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A TEST FOR SERIAL CORRELATION IN MULTIVARIATE DATA!

By WALTER S. LIGGETT, JR.

Tennessee Valley Authority

Consider a sample from a multiple time series that is stationary and
Gaussian. A test is presented for independence among the multivariate
observations that comprise this sample. The test is a generalization of the
Kolmogorov-Smirnov test for serial correlation in a single time series. In
the test, pairs of speciral-matrix estimates are compared using the largest-
root statistic. The comparisons, which are tested simultaneously, are
between estimates obtained from upper and lower parts of the frequency
band. Under the null hypothesis, the joint distribution of the largest roots
is obtained in a form suitable for computation of significance levels.

1. Introduction. A common assumption in multivariate analysis is that the
data (or the residuals after removing the mean) are a sequence of random vectors
that are independent and normally distributed with zero means and identical
but unknown covariance matrices. In the test presented here, this is the null
hypothesis. The aiternative hypothesis for which this test is designed is that the
data are a stationary Gaussian multiple time series in which observations at
different times are correlated. The usual approach to detecting serial corre-
lation is graphical presentation of either spectral-matrix estimates or covariance
function estimates. For multiple time series, this approach has several difficulties
including the need for several different graphs including ones that show de-
pendence among the component series and the choice of spectral resolution.
Thus, a way to test simultaneously for all the types of serial correlation that a
stationary Gaussian time series can exhibit is needed.

A univariate time series can be tested for serial correlation by computing the
periodogram, dividing the frequency band into two parts, and comparing the
sum of the periodogram over the lower part with the sum over the whole band.
The sums are compared for all divisions of the frequency band using Kolmogorov-
Smirnov limits (Bartlett (1966), Durbin (1969)). The test presented here is a
generalization of this. As with the univariate case, the multidimensional perio-
dogram is computed, the frequency band is divided, and the sum over the lower
part is compared with the sum over the whole band. These estimates are com-
pared using the largest and smallest eigenvalues of one estimate with respect to
the other. Some but not all divisions of the frequency band are considered
simultaneously. As shown in Section 3, the computation of the distribution
under the null hypothesis also has similarities to Kolmogorov-Smirnov tests.
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Beyond the question of whether serial correlation exists is the problem of
estimating the form of this dependence. Part of this problem is deciding how
much smoothing to use. A comparison of spectral matrices like the one described
here is used for this purpose in Liggett (1973a, b).

In the following three sections, we specify the test, derive its distribution
under the null hypothesis, and discuss ways to choose divisions of the frequency
band and a critical region so that an effective test with an easily computed
significance level results.

2. The test. The test presented here results from the decision to transform
the data into the frequency domain, the choice of spectral estimates to compare,
the decision to use the largest-root statistic, and the choice of a critical region.

The data, which are denoted by X,,r = 1,2, ---, T, are a sample from a real,
p-dimensional random sequence. The finite Fourier transform of this sequence is

(1) £, = xT) NI, X,e=™vT | f=0,1,...,[T[2].

~

The rank-one matrices §,§* (where * denotes conjugate transpose) are a multi-
dimensional periodogram with frequency indexed by f. Under the null hypothe-
sis, the random vectors &, are independent, and for 0 < f < T/2, £, is complex-
Gaussian distributed with zero mean and spectral matrix that does not depend
on f (Goodman (1963), Hannan (1970)). The test is basedon &, for 1 < f < N,,
where N, = [(T — 1)/2], and thus excludes &, and when T is even, §,,. These
excluded coefficients are real, not complex. &, is proportional to the usual
estimate of the mean.

Under the alternative hypothesis, &, for f = 1, - .. N, are approximately in-
dependent and complex-Gaussian distributed. Wahba (1968) and Hannan (1970)
provide asymptotic justification for these distributional properties. Thus, the
two hypotheses are distinguished by whether or not the spectral matrix varies
with frequency. For this reason, the test proposed is based on comparisons
among estimates of the spectral matrix at different frequencies.

The type of frequency variation to which the test is most sensitive is de-
termined by which estimates are compared. Let 0 < N, < N,_, < -+ < N,
and let

(2) Ak:Z}v;clEfEf*, k=0,1,...,m.

