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SCHUR FUNCTIONS IN STATISTICS
II. STOCHASTIC MAJORIZATION!

By S. E. Nevius, F. PROSCHAN AND J. SETHURAMAN
Florida State University

This is Part IT of a two-part paper. The main purpose of this two-part
paper is (a) to develop new concepts and techniques in the theory of majori-
zation and Schur functions, and (b) to obtain fruitful applications in
probability and statistics. In Part II we introduce a stochastic version of
majorization, develop its properties, and obtain multivariate applications
of both the preservation theorem of Part I and the new notion of stochastic
majorization. This leads to a definition of Schur families of multivariate
distributions. Generalizations are obtained of earlier results of Olkin and
of Wong and Yue; in addition, new results are obtained for the multinomial,
multivariate negative binomial, multivariate hypergeometric, Dirichlet,
negative multivariate hypergeometric, and multivariate logarithmic series
distributions.

1. Introduction and summary. In Part I we derived a basic theorem concern-
ing the preservation of a Schur function under certain integral transformations.
(Definitions, notation, and conventions of Part IT are as in Part I and will gener-
ally not be repeated.) In Part IT we introduce a stochastic version of majorization,
develop its properties, and obtain multivariate applications of both the preser-
vation theorem of Part I and the new notion of stochastic majorization.

2. Stochastic majorization: definition and characterizations. Throughout the
paper, let X and X’ be random vectors taking values in R,, and let P and P’ be
the probability measures on the Borel subsets of R, generated by X and X’
respectively.

DEFINITIONS.

(1) A random vector X stochastically majorizes a random vector X' if f(X) =*
f(X’) for every Borel measurable Schur-convex function f on R,; in symbols,
X >stm. X’.

(2) Probability measure P stochastically majorizes probability measure P’ if
X =stm X'; in symbols P =5t P/,

Notice that Definition (1) is a stochastic analogue of a characterization of
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deterministic majorization, namely that x =™ x’ if and only if f(x) = f(x’) for
every Schur-convex function f.

Although several stochastic analogues of other versions of the definition of
majorization in the deterministic case are possible, we will see later on in this
section that they are not all equivalent. The definition given above will be seen
to have advantages over the alternative definitions.

This section is devoted to the characterization of stochastic majorization and
the study of some of its consequences.

LemMa 2.1, Let X =™ X'. Let S = Y1 X,and §' = Y2 X Then S =*§'.

Proor. Notice that both s(x) = Y7 x; and —s(x) are Schur-convex. Thus
S >8" and § <¢S’. Hence S ==*S§". [J

DEFINITION. A subset 4 of R, is said to be Schur-convex (Schur-concave) if
the indicator function 7,(x) is Schur-convex (Schur-concave).

THEOREM 2.2. The following statements are equivalent:
(i) X ==X
(i) Ef(X) = Ef(X') for every Schur-convex function f for which both these ex-
pectations exist.

(ili) Ef(X) = Ef(X’) for every bounded Schur-convex function f.

(iv) P(A) = P'(A) for all measurable Schur-convex sets.

Proor. The implications (i) = (ii) = (iii) = (iv) are trivial. The implication
(iv) implies (ii) follows from the fact that if f is Schur-convex and Ef(X) and
Ef(X') exist, then f(X) (f(X’)) may be approximated in the L,(P) (L(P')) norm
by a positive linear combination of indicator functions of Schur-convex sets.
This is a consequence of the fact that for any ¢, {x: f(x) > t} is a Schur-convex
set. Finally, the implication (i) = (i) follows from the fact that a nondecreasing
function of a Schur-convex function is Schur-convex. []

For any point X = (X, - -+, X,) in R,, define x;; = .-+ = xg, to be a non-
increasing rearrangement of x, -« -, x, and define the map T from R, into R,
by T(X) = (y1» *+*» V) Where y; = Y5 Xy, i =1, .-+, n. Thatis, T yields
the partial sums of the reverse order statistics of x;, -+, x,. Let TR, =C. We
say that a function ¢ defined on C is nondecreasing for each fixed nth coordinate
if y, = /s vy Yuor = Vaor Yu =y, implies g(y) = g(¥’). Let &A{n) denote the
class of all such functions g which are Borel measurable and which are nonde-
creasing for each fixed nth coordinate, i.e., which are nondecreasing in each of
the first n — 1 coordinates separately.

