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UNIFORM CONVERGENCE OF THE EMPIRICAL DISTRIBUTION
FUNCTION OVER CONVEX SETS!

By W. F. Eppy AND J. A. HARTIGAN

Yale University

The empirical distribution function P, converges with probability 1 to
a true distribution P in R¥, uniformly over measurable convex sets, if and
only if P is a countable mixture of distributions, each of which is carried
by a flat and gives zero probability to the relative boundaries of convex
sets included in the flat.

1. Introduction. If a density in R* has a convex contour containing proba-
bility «, the contour may be estimated from a sample by the boundary of the
convex polyhedron of minimum volume which contains a proportion a of the
sample points. The consistency of this estimate is shown by establishing that
the empirical distribution P, converges with probability 1 to the true distribution
P, uniformly over measurable convex sets.

The Glivenko-Cantelli theorem states that sup, |F,(x) — F(x)| — 0 with prob-
ability 1, where F is an arbitrary distribution and F, is the empirical distribution
function based on a sample of size n from F. Thus in one dimension, the em-
pirical distribution converges to F with probability one, uniformly over convex
sets. Ranga Rao (1962) has shown that in R*, the empirical distribution P,
converges to P with probability one, uniformly over measurable convex sets,
when the nonatomic component of P gives zero probability to the boundaries
of convex sets.

More generally, Billingsley and Topsge (1967) and Topsge (1967), define a
P-uniformity class 77 to be a class of measurable subsets of a separable metric
space such that sup,.,, |P,(4) — P(4)| — 0 whenever P, converges weakly to P.
(Weak convergence requires that P, (A4) — P(A4) whenever P(9A4) = 0 where 04
denotes the boundary of 4.) A class 7/ is shown to be a P-uniformity class if
and only if lim,_, sup,., P{x|p(x, 04) < 6} = 0, where p(x, 34) denotes the
minimum euclidean distance of x to points in d4. Thus the probability of a
strip about the boundary of each set 4 approaches zero uniformly in 7 as the
width of the strip approaches zero. If 7/ is the class of convex sets in R¥, the
condition reduces to P(d4) = 0 for 4e'Z/. Since the empirical distribution P,
converges weakly to P, with probability 1, it follows that with probability 1, P,
converges to P uniformly over convex sets when P gives zero probability to the
boundaries of convex sets; this is Ranga Rao’s condition for nonatomic P.
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The concept of P-uniformity is not quite appropriate for studying uniform con-
vergence of empirical distributions, since it is possible to have sup,.,, |P.(4) —
P(A)| — 0 when P, is the empirical distribution, without having the same con-
vergence for every P, which converges weakly to P. This paper shows that the
empirical distribution converges with probability one uniformly over measurable
convex subsets in R* if and only if P is a countable mixture of distributions,
each of which is carried by a flat, and assigns zero probability to the relative
boundary of every convex set contained in the flat. Thus a distribution uniform
over the boundary of a triangle will not satisfy the conditions of Ranga Rao’s
result, and the convex sets will not be P-uniform, yet the empirical distribution
converges uniformly. However a distribution uniform over the boundary of a
circle will not satisfy the conditions of the theorem, nor will the empirical dis-
tribution function converge uniformly, as may be seen by taking the convex hull
of the sample points which has P,-probability 1 and P-probability zero.

2. Uniform convergence over convex sets. Points x, y, z, ... will be in R¥,
the set of all k-tuples of real numbers. Euclidean distance [}] (x; — y;)’]* be-
tween x and y will be written p(x, y). The distance p(A4, B) between two non-
empty sets 4 and B is sup [sup,. , inf, . 5 p(x, y), sup,e 5 inf, , o(x, y)]. This dis-
tance is a pseudometric on the class of bounded sets, and a metric on the class
of compact sets. '

A p-dimensional flat is a set consisting of all points x, + 7, a,x, where x,,
Xy, + -+, X, are fixed and x,, - - -, x, are linearly independent. The dimensionality
of a set 4 is the dimensionality of the smallest flat F(A4) containing 4. A set C
isconvexifxeC,yeC=ax + (1 — a)yeC,0 < « < 1. The relative boundary
of Cis the set of points whose every neighbourhood intersects C and F(C) — C;
it will be denoted by 9, C.

Let P denote a probability distribution on R* and suppose X, - - -, X, denotes
a random sample from P. The empirical distribution P, gives probability 1/n to
each point X,, - -, X,.

LEMMA. Let Z denote a family of measurable subsets of a space S. Let P =
>, a, P, a, > 0, where P, P* are probability distributions on S, and let P,, P,* denote
empirical distributions of samples of size n from P and P* respectively.