The test presented here compares 4, and 4, — 4, (k #+ 0) with 4,. As noted
above, this is analogous to the Kolmogorov-Smirnov test for the univariate
case. Under some circumstances such as a search for periodic components, a
different set of comparisons might be more appropriate.

As with the choice of frequency intervals, the choice of the method for com-
paring the estimates determines the alternatives to which the test is most sensitive.
At least four ways to compare two spectral matrices can be adapted from tests
for comparing covariance matrices (Pillai and Jayachandran (1968)). Let 4,,,
Ais - - +» A, De the eigenvalues of 4,74, in descending order. The test presented
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here is based on 1,,, the largest eigenvalue of 4,7'4,, and 1 — 2,,,, the largest
eigenvalue of 4,74, — 4,).

The test is now specified except for m, the number of simultaneous com-
parisons, N,(k = 1, - .., m), the divisions of the frequency band, and the critical
region for the eigenvalues 4, 4, - -+, 4,, and 2, 4,,, - - -, 4,,. The choice of
these parameters affects not only the effectiveness of the test but also the com-
putation of the distribution under the null hypothesis. The result derived in
the next section is exact but does not hold for all choices of these parameters.
Further, computation of the distribution is easier for some parameter values.
Section 4 discusses the choice of these parameters.

3. Distribution under the null hypothesis. Theorems 1 and 2 give the joint
density of 2,; for 1 <k < mand 1 < j < p and the joint distribution of 4,, and
A, for 1 < k < m. Khatri (1964) obtained this result for a single comparison,
m = 1. Both the density and the distribution are valid for only part of the
range of the eigenvalues. Nevertheless, these results are appropriate in most
cases since the probability that the eigenvalues will occur in this range increases
tolasN, — N, ,(0 <k <m—1)and N, increase.

THEOREM 1. Let N,, N, , — N, =p fork=1,-..,m. Let §(1 < f<N,)
be independent and complex-Gaussian distributed with zero means and identical second
moments. Let A, be defined by (2) and let the eigenvalues of A,~*A, in descending
order be Ay, Ay + - -5 Ay, Then, when A, = A,y for k=1, ..., m — 1, the
Jjoint density of the eigenvalues is

PAus =5 Any) = € [0 XZZ”_”(l — Ay)Nom M7}
(3) XTI {det [(Ays — Aggas,;)VE e}
X122 TG minn (A — 20)(Ami — Amj) 5

where
(N, — i

@ ew=TI% | bt ) .

F(Ny— N, —i+DI'\N,, —i+ Dl(p—i+ 1)

1
X I e} -
TN, = No)
Proor. The matrices 4,_; — A4, for k =1, ..., m and 4,, are independent

and complex-Wishart distributed with spectral matrix (2z)-'EX,X,’ (Hannan
(1970)). Khatri (1965) gives the Jacobian of the transformation
(%) B, = Ay "tA, A7, k=1,...,m.
The joint distribution of B,, k = 1, ..., m which is obtained is
P(Bl’ Bz’ Tt Bm)
©) _ T,(No)(det B,)*nr(det (I — B,))"o—"1-7
I (N )TN, — N)
= { (det (Bik - Bk+1))N"_N"+1_p} ,
Ly(Ni = Niy)
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where ' (N) is the complex multivariate gamma function,
(7) L (N) = 72022, T(N — i + 1).

Using the results in Khatri (1965), make the following sequence of transfor-
mations. For k = 1,2, ..., m, let A, = diag (4, A4a» - - +» 4,) and let U, be
unitary matrices. First, transform B, to U, A, U,* and then transform U,*B, U,
to B, for k =2, ..., m. Second, transform B, to U,A,U,* and then trans-
form U,*B,"U, to B,® for k=3, ..., m. Continue this until B,, ™" is transformed
to U, A, U,*. Finally, recalling that 2,, = 2,,,, integrate over U, to obtain