The following characterization of Schur-convex functions will prove useful in
the characterization of stochastic majorization developed in Theorem 2.4 below.

LEMMA 2.3. For any permutation invariant function f on R,, define the function
g on C by putting g(y) = f(X) whenever y = TX. This defines a 1-1 correspondence,
f > g, between permutation invariant functions on R, and functions on C. Moreover,
f is Schur-convex if and only if g is nondecreasing for each fixed nth coordinate.
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Proor. The first statement is straightforward. The second statement is an
immediate consequence of the fact that x >™ x’ if and only if y, = y/, - --
Va1 = Yooty Vo = Y, wherey = Tx and y’ = Tx'. ]

b

DEerINITION. Let Y and Y’ be random vectors taking values in C. We say
that Y is stochastically larger than Y’ for each fixed nth coordinate if g(Y) =" g(Y')
for each g in A(n); in symbols, Y =Y’ for each fixed nth coordinate.

DerINITION. The random vector X is said to be stochastically larger than the

random vector X’ if f(X) =* f(X’) for all nondecreasing functions f; we write
X ==X

THEOREM 2.4. Let X and X’ be random vectors in R,. Set Y = TX and Y' =
TX'. Then X =™ X' if and only if Y =**Y’ for each fixed nth coordinate.

Proor. This theorem is an immediate consequence of Lemma 2.3. O
COROLLARY 2.5. Let X =™ X’andletY = TX, Y = TX'. ThenY ==*Y'.

COROLLARY 2.6. Let X =™ X', Y =TX, and Y = TX'. Then Y, =*
Yl,s cr Yn—l 2“ Y;L—l’ and Yn =8t Yn,'

COROLLARY 2.7. Let X == X’ and X’ =" X. Let X; = (Xp -+ 5 X1a))
and X' 1 = (X[, - - -, X{,)) be the vectors of the reverse order statistics of X and
X', respectively. Then X ; =5 X[ ;.

Proor. LetY = 7Xand Y’ = 7X'. From Corollary2.5,Y >*Y'and Y’ =*
Y. Thus Y ==Y and X; ; =X/ ;. [J

It can be easily seen that we cannor have the conclusion X =** X’ in Corollary
2.6; for instance, let P[X = (1,0)] = 1, and P[X’ = (1,0)] = P[X' = (0, )] = }.

COUNTEREXAMPLE TO CONVERSES OF COROLLARIES 2.5 AND 2.6. Put P[X =
(4,2)]=PX=03,1)]=1% and P[X' = (4,0)] = P[X' =(3,3)] = 4. Then
Y, =Y/ and Y, =Y/, however X =+ X’ and X’ =™ X are both false.
This example appears in Marshall and Olkin (forthcoming).

The following statement is equivalent to the definition of majorization in the
deterministic case.

EQUIVALENT DEFINITION. A vector X majorizes a vector X' if x >™ z for every
z such that x’ =™ z.

A stochastic analogue of this definition (see below) will be shown to be not
equivalent to our definition of stochastic majorization. The converse to Corol-
lary 2.8 is false (via counterexample).

COROLLARY 2.8. Let X =™ X', Then foreveryz, P[X 2™ z] = P[X' =™ z].

Proor. The corollary follows from Theorem 2.2 (iv) and the fact that
{x:x =™z} is a Schur-convex set. [J

Next we present a characterization of stochastic majorization which will
prove to be very fruitful for producing the applications of Section 4.
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THEOREM 2.9. Let X and X' be two random vectors, S = Y ,* X;, and S’ =
S* X/, Then X =s+™ X' if and only if (a) S =°*S" and (b) for each bounded

Schur-convex function f, E(f(X)|S = s) = E(f(X")|S" = s) for all se A;, where
A, satisfies P[Se A;] = 1.

Proor. First let X == X’. Then (a) follows from Lemma 2.1.

To prove (b), consider the function g(x) = f(x)I(s € A), where f is bounded
Schur-convex, s = >.? x;, A is a Borel set in R,, and I(se A) = 1 if s€ 4 and
= 0 otherwise. Then g is a Schur-convex function. Thus E[ f(X)/(Se A)] =
E[ f(X")I(S’ € A)] for each Borel set 4 in R,. Since §=°'5, it follows that
E[f(X)|S = s] = E[f(X')|§" = s] for each s e 4, satisfying P[Se 4,] = 1.