Then sup,,.,, |P,(A)— P(A)| — O with probability 1, if and only if sup,.,, |P,(A)—

P(A)| — O with probability 1 for each i.
(The quantities sup,,.,, |P,(4) — P(4)| may not be random variables. Conver-
gence with probability 1 means sup,. ., |P,(4) — P(4)| £ U,, where U, is a ran-
dom variable, U, — 0 with probability 1.) This lemma is crucial in permitting
separate examination of uniform convergence on various components of P.

Proor. First assume that uniform convergence holds for the various com-
ponents P'. A sample X, ---, X, from P is a mixture of samples from P!, 1 <
i < oo, with k,; observations being from P* where k, is binomial with parameters
n, a;.
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Choose ¢ > 0 and let 7 be such that }},,; @, < e. Then

PA(A) = PA)| = | £ Pid) — TP

< Qi< i<I |P}%(A) — P(A)| + Dizr @i+ Zigr%

k.
= —ay
n

With probability 1, k/n— a;, Sup,e, |Pi(4) — P(4)| =0, for i < 1, and
Sliss ki/n — ia; @, Thus, with probability 1,

1im Sup, .., SUP, e, |Pa(4) — P(A)| = 2¢

Since ¢ > 0 is arbitrary, sup,.., |P,(4) — P(4)| — 0 with probability 1.

It will be sufficient to prove the converse for P = a,P* 4+ a,P*. The idea is
that failure of uniform convergence on P! means that for some ¢ > 0, |P,}(4,) —
PY(A,)| > 2¢/a, for a sequence of sets 4,,, 4, € Z/; some subsequence of A4, will
satisfy |P,X(4,) — P*(4,)| < ¢/ay; thus |P,(4,) — P(A,)| > ¢ on this subsequence
and P fails to converge uniformly.

Let P° be the distribution P(1) = a,, P°(2) = a,. The probability space {s5,

Bi, Q'} is the space of the infinite sequence of observations X7, X;’, A, S
from Pi. A sample point in S’ will be denoted by w' = {x/%, x5 - -+, x5 -+ ).
The product space of {S*, B, Q'} for i =0, 1,2 is denoted by {S*, B*, 0*}. A
sequence of observations X;, - - -, X,, --- from P is generated on this product

space by mixing observations from P! and P? according to the mixing proba-
bilities P°; explicitly
X, (w°, wh, ) = (2 — x,0)x; + (x> — Dxa_;,

where j, is the number of times 1 occurs in x,’, - - -, x,". Thus for example X, = x;'
if x = 1and X, = x?if x," = 2, and so X, is sampled from P = &, P + a,P".

Let Q! be the set of points w' such that for some sequence of sets 4, € 7%,
|P,}(A,) — PY(A,)| > ¢ infinitely often. In terms of the observations X, - .-, X,
from P, for w'e Q!, the event |P} (4; ) — P'(4; )| > ¢ occurs infinitely often.
Let Q° = {W°]|j./n — a,| < }ea;’ for > N}and choose N(w,) so that Q°(Q°) = 1.
Let Q¥(w?, w') be a set of points w* such that |P;,_; (4;,) — P*(4; I < dea; on a
subsequence of the sets A; where |P} (4; ) — P(4; J > e Fora particular j,,
|Ph_; (4;,) — PH(4;) < —eal with probablhty at least 1 — 1/[éa*(n — j,)] by
Chebyshev so by suitable selection of a subsequence of the 4; , QQ*(w’, w)]=1.

For w'e Q, w'ec Q°, w? e Q¥w°, w'), there is a subsequence of {n}, depending
on w°, w', w?, such that

1P(4;,) — P(4;)
Iy (4;) — o P(4;) + (1= L) Pos (4,) = @ Py,

e
n

Il

v

P (4;,) — P(4;)| — ol Phj (4;,) — P(4;) —

> ae — (1 — a)dea; — fea® = dea, .
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Since sup,.,, |P,(4) — P(A)] — 0 with probability 1, Q*[w'e Q', w'e Q°, w’¢
Q(w®, w")] = 0. The set Q*(w®, w') has Q[w*e Q*(w°, w')] = 1 for each (w°, w').
Thus by Fubini’s theorem, the set {(w°, w!, w’) | w* € Q*(w®, w')} has Q*[w* e Q*(w’,
wh] = 1. Also Q*(Q%) = Q°%Q°) = 1. Thus 0*(Q") = Q(Q") = 0, showing uni-
form convergence of P! to P' as required.

THEOREM. Let & denote the family of measurable convex subsets of R*. Then
lim,_, sup;... |P,(C) — P(C)| = O if and only if P is a countable mixture of dis-
tributions, each of which is carried by a flat, and assigns zero probability to the
relative boundary of every convex set contained in the flat.

