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PREDICTION SUFFICIENCY WHEN THE LOSS
FUNCTION DOES NOT DEPEND ON
THE UNKNOWN PARAMETER

By ErIK N. TORGERSEN
University of Oslo

It is shown by Takeuchi and Akahira, 1974, that conditional inde-
pendence together with a condition of “‘partial sufficiency’” imply ‘‘pre-
diction sufficiency” for loss functions not depending on the unknown
parameter. We shall here prove that these conditions are necessary as
well and thereby obtain a complete description, in terms of conditional
expectations, of “‘prediction sufficiency’’ for loss functions not depending
on the unknown parameter. It turns out that these conditions may be
replaced by a condition of conditional independence for prior distributions.

1. Introduction. Consider the problem of making a decision ¢ on the basis
of our observations X when the loss is determined by ¢ and a nonobservable
variable Y.

It will be assumed that the joint distribution of X and Y is determined by an
unknown parameter 6.

The merit, or the lack of it, of any procedure is to be judged solely on the
expected loss, i.e., the risk it incurs.

In this context the problem of sufficiency may, somewhat loosely, be phrased:
If X, is a function of X, when are we justified in claiming that no information
is lost by basing ourselves on X| rather than on all of X? Note that the situation
where the loss is determined by 7 and 6 may be regarded as the particular case
where Pr (Y = 6]6) = 1 for all 6.

It should be stated at once that we are in this introduction willfully omitting
several qualifications. A rigorous treatment will be given in the next section.

In order to clarify the scope of this paper, let us for a moment consider the
more general situation where the loss depends on ¢ as well as on 7 and Y.
Considering a nonnegative function L of (6, ¢, Y) as a loss function, we may
say that X is L-sufficient for X w.r.t. Y if the set of decision rules based on X,
is essentially complete. '

By Theorem 1 in Takeuchi and Akahira [5] (see also Theorem 10.2 in Bahadur
[1]), X, is L-sufficient for X w.r.t. Y provided:

C,: X, is sufficient for X
C,: X and Y are conditionally independent given X, for all 4.

If these conditions are satisfied, then, following Takeuchi and Akahira [5],
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page 1019, we shall say that X, is prediction sufficient for X w.r.t. Y. This
corresponds to X, being adequate for X w.r.t. Y in Skibinsky’s ([4], page 156)
terminology.

That prediction sufficiency implies L-sufficiency for any L may be seen directly
by a randomization argument. A statistician knowing X, only may, by a random
mechanism, construct another variable X so that (X, Y) has the same distri-
bution as (X, Y). (Let U be rectangularly distributed on [0, 1] and independent
of (X, Y). Then there is, for each x, in the range of X,, a function ¢, so that
the distribution of ¢, (U) is equal to the conditional distribution of X given
X, = x,. It is easily checked that we may take X = ¢, (U).)

In their paper [5], Takeuchi and Akahira proved that L-sufficiency for suf-
ficiently many loss functions L implies prediction sufficiency. If, however, we
restrict attention to loss functions which do not depend on #, then they found
that C, could be weakened to:

C,: There is a set B so that the conditional distribution of X given X, does
not depend on # when X, € B while the conditional distribution of Y given
X, does not depend on § when X, ¢ B.

Roughly the argument in [5] runs as follows: Let the loss L be determined
by Y and the decision taken, and let J be a decision rule based on X. Choose
6 = E(5|X,) when X,e B and such that E(L|X,) is small when X, ¢ B and ¢ is
used. Then, with obvious notations: FE;(L|X;) = E,;(L|X,) when X;€ B and
E;(L| X,) is not much larger than E;(L|X,) when X, ¢ B. As a particular case
consider prediction with squared error loss of some square integrable real valued
function Y, of Y. If g(X) is any predictor with finite risk then §(X,), given by

g(Xo) = Eg(X)| X, when X,e B
= EY,| X, when X,¢ B,
is at least as good.

