX,,, = --- = EX, and EY,, = --- = EY;,, one
obtains

(28) (EX(I)a R EX(M) < (EY(I}, R} EYM)) ‘

This proves (2.6) for g(x) = x. Denote X = g(X;) and Y/ = g(Y;), i =
1,2, ..., n. Note that (X, ---, X,/)isa PDM vectorand that Y;/,i =1, ---, n
are i.i.d. rv’s having the same common df as X;’. If g is nondecreasing then

(2.9) X, = 9(Xw) and Y, =9(Yu) i=1,2,---,n
and (2.6) is obtained from (2.8) and (2.9). If g is nonincreasing then

(2.10) Xy = 9(Xn-i41)) and Yl = 0(Yin-i1) » i=1,2,---,n
and (2.6) is obtained from (2.8) and (2.10). []

A particular case of Corollary 2.3 is (EX{H', - -, EXT) < (EYHHY, - -,
EY), k = 0 1,2, ... If X;is a nonnegative rv then (EXY), - --, EX%,) <

(n)

(EYY,, - - -, EYY,), k = 0 1,2,

3. A characterization of vectors of expectations of order statistics of PDM
random vectors. Recently Kadane (1971, 1974) and Mallows (1973) have found
necessary and sufficient conditions for a given vector to belong to M,(n), where
My(n) = {(EYqyy, -+, EY,,); Yy, i = 1,2, - -+, nare i.i.d}. Mallows applies the
results to obtain bounds on df’s and Kadane applies them to show that a par-
ticular structure for the expectations of the order statistics is satisfied only by
a degenerate df.

It may be of interest to characterize vectors in M,(n) = {(EXy), - - -, EX(n);
(X; - -+, X,) is PDM}. We do it in the next theorem. The proof was suggested
by J. H. B. Kemperman.
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THEOREM 3.1. Mp(n) = M(n).

Proor. From (1.1) it is easy to see that every vector of Mp(n) is a convex
combination of vectors in M,(n), hence the statement of the theorem is equivalent
to the assertion that M (n) is convex. To see that M,(n) is convex consider
the set A = {T': T(y) = sup {x: F(x) < y}, 0 < y < 1, for some univariate df F}
of monotone nondecreasing and right continuous functions on (0, 1). Clearly 4
is convex, hence from the proof of Theorem 1 of Kadane (1974) it is easy to see
that M,(n) is convex. []

Theorem 3.1 shows that when we are given a vector a € M(n), it is possible
to find a PDM vector (Y, ---,Y,) such that a, =EY,,i=1,.--,n and
corr (Y;, Y;) = 0 when i = j (in fact Y, ---, Y, can be assumed to be i.i.d.).
One can ask whether a determines an upper bound for corr (X, X;) where
(X;, -+, X,) is a PDM vector such that a; = EX,,. The answer is negative,
provided EY.? < co. To see this define X; = Y, + W,i=1,2, ..., nwhere W
is a rv independent of Y;, ---, Y, with EW = 0and Var W > ¢'(1 — ¢) Var Y.
Then (X, ---, X,) is PDM and it is easily verified that corr (X;, X;) > 1 —¢
and EX,, = EY,,.

4. Examples and applications. A useful way to identify PDM vectors is given
by the following proposition, the proof of which is omitted.

ProrosiTIiON 4.1. The n-variate df F is PDM if and only if there existi.i.d. rv’s
U, (i=1,2, ..., n), a random vector W independent of the U,’s and a Borel meas-
urable function g such that

Xz:g(UuW)’ i:1525"',n
have joint df F.

Thus, equicorrelated normals with nonnegative correlation, some exchangeable
multivariate exponential (Marshall-Olkin (1967)), some exchangeable multi-
variate geometric (Esary-Marshall (1974)) and exchangeable multivariate F dis-
tributions (discussed by Hewett and Bulgren (1971)) are PDM. From represent-
ation (1.1) it can be seen that the multivariate logistic (Malik and Abrahams
(1973)) and the exchangeable Tallis’ (1962) distributions are PDM. Shaked
(1975b) has shown that some of the Johnson-Kotz (1975) distributions are PDM.

Jensen (1969) defines a bivariate y* df in the following way: Let Y, and Y,
be two m X 1 vectors such that

()~ () G w2)
Y? 0 ]lrlﬂ wZZ
where W,, = 0’1, and ¥,, = ¢,)I,,, 0, > 0, 0, > 0, and ¥, is an m X m matrix

such that
<w11 III.12>
11].12 IFZZ
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is a positive semidefinite matrix. Then X, = Y/Y,/2¢?, i = 1, 2, are said to
have bivariate chi-square df which m degrees of freedom. We proceed now to
show that (X;, X;) is PDM. First note that without loss of generality we can
assume ¢,® = 0, = 1 because the df of X, is independent of ¢, i = 1, 2. Next
observe that we can assume

4.1) ¥, =diag (0, +**5 Om) » 0;=20,j=1,2,...,m,
otherwise there exists orthogonal matrices M and N such that MY, ,N' = R =
diag (ry, -+, 1), r; 20,j=1,2, ..., m, and then the transformation

=0 WG

Y, \o N/\y,

has 2m-variate normal df with zero mean and covariance matrix
(z 1)
R I,

and 1¥,/Y, = 1YY, = X,, i = 1,2,. .

Now let Y;; be the jth element of Y, (i =1,2,j=1,2, ..., m) then (when
o=0,=1)X, =43, Y, i=1,2and by (4.1) (Y, V3)), j= 1,2, ---, m
are independent, each has a bivariate normal df with zero mean unit variance
and a nonnegative correlation, and (Y, Y;,) is PDM. It can be shown now by
Proposition 4.1 that (X;, X,) is PDM.