Proor. First assume that relative boundaries of convex sets have zero prob-
ability. Choose ¢ > 0 and find a closed ball S such that P(S) > 1 — e.

For each convex set C included in S, define N,(C) = {4| 4 convex, p(4, C) <
d}. If 4 e Ny(C), and C has dimension k, then 0,C = dC and 4 A C C {x]p(x,
0C) < d} = B,(C), say. Sincelim, , B,(C) = 0,C, lim, , P[B,(C)] = 0. Choose
d(C) for each C so that B(C) = B,(C) satisfies P(B(C)) < e. If C has dimension
less than k, its closure C* is a subset of a relative boundary and P(C*) = 0.
Also 4 A C C {x]p(x, C) < 6} = B,(C) where lim, , B,(C) = C*. Thus choose
o0 small so that B(C) = B,(C) satisfies P(B(C)) < e.

For each sample sequence w = x;, --+, x,, --- choose M(C, w) so that
|P.(C) — P(C)| < ¢ and P,(B(C)) < 2¢ for all n > M(C, w). The strong law of
large numbers guarantees M(C, w) < oo except for w e Q, P(Q) = 0.

The Blaschke selection theorem (Eggleston, 1958, page 59) states that the class
of convex sets included in S is compact under the pseudometric po. The family
of open sets N, ,(C) includes all convex sets inside S, and so all convex sets are
included in a finite subfamily N, ,(C;) = N;, 1 <i < p. For CeN,

[P.(C) — P(C)] = |Pu(C)) — P(C)| + P(C A C) + PICAC

= [Pu(C) — P(C)| + P.[B(C)] + PLB(C)]
< 4e for n> M(C;, w).

Thus sup,.s|P,(C) — P(C)| £ 4¢ for n > max, M(C,, w), where M,(w)=
max; M(C,, w) is finite except on a set of measure zero.

Choose M,(w) so that P (§) > 1 — 2e.

Then sup, |P,(C) — P(C)| < 7e for n > My(w), Myw).

Since this is true for every ¢ > 0, sup, |P,(C) — P(C)| — 0 with probability 1,
as has already been proven by Ranga Rao (1962). If P satisfies the conditions
of the theorem, the above convergence occurs for every component of the mix-
ture, and so it occurs for P by the lemma.

Now consider P not satisfying the conditions of the theorem. Let {P,} denote
the one point distributions carried by the atoms of P, and choose «,; so that
P — 3 a, P, has no atoms. Let {P,,} denote the distributions carried by 1-di-
mensional flats to which P — 37 a,, P, gives positive measure, and choose «a,, so
that P — 7 a, P;, — 3 a,, P, gives zero measure to every l-dimensional flat.
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Continuing in this way, Py, = P — 3%, 3} a,; P,; gives zero measure to all
(k — 1)-dimensional flats, and P,; is a distribution carried by a (j — 1)-dimen-
sional flat which gives zero probability to all (j — 2)-dimensional flats. Since
P does not satisfy the conditions of the theorem, some P,;,, gives positive prob-
ability to the relative boundary d,C of a convex set C of dimension j, lying in
the flat F carrying P,;,,. Necessarily j > 0, because convex sets of dimension
0 are points with null relative boundaries. Let T be the set of points in 9,C
which belong to no P-positive flat of less than j dimensions. Since P,;,, gives
zero probability to the excluded flats, P;;,,(T) > 0. Thus T is a subset of the
relative boundary of C, of positive probability a, such that every (j — 1)-di-
mensional subset of T has zero probability. It may be assumed that T < C. Set
P = aP' + (1 — a)P* where P is carried by T. Let X, ---, X, be observations
from P! and let C, be their convex hull; then C, — C. Since C, contains X, - - -,
X,, P,XC,) = 1.

If C, has dimensionality less than j, PY(C,) = 0 by assumption. If C, has di-
mensionality j, then F must be the minimal flat containing C,. If xeC, — 9,C,,
then x has a neighbourhood which does not intersect F — C, and so does not
intersect F—Cc F—-C,. Thus C,—-9,C,cC-4,C, P(C,—9,C,) <
P(C — 4,C) = 0. Also 9,C, is the union of a finite number of (j — 1) dimen-
sional sets, so that P'(0,C,) = 0. It follows that P'(C,) = 0 whether C, has di-
mensionality equal to j or less than j.

Thus P,'(C) does not converge with probability one to PY(C) uniformly over
convex sets C, and from the lemma, P,(C) does not converge with probability
one uniformly to P(C).

3. Acknowledgment. We are indebted to a referee who pointed out an error
in the original statement and proof of the theorem, and to David Pollard for
helping with the lemma.
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