Consider now a fixed, finite and nontrivial decision space T. Denote by .~
the class of loss functions L = L(Y, r) which depends only on Y and the decision
taken. If X, is L-sufficient for X w.r.t. Y for all L € .~ then we shall say that
X, is .~ -sufficient for X w.r.t. Y.

We shall see in the next section that the conditions C, and C, cannot be
reduced without violating . “sufficiency. Situations where we do have -~ -suf-
ficiency may thus be classified according to the set B appearing in condition C,.
Prediction sufficiency corresponds to the case where B may be chosen as the
whole range of X,. If the conditional distribution of Y given X depends on
(X, 0) only through X,, then C, and C, hold with B = . As an example of
the intermediate situation consider random variables X and Y whose joint dis-
tribution is given by the following table of Pr (X = x, Y = y|0):

y X 1 2 3

1 (I —ap)(d = B)ry (I —ag)(1 =1 — 7)) ay(l — 1p)
2 (I — ay)pr, (I — ap)f(l — 7)) )
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Here «a, y and r are functions from © to [0, 1] while 3€[0, 1] is a constant.
Simple calculations show that X, = max (X, 2) is ~#Zsufficient for X w.r.t. Y;
i.e., C, and C, are satisfied. X, is, however, not prediction sufficient for X w.r.t.
Y unless 7 is constant on {¢: a, < 1}.

Zsufficiency is closely related to conditional independence for prior distri-
butions. It will be shown that X, is ~#~sufficient for X w.r.t. Y if and only if
X and Y are conditionally independent given X, for all prior distributions with
finite support. Actually it suffices to consider the prior distributions which are
either degenerate or uniform two point distributions. Ultilizing this we prove
the existence of ‘“minimal” #sufficient statistics.

As is usual in this type of discussion, the functional form of the random
variables is of minor importance. We shall therefore express our results in
terms of algebras of events rather than in terms of random variables.

2. Sufficiency and conditional independence. Our discussion will be carried
out within the following framework. There is given a family (y, ../, Py): 6 € ©
of probability spaces and three sub g-algebras, =7, ~sand <, of ./, The set
O is the parameter set of our model. It will be assumed that <z <5 and that
{P;: 6 € O} is dominated.

Referring to the introduction, . 5, .4 and « may be interpreted as the o-
algebras of events induced by, respectively, X;, X and Y.

We will also assume that we are given a finite set 7, with at least two elements,
containing all possible decisions.

A decision rule ¢ is a family ,: 7€ T of nonnegative measurable variables
such that 33,9, = 1. The interpretation of J is the usual; i.e., 9,(x) is the prob-
ability of taking decision ¢ given that we have observed x.

A loss function is a nonnegative function on ® X y X T which is ‘“-measura-
ble in x for fixed (¢, r) in ® X T. Denote by .~ the class of loss functions
which does not depends on 6.

The risk function r, of a decision rule 6 w.r.t. a loss function L is given by

r3(0) = Ey 2o Lo(+ 1),

where E, denotes expectation w.r.t. P,.

The set of all prior distributions on @ with finite support will be denoted
by A. The subset of A consisting of the prior distributions which are either
degenerate or uniform two point distributions will be denoted by A,.

If ie Athen P, = 3,4, P,and E;, = X, L, E,.

By Halmos and Savage [2] there is a nonnegative function ¢ on © so that
0, = {0:c(f) > 0} is countable, > ,¢c(f) =1 and 7 = ) ¢(d)P, dominates
{P,: 0 €0B}. Put for each # €O and each 1¢ A, f, = dP,/dr and f, = dP,/dr.
Expectation w.r.t. = will be denoted by E.

We shall say that 2% is .2 -sufficient for <z w.r.t. <" if to each loss function
L in -#"and each decision rule ¢ corresponds a 4, measurable decision rule o
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such that:
ri0) = ri(0); 0€0.