PRy -+ Ay) = cp(det A )V m=?(det (1 — A,))No=M1-rp
(8) X Tt | foip) (det (A, — UA,,, U)o =2(dU) }
L [T(Ne = Nipr — i 4+ DE(p — i + DTN, — Nyp)]
X T T1220 118 i01 (Aks — Ais)’ s
where (dU) is the invariant measure on the unitary group U(p) normalized to
make the total measure unity (James (1964)). Note that when 2,, < 4., the
range of integration of U is limited by the requirement that A, — UA,,, U* be

positive semidefinite.
The integrals over U are given by

) Vo [det (I — AUBU)]*"?(dU) = \Fy(—n + p; 4, B) ,
where A4 = diag (a,, - - -, a,), B = diag (8,, - - -, B,), and ,F, is a hypergeometric
function of matrix argument defined by James (1964). Khatri’s result (1970,
Lemma 3)
(10)  (det (a,~7) det (8,>~9)),Fy(—n + p; 4, B)
= (=1 L [T(p — i+ DI — i 4 1)/T(m)] det (1 — a; 8:)"")

completes the the proof.

THEOREM 2. If the conditions of Theorem 1 hold and if v, = u, = v,
Uy =+ o0 2V, = U,, then
(11) Pri{v, =2, - 4, >usk=1,...,m} = c,det (a;)
where
(12) a;; = 83} Sfig ce Slm (A — @)P~ (A — ay)P79R, m=?

X (1= )" TIRS (A — Apya) Ve Vet170dA,, - - - dAy

v

The constants o, and a, can be chosen arbitrarily.
Proor. The theorem follows from repeated application of Khatri’s result
(1969, 1970, Lemma 2)
(13) (o §wr ... (w1 det (a;(w,)) det (by(w;)) dw,, - - - dw,
= det ({; a,(y)bi(y) dy) -
First substitute
(14) a;(w;) = (Aps — ay)?~7
by(w)) = ZZZ"_p(l(m—l)j — Apg)Vm-17Vmt
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Next substitute

(15) a;(wy) = (Am-2; — Z(m—x)i)N"‘_rN"”_l_l
bi(wi) = S;),z ('lm - al)p_jl%m_p(z(m—l)i — zm)N"‘_l_N’m_l dlm .

The rest follows similarly.

Equation (12) is familiar. If @, = 0 and a, = 1, a,; is proportional to the
joint distribution of order statistics from the uniform distribution (David (1970)).
If @, = N, /N, and a, = N/N,, then an asymptotic approximation to a;; can be
derived as the asymptotic distribution of order statistics is derived (David (1970)).
This gives an asymptotic distribution for the largest and smallest eigenvalues.

4. Computations. If N, p, and the desired significance level are regarded as
given, then the parameters yet to be specified are m, N,, u,, and v, for k =
1, ..., m. The critical region is given by 2,; > v, and 4, < u,, k =1, --., m.
The computational methods presented by Durbin (1973) can be used to evaluate
a;; for any of the parameter values permitted by Theorems 1 and 2. However,
this section just presents an algorithm for a special case.

The case to be considered arises from the following. First, the computation
of a,; is simplified if

(16) Uy, = Vypyy k=1,...,m—1.
Second, since the population values of ,; are N,/N,, letting
(17) Ny — Ny = [No/(m + 1)]

Uy = Vyn = (N + Niyt)[2N, k=1,...,m—1

creates a nearly symmetrical critical region.

From the remaining parameters, the significance level depends most strongly
on m, the number of divisions. In fact, by the proper choice of m (and in some
cases, also N,,, u, and v,), a significance level near the desired one can be ob-
tained. Note that some large values of m that might be desired are prohibited
by the condition #, > v,,, introduced to allow computation of the significance
level.

The following formulas for a;; apply when v, = 1 and u,, = 0. They are easily

verified by integrating (12) by parts. Let
W=7, — U .
n= Ny, — N, for k=1,2,...,m—1

(18) e = (n — Dlfin — s+ r)!
iy = (No - N1 — ])' (1 —u >N0~N1-j+n-—r+1
TN =N ==+ I\ w

(anN_i :—{i—)!s)! (%)Nm_m '

If the n X n matrix (4,,) and the n-vectors (g,,) and (g,,) are denoted by H, G,

G2 =
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and G,, respectively, then q,; is given by

(19)

a,; = (—1)?79(n — 1)! who=i=i+1G *H™=G, .

As an example, consider 256 bivariate observations. For this case, p = 2 and
N, = 127, which by (17) implies that n = 31 and w = 31/127. When m = 3,
N, = 33, u,, = 0 and v, = 1, the significance level is 0.085.
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