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LARGE SAMPLE THEORY FOR U-STATISTICS AND
TESTS OF FIT

By GAVIN G. GREGORY!
University of Arkansas

Let Xpi, i =1, .-+, nbei.i.d. random variables on an arbitrary measur-
able space (2, B). Suppose £ (Xui) = Qm, i=1,---,n and let Py be a
fixed probability measure on (2%, B). We consider limiting distribution
theory for U-statistics Tp = n~! Y5 @Q(Xni, Xus) (1) under conditions which
imply the product measures Qyn = Qu1 % -+ x Qu1, 1 times, are contiguous
to the product measures P, = Py x - -+ x Py, n times, and (2) for kernels Q
which are symmetric, square-integrable (S Q%(s, »)dPy X Py < o) and
degenerate in a certain sense (§ Q(s, £)Po(dt) = 0 a.e. (Po)). Applications
to chi-square and Cramér-von Mises tests for a simple hypothesis and
Cramér-von Mises tests for the case when parameters have to be estimated,
are given. A tail sensitive test for normality is introduced.

1. Introduction. Under nonrestrictive assumptions, Hoeffding (1948a) showed
limiting normality for U-statistics in what may be called the nondegenerate case,
when the variance of the limiting normal distribution is positive. When the
variance is zero, we say the degenerate case obtains and nonnormal limiting
distributions result. An example of the latter is given in Hoeffding (1948 b) for
a kernel of degree five. In this paper asymptotic distribution theory is presented
under nonrestrictive assumptions for the degenerate case when the kernel is of
degree two.

Our main result here is Theorem 2.1 which treats U-statistics T, =
nt 3. QX X,;), where X, i = 1, ..., narei.i.d. random variables on an
arbitrary measurable space and Q is a symmetric kernel degenerate in the sense
of (2.2). Under the conditions of the theorem the distributions of X,,, n =1,
2, - -- need not be identical but are contiguous to a fixed distribution.

The applications to simple hypotheses considered in Section 3 concern chi-
square and Cramér-von Mises test statistics that have what is called the usual
form T,* = n™' 3, ; Q(X,,, X,;). For certain weight functions allowing sensitive
comparisons in the tails of distributions the Cramér—von Mises statistic of form
T,* will have a limiting distribution if centering is effected by subtracting con-
stants p, tending to infinity with n. It is better to use the naturally centered
statistic 7, which produces an asymptotically equivalent test. (Such tests are
also called Cramér-von Mises tests.)

In Section 4 we deal with Cramér-von Mises tests when parameters have to
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U-STATISTICS AND TESTS OF FIT , 111

be estimated. The results are illustrated in Section 5 with a tail sensitive test
for normality. Section 6 contains a discussion on the comparison of tests and
Section 7 contains the large sample results for uniform variables used in Section 4.

From the work on differentiable statistical functions of von Mises (1947)
and Filippova (1961) one sees that a very large class of statistics will be asymp-
totically of the form T,* with a degenerate kernel Q. This work has parallels
with the well-known stochastic process approach to limiting distributions (see
Anderson and Darling (1952) for such a treatment of Cramér-von Mises statistics).
Thus our Theorem 2.3 which treats statistics of the form 7,* will have wide
application beyond the examples we consider.

For related problems in large sample distribution theory see Varberg (1966)
and Schach (1969). Pertinent references appear during the development.

