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AN ORDERING THEOREM FOR CONDITIONALLY INDEPENDENT
AND IDENTICALLY DISTRIBUTED RANDOM VARIABLES

By Y. L. ToneG
University of Nebraska

Let a and b be r-dimensional real vectors. It is shown that if a major-
izes b, then E(TIj-, X;%5) = E(II}~, X;*) holds for nonnegative random
variables X, ---, X, whose joint pdf is permutation symmetric. If in ad-
dition the components of a, b are nonnegative integers, then for every
Borel-measurable set 4,

521 PINGE, {Zi e A)] 2 T15-, PINYE, {Zi e A)]

holds for conditionally i.i.d. random variables Z;. Applications are con-
sidered.

1. A moment inequality. For fixed positive integer » = 2 and a real number
k let

(1.1) a=(a, - --,a,), b= (b, --,0,)

be two real vectors such that }7_ a; = >7_,b; = k. It is understood that
“a > b” means “a majorizes b” or equivalently, “b is majorized by a” (for defi-
nition, see [2], page 45). Let X|, ---, X, have a joint pdf f = f(x,, - - -, x,), and
let us define a(a) = E(]]%-, X;%). All moments under consideration are assumed
to be finite.

THEOREM 1. Assume that P[5, {X; = 0}] = 1 and f is permutation symmetric.
If a > b, then a(a) = a(b).

Proor. By Muirhead’s theorem (see Corollary 2 of [6]), for every w in the
sample space the inequality

(1.2) 2o (e X2(@)) Z 3 ([ XE5 (@)
holds, where the summations are taken over all L = (/,, -- -, l,)’, the permuta-
tions of {1, ..., r}. The conclusion follows by taking expections on both sides
of (1.2) and by the symmetric property of f. -

ReMARKs. (1) It should be noted that in the above theorem a; and b; need
not be nonnegative. (2) The conclusion of the theorem can be written as

(1.3) H;=1 Ha; g = Py

in the special case where g, is the mth moment of a nonnegative random vari-
able X (4, = 1). Particular cases of this inequality inciude the well-known in-
equalities g, = %, ¢, = py_ tt for m e (0, k). It is also immediate that z,_,, s,
is nonincreasing in m ¢ [0, k/2].
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2. An ordering theorem. For fixed k, let Z,, - . ., Z, be g-dimensional random
vectors (¢ = 1) with a joint distribution of the form

(2.1 G =Gz 2) = § (ITkoy F(22)) dA(F)

where F is a cdf and 1 is a probability measure. (G is a mixture of distributions
of i.i.d. random variables.) In case ¢ = 1, Dykstra, Hewett and Thompson [1]
call Z,, ..., Z, “conditionally i.i.d.” and Shaked [8] calls Z,, . . -, Z, “positively
dependent by mixture.” Note that if an infinite sequence of random variables
Z,, Z,, - - - are exchangeable (according to the definition given in [4], page 364),
then any finite subset {le, e, Z,k} of Z,, Z,, - - - are conditionally i.i.d.; this
follows because “the concept of exchangeability is equivalent to that of condi-
tional independence with common cdf” ([4], page 365).
Now for given a and a Borel-measurable set 4 in R? consider

(2.2) (@) = II5=1 § [(§4 dF)*i] dA(F) .
In the special case when the a;’s are nonnegative integers, the r.h.s. of (2.2)
reduces to T[j, P[%: {Z: € 4}] = Bi(a) (say).

THEOREM 2. Ifa > b, then 8,(a) = B,(b) holds for every Borel-measurable set A.
In particular, if a > b and Z,, - .., Z, are conditionally i.i.d., then B,(a) = B,(b)
holds for every Borel-measurable set A.

Proor. The proof follows immediately from (1.3) with
= § [(§4 dF)"] dA(F) .

REMARK. Special cases of Theorem 2 include the known inequalities
PNk, {Z; € A}] = (P[Z, € A])*, which was given in [1]; and

(2.3)  PlNi{Zie Al 2z PN {Zie 4] - PN {Zie 4)]  for m < k,

which follows from an inequality of Kimball [3]. Also, it follows that the r.h.s.
of (2.3) is nonincreasing in m for m < k/2.

We now consider a special form of Theorem 2 which we find useful in appli-
cations. Let X, ..., X, be i.i.d. s,-dimensional random variables, Y, ..., Y,
be i.i.d. s,-dimensional random variables and the X’s and the Y,’s are inde-
pendent. Let g: R“1*2 — R? be a Borel-measurable real-valued function. For

fixed a with integer components, let 4, =0 and

h; = 3 a; for j=1,..-,r.
We define, fori =1, ..., k,
(2.4) Vi=9(X,, Y;) for A +1ZiZh;.
Here the random variables V7, - . -, V, are obtained in such a way that the first

a, of them depend on different X;’s and on the same Y;, the next a, of them de-
pend on different X;’s and on the same Y,, etc. For a given Borel-measurable
set 4 in R? let us denote y(a) = P[Ni, {V. e 4}] = [}, P[ﬂ{‘:i,,j_1+1 {V;e A}].
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If follows from Theorem 2 that if a > b, then y(a) = 7(b). This result covers a
recent theorem of Sidak [9] as a special case.