The converse follows simply by unconditioning using the common distri-
bution of S and S’. [J

As the notation indicates, the set 4., in general, depends on the particular
Schur function f. However, in many applications this is no disadvantage since
one often wishes to establish an inequality for one single Schur function at a
time and the conclusion of Theorem 2.9 is strong enough for this purpose.

If the A, appearing in Theorem 2.9 could be chosen to be independent of f,
then we could claim that the conditional distribution of X given § = s stochas-
tically majorizes the conditional distribution of X’ given S’ = s for almost all
s with respect to the common distribution of § and §’. This, of course, would
be a stronger and neater conclusion than that of Theorem 2.9. This stronger
version will be established below in Corollary 2.10 when X and X’ have discrete
distributions. The dependence of A4, on f in Theorem 2.9 can be eliminated if
the class of Schur-convex functions needed to check stochastic majorization can
be reduced to a countable class of functions. The following conjecture expresses
this idea in terms of Schur-convex sets.

CoNJECTURE. There exists a countable collection &2 of Schur-convex sets
such that for any Schur-convex set F, any ¢ > 0, and any probability measure
u, there is a member D = D(F, p, ¢) of & such that p[(F n D°) U (D N F°)] < e.

By relating Schur-convex sets to increasing sets and using the discussion fol-
lowing Lemma 2 in Blum (1955), we have been able to show that a countable
class & of Schur-convex sets as mentioned in the above conjecture exists that
can be used for all absolutely continuous.and all discrete probability measures .
Since this represents only a partial answer, we do not present these results here.

CoroLLARY 2.10. Let X and X' be random vectors. Let S = Y1 X, and S’ =
2.v X/, where the distribution of S is discrete. Finally, let K = {s: P[S = s] > 0}.
Then X =™ X' if and only if (a) S =** S’ and (b) the conditional distribution of
X given S = s stochastically majorizes the conditional distribution of X' given S’ =
s for each s in K.

Proor. The proof is immediate from Theorem 2.9 since the A4, appearing in
Theorem 2.9 must include K. []
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Note that Corollary 2.10 yields a stronger conclusion than does Theorem 2.9
under the assumption that S has a discrete distribution.

3. Preservation of stochastic majorization under operations. The extent of
applicability of our new notion of stochastic majorization is dependent on the
degree to which it is preserved under various standard mathematical, proba-
bilistic, and statistical operations. In this section we display operations which
preserve stochastic majorization.

First we show that stochastic majorization is preserved under mixtures of
distributions.

THEOREM 3.1. Let X and X' be two random vectors and let U be a random vari-
able such that the conditional distribution of X given U = u stochastically majorizes
the conditional distribution of X' given U = u for each u. Then X =®™ X/,

Proor. Let g(x) be a bounded Schur-convex function. Then by Theorem
2.2, Eg(X) = EEg(X|U) = EEg(X"|U) = Eg(X"). Again by Theorem 2.2,
X >stm X/, 0

Next, we show that stochastic majorization is preserved under a normali-
zation operation. The result will be used to generate a number of applications
in Section 4.

THEOREM 3.2. Let X == X' and f be a Borel-measurable function on R,.
Then

AZr X)X == (3 X)X .

Proor. The result follows from the fact that if g(x) is a Schur-convex function
of x, then so is g( f(X7 x,)x). [

The most important and useful operation which preserves stochastic majori-
zation is presented in the following theorem.

THEOREM 3.3 (Preservation Theorem). Let X, have density ¢(2;, x) with respect
to Lebesgue measure or to counting measure. Let ¢(2, x) = 0 for x < 0 and let
#(4, x) be TP, for 0 < 2 < oo, x = 0 and satisfy the semigroup property for 0 <
A< oo, Let X, = (X11> e, in) be a random vector of independent components.
Then A =™ A implies that X, =™ X,,.

Proor. The result follows directly from Theorem 1.1 of Part I and Theorem
2.2 above. (]

Thus a deterministic property (majorization) of the parameter vector 4 is
transformed into a corresponding stochastic property (stochastic majorization)
of the random vector X,. This leads to the definition of Schur families of
random vectors and of multivariate distributions.

DEFINITION. Let X, be a random vector with distribution P, in R* indexed
by a parameter vector 4 in R*. The family {X,} of random vectors and the
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corresponding family {P,} of multivariate distributions are said to form Schur
families in 2 if A =™ A’ implies X, =™ X,,.