2. The limiting distribution of U-statistics under contiguous alternatives.
Foreachn =1,2, ... let X,,, i = 1, -- -, n be random variables which are in-
dependent under the null hypothesis H,: -<(X,;) = Py, i = 1, - - -, n for some
fixed probability measure P, on the measurable space (27, B), as well as under
the alternatives H, : <“(X,,) = Q,., i = 1, - -+, n. Our conditions will imply the
sequence {Q,} of product measures Q, = Q,, x --- x Q,,, n times, is contiguous
(in the sense of Hajek and Sidak (1967), page 202) to the sequence {P,} of pro-

duct measures P, = P, x --- x P,, n times. The concern of this section is the
limiting distribution of U-statistics,
(2‘1) T,=n"' Zi;bj Q(Xm’ an)

where Q(s, 1), s, 1€ .2, is a symmetric, nonzero kernel on 27x 2~ with
§ Q%+, +)dP, x P, < co. In this paper only the degenerate case

(2.2) § O(e, )Py(dr) =0 a.e. (Py)

is considered. Let {4,, kK = 0} denote the finite or infinite collection of eigen-
values of Q corresponding to orthonormal eigenfunctions {f,, k > 0}, i.e., for
all k and j § Q(-, 0)f.()Py(dt) = A.f, a.e. (Py), §fif;dP, =0 if k + j, and
{ fi.dP, = 1. In view of (2.2) we may let f; = 1 correspond to the eigenvalue
4, = 0. Our main result of this section is

THEOREM 2.1. Let Q,, be dominated by P, with Radon-Nikodym derivative
dQ,,/dP, = 1 + n~th,, for some sequence {h,} in L, = L2, B, P;) converging to
heL,, say. Then
(2.3) lim, Q (T, < x} = P{3 4[(Z, + @) — 1] < x}
where a, = \ hf,, dP, and Z,, Z,, - - - are i.i.d. standard normal variables.

COROLLARY 2.2. Let (77, B) be the unit interval (0, 1) with the Borel g-algebra
and P, the Lebesgue measure on (0, 1). Let dQ,,/dP, = f, where 8, = bn=t and

fo(u), 0 < u < 1, is a density in u for |6| < ©, © > 0, with f, the uniform density
on (0, 1). Suppose

Al. For all u, fy(u) is absolutely continuous in 6.
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A2. For all 6, (0/30) fy(u) exists for almost all (Lebesgue measure) u.
A3. The Fisher information

1(6) = $5{0/90) fo(u)Yfo(u) du
exists for all 0, is continuous at 6 = 0 and I1(0) > 0.
Then (2.3) is true with a, = b { hf, dP, and h(u) = (3/96) log fy(u)|s=p, 0 < u < 1.

A companion result to Theorem 2.1 holds under a further restriction on the
eigenvalues.

THEOREM 2.3. If in addition to the conditions of Theorem 2.1, ¥ 2, is finite then
the modification of T,(2.1) to include the terms fori = j, T,* =T, + n™*' 3, 0(X,,,
X.,:), has an asymptotic distribution given by

(2.4) lim, Q {T,* < x} = P{X A(Z, + a,)* < x} .
PrROOF OoF THEOREM 2.1. Let x be fixed throughout. Let

Q%(s, 1) = 2 A fe(9)fi(0)

and
Tn,K - n_l Zi#:j QK(X'MZ’ X'nj) = If:l lk(cfbk - C'nk)

with {,, = n~t 37, fi(X,.) , ¢ = 07t 10, fi3(X,.). Tt is well known that under
the conditions of the theorem the sequences {Q,} are contiguous to {P,}. From
Behnen and Neuhaus (1975) it follows that for fixed k, there is a sequence f,,,
n=12,...in L, with § f,, dP, = 0 and lim, § (f,, — f.)* dP, = O such that
Lu — Cae — 0 in probability (n — co) under {Q,} and £, — § f.. k. dP, satisfies
the Lindeberg condition, where {,, = n~* 317, f,.(X,,). From the Cramér-Wold
device and the fact that the resulting linear combinations satisfy the Lindeberg
condition since the components do, it follows that under Q,, probability ({,,, - - -,
.x) converges in distribution to (Z, 4+ a,, ---, Z, + a). Since ¢,, —, 1 in Q,
probability, k = 1, ..., K, it follows that

2.5 D(n, K) = |QufTwx = x} — P Al(Z + @) — 1] < x}| -0
as n — oo, K fixed.

Furthermore we have for ¢ > 0
(2.6) P{EL AL(Ze + @) — 1e(x, X + <]}

< sup, P{A4[(Z, + a))* — 1]e(x, x + €]} = E(e) .