Criteria for .~“sufficiency are collected in

THEOREM. The following conditions are equivalent:

(i) <7, is Lsufficient for ZwW.r.t. €.
(ii) <, is pairwise £ -sufficient for Bw.r.t. €.
(iiiy <# and & are conditionally independent given <%, for each P;: A e A.
(iﬁ)  and & are conditionally independent given <7, for each P;: 2 e A,.
(iv) < and & are conditionally independent given <%, for each 8 and there is a
set B, in <7, so that:

(a) To each bounded Z%-measurable function g corresponds a <%,-measurable
function s, so that Ey(g| %)) = s, a.e. on B, for each 0 ¢ ©;

(b) To each bounded -measurable function h corresponds a <&,-measurable
function t, so that E,(h| <) = t, a.e. P, on By for each § € ©.

The implication (iv) = (i) is, essentially, proved in Takeuchi and Akahira [5],

while the implication (i) = (iii), and thus (ii) = (iti), follows easily from Theo-
rem 2 in their paper.

PROOF OF THE THEOREM. The structure of the proof is

| |
M —— (iii)
(i) = (ii): Follows directly from the definition of .#sufficiency.
(i) = (iii): Consider a particular 2 e A and a particular loss function L ¢ .,

If 6 is a decision rule then, by (i), there is a <% -measurable decision rule § so
that § r;d2 < § r, dA.

Thus =2, is “~sufficient for <% w.r.t. & when the underlying distribution is
known to be P,. In this case, however, .7 consists of all nonnegative loss
functions. By Theorem 2 in [5], <7, is prediction sufficient for £#w.r.t. & in
this situation. Thus £Zand < are conditionally independent given <%, under
P,.

(ii) = (ir'i)t This is just a particular case of the statement “(ii) = (iii)”: proved
above.

(iv) = (i): This is essentially proved in Theorem 3 in Takeuchi’s and
Akahira’s paper [5]. For the sake of completeness, however, we include the
argument here: Take L € .¥”as loss function and let § be a decision function.
By (iv) there are, for each te T, ZZ;-measurable functions ¢, and M(., 7) on,
respectively, B, and By® so that ¢, = Ey(0,|<%,); 0 €© on B, while M(., ) =
E)(L(+, 1)| Z,); 0 €O on Byf. Define § by 6, = ¢, on B, while 6, = 1 on By
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where M(., r) = min, M(., t). Then:
rs(0) = Ey ;15 L + E, ;1L = (by conditional independence)
Ee,SIBOL + EylpeM = Ep 515 L + EgIp . M(+, 7)
= (by conditional independence)
Eyslp) L + E;515.L = ri(0) -
It remains to prove:

(fﬁ) = (iv): We will in this part of the proof use the notation g to denote
the restriction of a measure p to <3,.

Suppose (iii) holds. We must prove the existence of a set B, with the desired
properties. Let ¥ and S# denote, respectively, the class of bounded <Z-measur-
able functions and the class of bounded & -measurable functions. The crucial
result needed is:

2.1 [Eo (9] Z) — Eo (9| FZ)Eo(h] G5) — Eg(h| £)] = O
almost everywhere P, A P, when 0, 0,€©, ge ¥ and he 57,

As only two values, 6, and 0,, of ¢ are involved we may in the proof of (2.1)
assume that © = {0, 1}, , =0, ¢, = 1 and 7 = (P, + P,). Then’

E(f,| %) =dP,|dt, i=0,1 and Al E(f,| %) = d[P, A P]jd% .
It follows that we must show that (2.1) holds a.e. # on the set [ A1, E(f;| %) >
0]. We restrict ourselves to this set for the remaining part of the proof of
“(i’ivi) = (iv).” The qualification “a.e. #”” will be omitted.