For more examples, we refer the reader to Sidak (1973) and Jensen (1971)
which discuss some bivariate df’s, all of which are shown to be PDM in Shaked

(1974).
PDM distributions can be identified also by the following:

PROPOSITION 4.2. The limit in distribution of PDM df’s is a PDM df.

ProOF. Let R = [—o0, co] with the usual topology so R is a compact metric
space and hence R* is a compact metric space. The separable Banach space of
bounded continuous functions of R* with the sup-norm is denoted by C(R").
As is well known, C*(R*), the dual space of C(R"), is isomorphic to E, the space
of all bounded regular countable additive measures on R*. Equip C* with the
usual weak*-topology and E with the (corresponding by isomorphism) weak
topology. For 4 C E denote by 4 the corresponding set in C*.

Consider

Z = {P*| P is a probability measure on R} .
Clearly Z is w*-compact. Let CO(Z)[CO(Z)] denote the closed (w*) [(weak)]

convex hull of Z[Z]. From Proposition 1.2 of Phelps (1966) and the isomorphism,
each a € CO(Z) has the representation

(4.2) a = |, Prr(P")

where 7 is a probability measure on Z.
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By definition, a corresponds to a PDM distribution if and only if (4.2) holds
and «(R") = 1. Clearly, a(R*) = 1 if, and only if, r{P"|P*(R") = 1} = 1.

If a,, —, « (a,, is converging in distribution to ) where a is a probability
measure on R* and each a,, € CO(Z), then a € CO(Z) so it has the representation.
(4.2). Since a(R") = 1 by assumption, a corresponds to a PDM distribution. []

Some applications of Proposition 4.2 are discussed below.

Let X, = (X» *+ > Xpa)s M= 1,2, - -+ be independent random vectors, with
PDM distributions F,,. It is easy to verify that the random vector (A,(Xy, - - -5
Xu)s o+ s Bu(Xins -+ +» X)) has a PDM distribution G,,, say, for every Borel

measurable function #,, m = 1,2, --.. Thus by Proposition 4.2 the limiting
distribution G, say, is PDM. .
Of particular interest is the case where F, = F; = - - - and h,,(X), -+ -, Xn) =

b, (X", X)) + a, for some a, and b, > 0. Then if a limiting distribution G
exists it is a multivariate PDM distribution with stable marginals. Similarly by
taking A, (X,, - -+, X,,) = b, max (X, ---, X,) + a, a PDM distribution with
extreme value marginals is obtained. This fact is of interest in contrast to a
result of Campbell and Tsokos (1973) which gives a general form for limits of
extremes of bivariate random vectors. Their result is not restricted to exchange-
able distributions, but it applies only to smooth (¢*-bounded) distributions. Dis-
tributions with singular part along the main diagonal are (in general) not ¢’
bounded (Lancaster (1958)) but they can be PDM. Then the Campbell and
Tsokos result cannot be applied but the fact that G is PDM can be used to ob-
tain bounds for G.

Another possible application of Proposition 4.2 is the following. Multivariate
distributions with specified parametric marginals are sometimes defined as limits
in analogy to the univariate case (e.g., bivariate Poisson is defined as a limit of
bivariate binomial). Thus, when the defining distributions are PDM it follows
that the defined distribution is PDM.

APPENDIX

Proof of theorems. The following lemma is used in the proof of Theorem 2.1.

LeMMA A.l. Let G be a df on the unit interval. If \} pdG(p) < p (= p), then
forl1 < k < n,

(a.1) §8 B, (P) dG(p) Z (=) 1 (s P 4G (P)) »
where h, , is defined in (2.1) and p and p are described in Figure 2.1.

Proor. First note that if ¢ < j then (omitting the subscripts of #), since the
tangent to & at (g, h(g)) is is under % along [0, 1] the following inequality holds:
(A.2) h(p) = kg) + K9P — 9> 0=p=1l.
Denote ¢ = §} pdG(p) and assume ¢ < p. Integrating (A.2) with respect to

dG(p) we obtain § h(p) dG(p) = h(\; p dG(p))- Similarly if ¢ = p we obtain the
second inequality of (A.1). [
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ProoF oF THEOREM 2.1. By representation (1.1)

(A.3) Fy (%) = (o B(F'*(x)) dr(w)
and
(A.4) Fy( k)(x) = h(F’(L)) = h(§q F''(x)) dr(v) .

Substituting p = F“)(x)) in (A.3) we get F x, (%) = $s A(p) dG(p) where G =
G(z, F*"(x))isa df on the unit interval. Similarly F(x) = {} pdG(p). AsF(x) < p
we can apply Lemma A 1 to complete the proof of (a). The proof of (b) is
similar. []

The following lemma is used in the proof of Theorem 2.2.

LEMMA A.2. Let n and k be integers, 1 < k < n, then

() = Thos bin(p) = Thor s (IPICL — p)=
is concave on [0, 1].

Proor. The function h,,, +(P) = np is clearly concaveon [0, 1]. For 1 < k <

n—1,k.(p) =n(l — h, .-1(p)), but &, ,_,(p) increases on [0, 1], hence %, e.n 1S
concave. []

ProoF oF THEOREM 2.2. For 1 <i < n, Fy . (%) = g by o(F'(x)) dr(w) by
(1.1). Hencefor 1 <k <n

Tbea Fr  (6) = To by o F () (@)
< hyo(§a F@(x) dr(0)) by Lemma A.2 and Jensen’s inequality

= Z?:l FY”.)(X) .
Also
= FX(i)(x) = nF(x) = 21, Fy”.)(x)

and the proof is complete. []
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