Clearly E(¢) — 0 for ¢ — 0.

Now for every integer K and ¢ > 0
27) QT =) < P[SEALZ + @) — 1] = 1)

+ Qu{lT, — To x| = ¢} + D(n, K) + E(e) .

From P(|T, —T,x =¢ <e?*((T, — T, 4)?dP, = e*n — 1)n7}||Q — QF|%,
with [|Q — Q¥|]P = §{ (@ — Q¥)*dP, x P, and lim, . ||Q — Q¥|| = O (see, e.g.,
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Dunford and Schwartz (1963), page 1087), we have

lim, Q{|IT, — Ty xn| Z ¢} =0
(2.8) for all ¢ > 0 and every sequence {K(n)}
of integers with K(n) — oo .

Now (2.5) shows there exists such a sequence {K(n)} with
(2.9) lim, D(n, K(n)) = 0.

If we show the mean square convergence of T, , = Y&, 4,[(Z, + a,)* — 1] for
K — oo then (2.6), (2.7), (2.8) and (2.9) will establish lim sup, Q. {7, < x} <
P{3 4[(Z, + a,)* — 1] < x}. Since an inequality similar to (2.7) but in the
other direction holds as well this would prove (2.3).

Some calculation yields

(2.10) E(Toe,K2 - Toe,Kl)2 = [Zlf:zK1+l A4alT + 4 22k 41 Ala,’
T2 Nl A
From ||Q — QF||* = ||Q|* — XK., 42 it follows that Y 7., 2,* = ||Q|* < oo. Also

I§§ Q(s, h(s)h(r) APy x Py — Zils A’
= [§§[Q(s, 1) — Q%(s, D]A(s)h(r) dPy x Pof* < ||Q — QF|P||A]I*

which implies Y 5., 4,a,> = {§ O(s, 1)A(s)A(t) dP, x Py < oo. This shows that the
RHS in (2.10) tends to zero for K, — oo, K, — oo0. []

ProoF oF COROLLARY 2.2. The conditions Al, A2 and A3 appear in the
appendix of Hajék (1970). Then P, approximation to log dQ,/dP, given there
establishes contiguity of {Q,} to {P,}. The proof above would apply if we could
establish (2.5). With the approximation to the log likelihood ratio as given this
may be accomplished more easily by using Le Cam’s third lemma (see Hajék and
Sidak (1967), page 208) instead of the results of Behnen and Neuhaus (1975). [J

3. Application to tests of fit: the simple hypothesis. For a degenerate kernel
satisfying (2.2) we have EQ(X,,, X,,) = O under the hypothesis. If EQ(X,,,
X,;) > 0 under a class of alternatives then the statistic 7,(2.1) may be used to
test the hypothesis since ET, = (n — l)EQ(an, X.,;)- The test would reject for
large values of T,. Let us identify the form T, as the pure form of the test
statistic and the form of Theorem 2.3, T',* = T, 4+ n~' 7., O(X,;, X,;), as the
usual form. If x = § Q(+, +) dP, exists then T,* — p and T, are asymptotically
equivalent under contiguous alternatives and asymptotically the tests based on
T, and T,* would be equivalent. Under certain conditions that do not appear
to be restrictive (see the treatment of Cramér-von Mises tests below), when
§ O(-, +) dP, does not exist we may also assert the equivalence of T, and T, *.
By the weak law of large numbers (see Feller (1966), page 232) if

(3.1) limt-wo tPO{|Q(Xn1’ an)[ > t} = 0 ’
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there is a sequence {u,} such that n~' 37, Q(X,;, X,;) — ¢, — 0 in P, pro-
bability. Then T,* — p, and T, would be asymptotically equivalent under
contiguous alternatives.