Note first that

(2.2) Es| 7)) = E(sfi| Z)E(fi| %) 5 1= 0,1

and

(2.3) E(s| ) = (3) L E(Si | Z)E(s| )

for any bounded measurable s. It follows, using the Markov property, that
(2.4) E(gh| ) = E(g| BYE(h|F); i=0,1

and '

(2.5) E(gh| 2) = E(9| ) E(h| ) -

Substituting (2.3) in (2.5) and then using (2.4) and (2.2) yields
24 E(9]| ) =0
where

a; = E(fi| B Eh| ) — 5 2, E(h| S)E(f;1 )] -

1 If 4 and v are finite measures on % then z A v is the largest measure < pzand < v for the
setwise ordering of measures. See Neveu [3], page 107.
2 If @ and b are numbers then a A b = min (g, b).
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Now, 3}, f; = 2 implies
a = —a = 3E(f,| Z)E(fi| ) (Eh| 5) — Ei(h| ) -

(2.1) follows now by inserting these expressions for a;; i = 0, 1.
We must now return to the general situation with a dominated family

{P,: 00}
We shall first show that
(2.6) [Eo(0]5) — Ep(g]| B)Es(h| 5) — Ey(h| )] = 0 ae.

/\?:oﬁoi when ge ¥, hesr

and 0,€0;i=0,1,2,3. We may—since d A’_, P, |[dt = A’ E(f;| F,)—re-
strict attention to the set B = [ A2, E(f;|.2%) > 0]. We omit the qualification

“a.e. #” in the proof of (2.6). By (2.1) we have:
(2.7) [Es (9] %) — Ey (9| ) Eo(h] 5) — E,y (| 25] = 0.
Put:
By = B N [Ey(9]| %) — Eo(9] BN Eo(h|5) — Ey (k| 4)) # 0]
By = B0 [Ey(9|5) — Ep(9]| B)NEy(h|5) — Eg(h] 5) # 0] .
(2.6) will be proved if we can show that z(B,) = x(B,) = 0. On B, we have,
by (2.7),
Ey(h|F) = Ej(h|7)  and  E,(g|5) = E, (9] 4) -
On the set B, n [E, (9| %) # E, (9] 4,)] we will also have
Ey(h| ) = E,(h| ) = E,(h| )

which is impossible on B,. It follows that E, (¢ | %) = E (9| %) = Euf9]| %)
which is also (7) impossible on B,. Hence =(B,) = 0. Similarly =(B,) = 0.
Thus (2.6) is proved. Note next that (2.6) may be rewritten as
(2.8)  [E9fo, | 2)E(fo,| 20) — E(9fs,| B)E(fo,| )]

X [E(hf,,| AVEfy,| ) — E(hfy,| A)E(foy| 5] = 05 ace. .
Multiplying with ¢(6,)c(0,) and summing over 4, 0, c 0, we get:
(2.9)  [E(9f,| %) — E(9| Z)E(f,,| 4)]

X [E(hfy, | Z) — Eh|A)E(f,,| )] =05 ae. =.

Put ¥y, = [E(gf,|A) = E(g| FYE(fy| 4)]  and W, = [E(h,| %) —
E(h| s4)E(fy| <%)]. Let V and W be sets in <5, such that

I, = essinf{l,, :0€0,ge%} w.r.t. #
and '
Iy, =essinf{l,  :0eO,heF}) w.r.t. #.

We will complete the proof by showing that (iv) holds with B, = V' n W,
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It follows from (2.9) that
Vo S W ae. ©; 0,60, hel#.

‘91,0 ==
Hence

Vie©W ae. 7m; 0,60, ge¥&
or

WeeV,, ae. w; 0,e0, ge¥
Hence

wec vV a.e. m sothat m(VuW)=1.

Let 0c© and ge . Then V,, < V a.e. =. Hence, by the definition of
Vs, E(9] %) is a version of Ey(g|<%,) on V. Similarly E(h|<%) is a version
of Ey(h| <,) on W. (iv) follows now since B, C V and B < Wa.e. . []

REMARK 1. Assume that <7, satisfies one of (and consequently all) conditions
(i)—(iv). Suppose further that there are, for each ¢, regular conditional prob-
abilities of <% given <%, and of & given %, Then these regular conditional
probabilities may be specified so that P, (B| %) does not depend on ¢ when
x e B, and Be <% while P, ,(C| %) does not depend on 6 when x ¢ By and
Cew.