Theorem 3.3 shows how to obtain Schur families of multivariate distributions.
We exploit this theorem in Section 4.

An immediate corollary of Theorem 3.3 is an application to stochastic
processes.

COROLLARY 3.4. Let {X(t), 0 < t < oo} be a stochastic process with stationary,
independent, and nonnegative increments. Let the density ¢(2, x) of X(t + 2) — X(¢),
with respect to Lebesgue measure or counting measure, be TP, in 2 > 0 and x = 0.
Let 0=, <, - Zt,=T,0=t/t/<L .- Z¢t,) =T, A, =t —t,_y,
and 2! =t —t._,i=1,...,n. Then 2 =™ A implies

(X(t) — X(t5), - - -5 X(tn) — X(t4-1))
2 (X)) — X(8), - X(8) — X(2,20) -

Proor. Note that the semigroup property holds because the increments are
stationary and independent. The result follows by an application of Theorem

3.3. 0.

The next theorem shows that stochastic majorization is preserved after an
introduction of prior distributions if there is stochastic majorization among the
prior distributions.

THEOREM 3.5. Let {X,} be a Schur family in 2. Let G, G, be two probability
measures on R, such that G, Z*"™ G,. Let Q(A) = {5, P(X, € A) dG(2) for all
Borel sets Ain R,, i = 1,2. Then Q, =™ Q,.

Proor. Let g(x) be a bounded Schur-convex function. Then,

§ 9(x) dOy(x) = § E[9(X,)]dG,(2) = | E[9(X,)] dGy(Z) = § g(X) dQy(X)
since E[g(X,)] is a Schur-convex function of 2. Thus Q, =™ Q,. []

One further preservation theorem will be useful in applications. The follow-
ing easy theorem considers preservation of stochastic majorization under a
limiting operation and is presented here without proof.

THEOREM 3.6. Let {X,} and {X,'} be sequences of random vectors such that
X, ==X, forn=1,2, ..., Suppose X, — X and X, — X' in the sense that
Ef(X,) — Ef(X) for all bounded measurable functions f. Then X == X',

4. Applications of stochastic majorization. In this section we present appli-
cations of the new notion of stochastic majorization to obtain general inequalities
for a wide variety of standard multivariate distributions.

APPLICATION 4.1. Let X, = (X,, - - -, X, ) be a random vector of independent
components, where Xli’ i=1, ..., n, has a density of the form given in (a), (b), or
(c) below. Then the family of random vectors {X;} is a Schur family in 2.
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(a) Poisson. ¢(2, x) = (20)*e~*|x!, x = 0,1, ..., 2> 0, and fixed § > 0.

(b) Binomial. ¢(1, x) = (¢)p*(1 — p)**, x=0,1,...,,2=1,2, ...; and
fixed p with 0 < p < 1. ‘

(c) Gamma. ¢(2, x) = (0*x*-Y/['(2))e"*, x = 0, 2 > 0, and fixed 6 > 0.

Proor. The result follows from Theorem 3.3 by noting that ¢ is TP, and
satisfies the semigroup property in each case (a), (b), and (c). []

Application 4.1 may be used to obtain stochastic majorization comparisons
for the multinomial, multivariate negative binomial, multivariate hypergeo-
metric, multivariate negative hypergeometric, Dirichlet and multivariate loga-
rithmic series distributions by using the preservation results of Section 3. The
following summarizes these stochastic majorization comparisons.

APPLICATION 4.2. Let Y, = (Y, ,, -+, Y, ,) have any one of the distributions
specified in (a), (b), (c), (d), (e), or (f) below. Then the family of random vectors
{Y.} is a Schur family in A.

(a) Multinomial. f,(y) = N! T[], (4¢/y;!), wherey, = 0,1, .. .,n, 337, y, =
N; 21>0,i= 1, ..., n, ZZ;!Z,;: 1.

(b) Multivariate negative binomial.

fiy) = TN LBy A1 gy, 2gr-stean
I'(N) yi!

where y, =0,1, ...,i=1,...,n;2,>0,i=1,..-,n, N> 0.

(c) Multivariate hypergeometric.

()

Ji
=)
N

where y,, - - -, y, are integers satisfying0 < y, < A,i=1,..-,n,and 337y, = N,
O NZ Y12, and Ay, - - -, A, are positive integers.