Consider now some specific tests of the hypothesis of the previous section
when 5= (0, 1) and P, is the Lebesgue measure on (0, 1). Let us first consider
chi-square tests. For a division of the unit interval d,=0<d, < -+ <
d_,<d =1,let

O(s, 1) = 251 9u(5)9x(r) Where
(32) ) = ldy <s=d]—p*}pSt, 1=k=c, and
pt=d, —d_;.

Then the p,* are null hypothesis category probabilities and the usual chi-square
test statistic is of the form 7,* with the kernel (3.2). It is easy to show that
the kernel (3.2) has ¢ — 1 nonzero eigenvalues equal to unity. Then Theorem
2.3 gives the familiar limiting chi-square distribution under the hypothesis. The
limiting form under the alternatives is considered in Section 6.

Now consider the modified Cramér-von Mises tests (see Anderson and Darling
(1952) and Darling (1957)). For a nonnegative weight function w(u), 0 < u <
1, define the kernel
(3.3) O(s, 1) = G {I[s < u]l — w}{i[t < u] — u}w(u)du, 0<s, < 1.
With this kernel the form T,* is a modified Cramér-von Mises statistic.

Desired are conditions on w ensuring the square integrability of the’symmetric
kernel (3.3). For s <t we have
(3.4) (s, 1) = Vo uwtw(u)du — §tu(l — wyw(u)du + §} (1 — u)’w(u)du .

It may be demonstrated that
(3.5) (358 Q%s, 1) dsdt = {; §} {min {u, v} — wvPw(u)w(v) du dv
by squaring (3.4) and integrating over {(s,#): 0 < s < ¢t < 1}.

Interchanging the order of integrations on nonnegative components may be
justified by Tonelli’s theorem if the right-hand side of (3.5) is finite. Some
conditions ensuring that Q is square-integrable (the right-hand side of (3.5) is
finite) are the following:

(i) w(=0) isboundedon [¢,1 —¢] forall ¢>0.
(3.6) (i) lim,_, w*w(u) = lim, , (1 — u)*w(u) = 0.
(iii)  w*w(u)[(1 — u)*w(u)] is monotone near u = O[u = 1].
(iv) §eu*(l — u)*wi(u)du < oo .
These may be applied by noting that

cwce 21 — VPw(pw(v) dudv = 5 (1 — v)w(v) §; ww(u) du dv
and

S 1mecucs (1 — v)w(u)w(v) dudv = §i_ ww(u) §, (1 — v)’'w(v)dvdu .

€
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We assert that under the conditions (3.6) the kernel (3.3) satisfies (3.1) thus
ensuring the equivalence of tests based on T, and T, *.

Now Q has the same form as the kernel of Section 4 of de Wet and Venter
(1973). There the eigenvalues and eigenfunctions are shown to satisfy a certain
Sturm-Liouville type differential equation. For certain choices of the weight
function w, the eigenfunctions of Q are related to classical orthogonal poly-
nomials. For example, when

(3.7 w(u) = 1/¢*(@ (), o<u<t,

where ¢ and @ are the standard normal density and cdf, the eigenvalues are
4, = 1/k, k = 1, corresponding to orthonormal eigenfunctions #,(®~*(x)), where
h, is the kth Hermitian polynomial suitably normalized. It may be checked that
w (3.7) satisfies (3.6) to ensure the square integrability of Q. Useful here is that
the tails of (3.7) are asymptotic to those of u=*(1 — u)~*(—2logu(l — u))7,
0 < u < 1. Tt may also be noted that Theorem 2.3 does not apply here since
> A, = oo.

Limiting null hypothesis distribution theory for the modified Cramér-von
Mises statistics was developed by Anderson and Darling (1952) with no provision
for 37 |4,] = co. They tabulated the limiting distribution of Theorem 2.3 for
the weight function w = 1. In Anderson and Darling (1954) a few points of
the limiting distribution are given for the weight function w(x) = 1/u(1 — u).
De Wet and Venter (1973) consider a statistic similar to the modified Cramér-
von Mises statistic. For the weight functions giving >3 [2,| = co, a limiting
distribution was obtained by subtracting the expected value of the statistic which
approaches infinity as the sample size approaches infinity. We avoid this by
considering the pure form T,.