REmARKk 2. Consider three arbitrary sub-¢-algebras 7/, 7" and %7 of 7.
Then 7/ and 97 are conditionally independent given 27" if and only if 27 v 7~
(27 v 7 is the smallest g-algebra containing 27 and ") and 77 are condition-
ally independent given 7. Thus the theorem may be applied with <z, = 7,
# =2~V 7 and & = %7". It follows in particular that conditional inde-
pendence for all 2 e A, implies conditional independence for all 1€ A.

REMARK 3. Among the equivalence classes of -#sufficient g-algebras there
is a smallest element. In other words there is a sub-s-algebra <2 of <% such
that a sub-g-algebra <%, of <#'is #~sufficient if and only if to each Be & cor-
responds a B, € %, so that Py(B A B)) = 0; 0 €®.

Consider first an arbitrary .~ -sufficient <%,. Let B, € <%, satisfy (iv). Then

(1) E(f,|#) = E(f,| ) ae. 7 on B
while
(2) Ey(h| ) = Ey(h| 5) a.e. P, forall 2e¢A.

(The last statement follows directly from conditional independence and the first
statement follows from the following computations: Let Be <%, B < B,. Then
Vo E(fy | ) dn = {5 n(B| )y dn = (by (i, v)) \5, Po(B| ) dP, = Py(B) =
Vs E(fy| ) dr.)

Define for each 1¢ A, and each bounded “-measurable function 4 a <%-
measurable function r,(%) by:

ry(h) = Ey(h|.-2) when E(f;|#) >0
= E(h|#)  when E(f;|<#)=0.
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Then the sub-s-algebra <2 of ©# which is induced by these functions is
“minimal” .~ -sufficient for <# w.r.t. <.

(By the definition, <#’and & are conditionally independent given 7% for each
Ae A,. Hence Zis “sufficient for <# w.r.t. «. The same argument applies
to any sub-g-algebra of <% containing <%. Let <%, be another .“-sufficient -
algebra. It follows then from (1) and (2) that there is, for each (4, ) where
A€ Ay and 4 is bounded and “-measurable, a <%,-measurable function 7,(h) so
that r,(h) = F,(k) a.e. =. Thus <7 is essentially contained in £%.)

The construction of <7 may be simplified by noting that we can restrict
attention to smaller classes of functions 4. If, for example, is a basis for &
which is closed under finite intersections then it suffices to consider indicators
of sets in .

As an example consider the case where ® = {1, 2} and the joint distribution
of X and Y is given by the table in Section 1. Put = = L(P, + P,), r(x) =
(Y =2|X =x), ry(x) =n(Y =2|X = x) or = r(x)as P)(X = x) >0o0r =0.
Then ry(x) = r(x) = B when x < 2 while r,(3) = y,. By the remark above the
algebra induced by 7, r, and r, is minimum .~ -sufficient. Thus X, = max (X, 2)
is “minimum” .-~ -sufficient provided y, == f or y, = 8. If, in particular, r, = 0,
=1l a <<landa, < 1then P(X =0)=0and z(X =6) >0;0 =1,2. It
follows that it is essential that r, is defined as above on the P, singular set
[X = 0].

REMARK 4. It follows from Theorem 11.3 in Bahadur [1] (see also Skibinsky
[4]) that <% is prediction sufficient for =#'[i.e., =%, is sufficient for =¥ and, %
and & are conditionally independent given %] if and only if =7, is sufficient
for all probability measures on 2%’ of the form (Py(B|C): Be %) where C¢c &~
and P,(C) > 0. This yields in particular a description of conditional inde-
pendence in terms of sufficiency. In view of our theorem, the relationship
between prediction sufficiency and . ~sufficiency may be described as follows:

Let for each pair (6, 6,) e © x O, ko0, denote the set of probability measures
on <7z of the form

[Po(BC) + Pu(BOIP(C) + PoC)]; Bes

where Ce Z"and P, (C) + P, (C) > 0. Then 24, is prediction sufficient if and
only if <% is sufficient for Us,.0, k0,0, while <7, is .#~sufficient if and only if -7,
is sufficient for each k, ,; (0,, 0,) € 0 x 0.
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