(d) Dirichlet. Y, =*(1/X1 X;)X,, where X, = (X,, - -+, X, ) is a vector of
independent gamma random variables as in Application 4.1 (c).

(e) Negative multivariate hypergeometric.

fi(y) =

NIT(Sn, 4)) L(y; + 45)
fy) = At i R
’ A TN+ X352) T T(y)
where y; = 0,1, --+, N, 31, p; =N, 4, >0,i=1, .-, n

(f) Multivariate logarithmic series.

(Zz lyl - 1)'
S = 10 (T T 5 4

where y, = 0,1, ..., i>0,t:1,---,n,andZ;‘=,yi>0.,

( + 2 A)T Eimiti

Proor.
(a) This application follows from Applications 4.1 (a), Corollary 2.10, and
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the fact that the multinomial distribution is the conditional distribution of in-
dependent Poisson random variables given their sum.

(b) This application follows from Application 4.1 (a), Theorem 3.1, and the
fact that the multivariate negative binomial distribution is a mixture of inde-
pendent Poisson random variables under a gamma distribution (Johnson and
Kotz (1969), page 293).

(c) This application follows from Corollary 2.10 and the fact that the multi-
variate hypergeometric distribution is the conditional distribution of independent
binomials given their sum.

(d) This application follows from Application 4.1 (c) and Theorem 3.2.

(e) This application follows from (a), Theorem 3.5, and the fact that a mix-
ture of a multinomial distribution with a Dirichlet distribution for the parameter
vector 4 is a multivariate negative hypergeometric distribution (Johnson and
Kotz (1969), page 309).

(f) The multivariate logarithmic series distribution is the limit of the con-
ditional distribution of a multivariate negative binomial given that the sum is
positive as the parameter N goes to zero (Johnson and Kotz (1969), page 302).
Application (f) follows from this fact, Application 4.2 (b) above, and Theorem
3.6. [

We may use Application 4.2 to prove a generalized version of Lemma 1.2 of
Part 1.

APPLICATION 4.3. Let Y, have any one of the densities specified in 4.2 (a), (b),
(€), (e), or (f). Let Z, be the number of zero components of the vector Y,. Then
A= 2 implies Z, 2% Z,,.

Proor. The desired conclusion follows from Application 4.2, Theorem 2.2 (iii)
and the fact that g(y) = X7 [, is Schur-convex for y, = 0, ---,y, = 0. [J

Lemma 1.2 of Part I follows directly from Application 4.3.
In the next application, we generalize a result of Olkin (1972).

APPLICATION 4.4. Let Y, have any one of the densities specified in Application
4.2 (a), (b), (c), (d), (), or (f). Then A =™ X’ implies

(4.1) PIYlasp, - Yau SYIS PYiw =9, -5 Vo S
and '
(4.2) PIY, s>y s Yau S YIS P[Yo0 > 9, 05 Yo > )]
forall y.
Proor. The desired conclusions (4.1) and (4.2) follow from Theorem 2.2 (iv)
and the fact that {x:x; >y,i=1,...,n} and {x:x, <y, i=1,...,n} are

Schur-concave. []

A result in Olkin (1972) corresponds to the multinomial case (4.2 (a)).
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We will now show that the absolutely continuous Dirichlet distributions form
a Schur family. Let 6 > 0 be fixed throughout our next application. Let Z,
be a gamma random variable with density ¢(4, x) = (x*='/I'(2))e=* for x = 0,
4>0. LetZ,,.--, 2, , Z, be mutually independent. Let Y, be an n-variate
random vector with components Y, , = Z, (Z, + 31 Z;), i =1, ---,n. As
pointed out in Wilks (1962), page 179, Y, has an n-variate absolutely continuous
Dirichlet distribution (D(4,, - - -, 4,; #), in symbols), with density

I‘(a + Zl 2) - 6-—-1 n -
(4.3) fy) = Wm( 2y Iy

fory, 20,i=1,.--,n,and 7y, <1

APPLICATION 4.5. The family of Dirichlet distributions with density given in
(4.3) forms a Schur family in A.