For the weight function (3.7) with eigenvalues 4, = 1/k, k = 1, the limiting
null hypothesis distribution of 37, (1/k)(Z,” — 1) has been tabulated in de Wet
and Venter (1972).

4. Applications to the Cramér-von Mises test when parameters are esti-
mated. In this section we suppose that i.i.d. random variables x,, - - -, x, are
observed and that it is desired to test the composite hypothesis that the common
cdf is of a given form F(x, #,, #,) for some unspecified parameters ¢, and ¢,. We
restrict ourselves to the two parameter case though the methods are general.
The hypothesis here is composite and the hypothesis of Section 2 was simple
but we shall blur the distinction by referring to a null hypothesis probability
P, = P, x --- x Py, ntimes, generated by letting P, be the measure associated
with F(x, 6, 0,) where 6,, and 6,, represent the true but unknown parameter
values. Further X, --., X,, of Section 2 may be associated with x,, ..., x,
and the notation will not be deficient in this section since only null hypothesis
probabilities will be used. Our program is to obtain P, approximations to
various Cramér-von Mises statistics in a form that allows the results of Section
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2 to be used. Then limiting distributions under contiguous alternatives will be
available as well.

For testing goodness of fit to the two parameter family F(x, 6,, 6,) the modi-
fied Cramér-von Mises statistic with weight function w is

(4.1) n\ [Fu(x) — F(x, 0,, 0,)Pw[F(x, 0,, 6,)] dF(x, 6,, 0,) ,

where F, is the sample cdf and 6, and @, are estimates of the unknown parame-
ters. Previous work relating to the limiting distribution of (4.1) for various
special cases is contained in Darling (1955), Darling (1957), Kac, Kiefer and
Wolfowitz (1955) and Sukhatme (1972).

Following the work of Section 3 we wish to consider tests embodying the basic
notion behind (4.1) but allowing weight functions w which would have such
heavy tails that (4.1) would not possess a limiting distribution. This is ac-
complished by considering statistics

(4'2) Tn =n Zi#i S {I[Xi = x] - F(x’ él’ 92)}
X {I[x; < x] — F(x, 0., 0)}w[F(x, 0,, 6,)] dF(x, 0,, 0,) .

Theorem 4.3 states that T, is asymptotically equivalent under P, probability to
T,, + v where T,, = n~'3,., Q(x;, x;) and Q and y involve no random com-
ponents. The results of Section 2 may be applied to T,, to find the limiting
distribution under {P,} or contiguous alternatives {Q,}.

In Section 5 the theorems are illustrated by a test for normality using the
weight function (3.7). In Section 7 are the lemmas which create the sharpness
in the results.

Let f*(x, 6,, 0,) = w[F(x, 0, 6,)1f(x, 0, 0,) where f is the density of F. For
any function g let g,; = (0/06,)'(9/00,)’g. Thus Fy(x, 0,, 8,) = (9/36,)F(x, 6,, 0,)
and f¥(x, 0, 0,) = (0°/86,00,) f*(x, 6, 0,). If we drop the dependency on the
parameters 0, and 6,, the values 6,,and ¢,,are implied. Thus F(x) = F(x, 0,y 0,,).
Let

T =17 Ties § (% £ %] — F(x) = (0, — 0)Fu(x)
(4.3) — (0, — Op)Fu()HI[x; = x] — F(x) — (él — 010)Fy(x)
— (0, — Oy)For(x)} f*(x) dx .

The following theorem carries the e{pproximation notion of Lemma 3.1 of
Sukhatme (1972) to the statistics 7}, (4.2) of our concern.