3. Applications. In this section we give several examples of the applications
of the results obtained in Section 2.

(a) An application to multiple decision problems. In a multiple comparison
problem one wishes to compare k experimental populations with the same con-
trol simultaneously. In a ranking and selection problem one wishes to select
the population associated with the largest parameter. It can be shown that in
such problems the probability of correct decision under the slippage configura-
tion can be expressed in the form given in (2.1). (Perhaps the most familiar
form is (=, ®*~Ycz 4 d) d®(z), where ¢ > 0, d > 0 and @ is the standard nor-
mal cdf.) Hence results obtained in Section 2 applies to such problems.

(b) Applications to probability inequalities of multivariate distributions. For s, =
s, = q let the g function in (2.4) be g(x, y) = x + y, and let V = (V,, - -+, V})".
If a > b, then for every ¢ < d the inequality

3.1 PINisfe < Vi<d}] 2 PN {e < Vi< d}]
holds. This particular g function has applications to several special multivariate
distributions ((i)—(iii)):

(i) Multivariate normal. 1f the X,’s are i.i.d. normal variables and the Y,’s
are i.i.d. normal variables, then V has a multivariate normal distribution and
(3.1) holds. This implies the following result: let V. = (¥}, ---, V) and W =
(W, -+, W,) be two multivariate normal variables with a common mean vector
and covariance matrices £, and X, respectively, where £, = (R;;), £, = (S;;/),
R;;, = 8;;, =0forj=#j, R;;is (a; X a;), S;; is (b; X b;), and the elements of
R;; and S;; are 1 on the diagonal and p (0 = 0) otherwise. If a > b, then for
every ¢ < d the inequality

(32) P[Nic{e < Vi <d}] 2 P[Niafe < W < d}]
holds.

(ii) Multivariate Poisson. If the X;’s and the Y,’s are independent Poisson
variables with parameters 1, and 4,, respectively, then V has a multivariate
Poisson distribution and (3.1) holds.

(iii) Multivariate Gamma. 1f the X;’s and the Y,’s are independent Gamma
variables with a common scale pararﬁeter, then V has a multivariate Gamma
distribution and (3.1) holds.

(iv) Multivariate t. Let V have a multivariate normal distribution with mean
vector 0, variances one and correlation matrix X; let S be independent of V and
vS? have a y*-distribution with df v. Then t = (¢, ..., t,) has a multivariate ¢
distribution with parametersv and X, where 1, = V,/S (i =1, - -+, k). Consider
two multivariate ¢ variables t and u with parameters v, ¥, and v, I, respec-
tively. If X, and X, have the structures described in (i) and if a > b, then
(3.2) holds with ¥V, and W, replaced by ¢, and u,, respectively.
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(V) Multivariate exponential. Let the X;’s and Y,;’s be independent negative
exponential variables with parameters 4, and 4, respectively. If the g function
is g(x, y) = min (x, y), then V has a multivariate exponential distribution and
(3.1) holds.

4. Acknowledgments. I wish to thank Professor A. W. Marshall and a referee
for their helpful comments and suggestions.

(1
(2]
131

(4]
[3]

[6]
(7
(8]
[

(10]

REFERENCES

DyksTrA, R. L., HEWETT, J. E. and THOMPSON, W. A, JR. (1973). Events which are almost
independent. Ann. Statist. 1 674-681.

Harpy, G. H., LitTTLEWOOD, J. E. and POLYA, G. (1959). Inequalities (2nd ed.). Cambridge
Univ. Press.

KiMBALL, A. W. (1951). On dependent tests of significance in the analysis of variance. Ann.
Math. Statist. 22 600-602.

LoEVE, M. (1963). Probability Theory (3rd ed.). Van Nostrand, Princeton.

MARSHALL, A. W. and OLKIN, 1. (1974). Majorization in multivariate distributions. Ann.
Statist. 2 1189-1200.

MARSHALL, A. W. and PROSCHAN, F. (1965). An inequality for convex functions involving
majorization. J. Math. Anal. Appl. 12 87-90.

ProscHAN, F. and SETHURAMAN, J. (1977). Schur functions in statistics. I. The preserva-
tion theorem. Ann. Statist. 5 256-262.

SHAKED, M. (1975). A concept of positive dependence for exchangeable random varijables.
Technical report, Dept. of Statistics, Univ. of Rochester.

§1DAK, Z.(1973). A chain of inequalities for some types of multivariate distributions, with
nine special cases. Apl. Mat. 18 110-118.

Tong, Y. L. (1970). Some probability inequalities of multivariate normal and multivariate
t. J. Amer. Statist. Assoc. 65 1243-1247.

DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF NEBRASKA
LiNcOLN, NEBRASKA 68588