Proor. Conditional on Z, =z, we may write Y, =%(Z,/(z + ), -
Z, [(z + S)) where § = Y1 Z;.. From Application 4.1 (c) and Theorem 3 2
the conditional distribution of Y, given Z, = z stochastically majorizes the con-
ditional distribution of Y,, given Zﬁ = z. The present application now follows
from Theorem 3.1. []

A useful application of stochastic majorization for Dirichlet distributions is next

developed for the coverages from a continuous distribution. Let X;, < --- <
X, be the order statistics in a sample of size » from a continuous dlstrlbutlon
F. Define coverages U, = F(X,)), U, = F(X,,)) — F(Xy,), -+, U, = F(X,,,) —

F(X(,-y). Let V, denote the sum of r; of these coverages, i =1, ..., k, with
no coverage belonging to more than one V,. Then as pointed out by Wilks

(1962), page 238, V, = (V,, - - -, V,) has an absolutely continuous Dirichlet dis-
tribution, D(ry, - :-, r,; n 4+ 1 — 3 r;). Using Application 4.5 we obtain:

APPLICATION 4.6. Let Vy, ---, V, be sums of distinct coverages as specified just
above. Thenr =™1' implies V, =**™ V.

RemArk. If a (k + 1)st component V, , = 1 — 7% ¥, is added to the vector
V, above, then the resulting vector V" = (V,, ---, V}, V,,,) has the singular
Dirichlet distribution of Application 4.2 (d). It follows that (r,, ---, r, n +
1 - tr)yz=('---,r/,n+ 1 — 3%r/) implies that V(@ >st-m- V9,

APPLICATION 4.7. Let Y, have an inverted Dirichlet distribution with density

_ N0+ %1 4) I ;%™
[y = : n
POILRT@) 1 + 3mpy,)r+is
for vy, =20, 2,>0, i=1,...n,

and fixed § > 0. (See Johnson and Kotz, 1972, page 239.) Then the family of
random vectors {Y,} is a Schur family in 2.

Proor. Let Z 2 Z,, Z, denote independent gamma random variables
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with parameters 4,, ---, 4,, 0, respectively. Then one can write Y, =*
(Z3/Zos - - -+ Z,,]Zy). The present application follows from Application 4.1 (c)
and Theorem 3.1 by first conditioning on Z, and then unconditioning. []

The applications listed so far yield examples of stochastic majorization among
familiar distributions by repeated applications of Theorems 2.2, 3.1, 3.2, 3.3,
3.5 and Corollary 2.10.

The next application is a reformulation of Corollary 3.3 of Part I and is stated
here so that we may, by means of an example, show that in the preservation
theorem (Theorem 1.1 of Part I), from which most of the applications follow,
the TP, assumption cannot be dispensed with, in general.

ApPLICATION 4.8. Let X,;, i =1,---,n; j=1,2, ..., be independently and
identically distributed according to a log concave density g with support [0, co). Let
Sie, = st Xy i = L, ..-,n,andS, = (S > Sup,) Thenk =™K implies
that S, =™ S,..

Puttingn = 2, k; = 3, k, = 1, k/ = 2, k;/ = 2 and choosing the Schur-convex
function g(x,, x,) = x; + x,;, we have (X, + X, + X,)* + X! =* (X, + X;") +
(X, + X,)* as a special case of Application 4.8, whenever X, X,, X, and X; are
i.i.d. nonnegative random variables with a log-concave density. Even this special
case is false, in general, without the assumption of a log-concave density as can
be seen from the example given below. Let P[X, = 1] =4, P[X; =3]=4. It
can be checked that the frequency function of X; is not log-concave and (X, +
X, + X,)* + X.? is not stochastically larger than (X, 4+ X,)’ + (X, + X,)’, since
P[(X, + X, + X, + X2 > 19] = , while P[(X; + X,)* + (X, + X, > 19] = 13.

In fact the above example can be used to show that the condition ¢(4, x) be
TP, cannot, in general, be dropped from Theorem 1.1 of Part I. To see this,
put ¢(n,x) = P(X; + --- + X, =x),n=1,2, .. where the X,’s are as in the
example given above. Then ¢(n, x) satisfies the semigroup property but is not
TP, since [508 230 = |} | < 0. The conclusion of Theorem 1.1 of Part I does
not hold for the Schur-convex function g(x,, x,) defined by g(x,, x,) = 1, if x* +
x,2 > 19 and = 0 otherwise, since,

F= le,zz (3, x)$(1, x,)9(x;, X;) = P[(X; + X, + X, + X7 > 19]
< Doy, $(25 X)B(2, X)9(x1, X,) = P[(X, + Xp)* + (X + X,)* > 19] = 13 .
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