THEOREM 4.1. Suppose that

(1) n¥(@, — 0,) = 0, (1), i =1,2.

(2) For almost all x and all (0, 0,) in a neighborhood of (0,y, 0,,), Fi(x, 0y, 0y)
[Fo(x, 0y, 0,)] is continuous in 6, [0,] and F,(x, 0, 0,) and f¥(x, 0,, 8,) exist and
are bounded for each fixed x.

(3) For some a; < $, some a, < 2, and any ay < 1 there is a neighborhood N



U-STATISTICS AND TESTS OF FIT 117

of (015 Os) such that for almost all x and all (8., 6,) in N

max {| f*(x)], | fi5(x, 01, O)ls | fi(%, O, 0,)]} = q()
max {| fii(x, 01, 0,)], 9(x)} = g*(x)
max {|Fy(x, 0y, Oy)|, |Foy(x, 0y, 0,)|5 |Fu(x, 6, 0,)]} < m(x)

where

@) S[F(1 = F)]mg < oo

() S[F(1 — F)]2g* < oo

(¢) m < [F(1 — F)]* with c constant.
Then T, (4.2) and T,, (4.3) satisfy T, — T,, —p 0.

Proor. We may write

F(x, 0y, 8)) = F(x) + §{1, Fuo(x, 0, 0) 6, + §iz Fyi(x, 0,9, 0,) d6),

019

+ Sﬁ%o 8222)0 Fll(x7 017 02) dﬁl dﬂz

and similarly for f*(x, f,, §,). These expansions may be substituted in T, (4.2)
to obtain
T, =n"3,.;\ B(x, x)B(x,, x)C(x) dx where
B(x;, x) = I[x; £ x] — F(x) — (8, — 0,)Fyg(x) — (0, — O40)Fyu(%)
(4.4) — §i1 [Fuolx, 0y, O) — Fy(x)] 6,
— §, [P, O, 0:) — Fu(x)]
— {0 N Fy(x, 6, 0,) d6, db,
and
Cx) = [*(x) + $B[(%: O Ou) O + §i2, fii(x, Our 03)
+ Vi, Vi, fi(x, 0., 6,) a0, b
The theorem asserts that cross product terms in (4.4) converge to zero in prob-
ability except those involving the first four terms of B(x,, x), the first four terms
of B(x;, x) and the first term of C(x). We treat two of the cross product terms
to show the types of arguments used for the remainder; it is then tedious but

straightforward to verify the theorem.
Consider the cross product term

(4.5) 7 Ty S UIx = x] = FOOWI[x; < x] — F(x)} §%, f5(x, 0, 0,) db, dx .
Rewrite (4.5) as
(4.6)  nt S ([ Dl = x] — F)P
—n i 3 {I[x, £ x] — F(X)P}fi(x, 0,, 0,) dx db, .
Lemma 7.3 implies that

(4.7)  sup, n7H T {I[x, < x] — FOOHIF(x)(1 — F(x))] —p, 0

n
1 3
for }<a,<3.
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Lemma 7.4 implies that
(4.8)  sup,nt 3 {I[x, = x] — FOOPF()(1 — F(x))] —p 0
for 1<a,<3.

Recall that |f{(x, 6,, 0x)| < g(x). Now (4.7), (4.8) and assumption 3a imply
that (4.6) converges to zero in probability.

Consider another cross product term
4.9  ntyL8(0, — 010)Fo(x) Sﬁio [Fio(x, 0,5 010) — Fio(x)] dO, f*(x) dx
(4.10) = (n — )0, — 0,)) () g(6,) db,, where

(4.11) 9(0,) = § Fyo(X)[Fyo(x, 05, 0,0) — Fo(x)]f*(x) dx .
The integrand in (4.11) is bounded by 2m*(x)q(x) which is integrable by the
assumptions. Since the integrand in (4.11) converges to zero as 8, — 6,, for

almost all x, we have that lim, _, g(f,) = 0. This shows that (4.10) and hence
(4.9) converges to zero in probability. []

COROLLARY 4.2. In the definition of T, and T,, we may change 3,.; 10 3, ;
and Theorem 4.1 still holds.

THEOREM 4.3. Suppose the conditions of Theorem 4.1 hold and 0, — 6, —
3 9u(X) + i, Where nte,, = op (1) as n — co and g,(x,) has mean zero and
Jinite variance, k = 1, 2. If the expectations below exist then T, — (Taz + 1) —»p,
0, where

(4'12) Tnz =n" Zi#i Q(xi’ X]-) » and

O(x;, x;) = § {I[x, £ x] — F(x) — G1(*:)Fro(X) — ga(x;)Fou(x)}
(4.13) X {I[x; < x] — F(x) — gy(x;)Fyo(x)
nd — 95(X;)Fou(x)} f*(x) dx

1= =2E{{I[x; = x] — FO)Hgu(x:)Fuo(%) + g5(x,)Fou(x)} f*(x) dx
(4.14) + E[9:(x)]* § Fho f* + E[gy(x.)]* § F2 f*

+ 2Egy(x,)9u(x;) § FroFor f* .

PRoOF. With the techniques of Theorem 4.1 it is easy to show that 7, is
aAsymptotically equivalent under P, to (4.3) with n-! 21t=19x(x;) in place of
0, — O k = 1,2. We will treat one of the cross product terms in this modi-
fication of (4.3). Treatment of the others is similar.

Consider

n7t Bies VX < x] — Fx)}{—n— =1 91(%) Fro(X)} f*(x) dx
=—(n—Dn? 3, {[x, < x] — F(x)}gu(x;) Frox) f*(x) dx
(4.15) = =17 Ty § X £ X] — F(x)}gu(x,) Fuolx) f*(x) dx
=17 2 Sl = X] — F(0)}gy(x0) Fio(x) f*(x) dx
7 25 ()]l D S {lxs £ %] — F(x)}Fy(x) f*(x) dx] -
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The first term of (4.15) is a component of Q (4.13). The second term of (4.15)
converges to a component of y (4.14). The third term of (4.15) converges to
zero by assumptions on g, and the conditions of Theorem 4.1. []

5. A test for normality. Consider testing the hypothesis of normality with
unknown mean and variance, 6,, and 6, respectively. Let us test the hypothesis
by the statistic 7, (4.2), (i) with weight function w given by (3.7) and (ii) using
maximum likelihood estimates f, = n=* 37 x,and §, = n~* 37 (x, — %)*. We con-
sider below the satisfaction of the conditions of Theorem 4.3 in this case. Then
applying the work of Section 3 the limiting distribution of T, is obtained.

Writing y = 6,7%(x — 0,) we find [*(x, 0, 0,) = 0,7}/¢(y) and F(x, 0,, 0,) =
®(y). It is straightforward to obtain the derivatives needed in Theorem 4.1.

For (6,, 6,) in a neighborhood of (6,,, 6,) where 1 — ¢ < 6,/0, < 1 + ¢, the
following may be used as bounds in condition 3 of Theorem 4.1:

m(x) = K [1 + x*]exp{—(1 — ¢)x*/20,}
q(x) = K,[1 + [x|]exp{(1 + ¢)x*/26,} and
g*(x) = K[1 + [x[Texp{(1 + ¢)x*/20,} ,
where K, K, and K, are constants. From the fact that log O(x) ~ —x*/2 as
X — — oo, it follows that for any p > O there is a constant K, such that

FO[1 — F(x)] < K, exp{—(1 — p)x*/20,,} .

It is now easy to verify the conditions of Theorem 4.1.

For the application of Theorem 4.3 take g,(x,) = x, — 0,, and g,(x,) = (x;, —
0,)* — 0. We proceed to calculate y (4.14).

In what follows it is convenient to realize that the original statistic 7, is
location and scale invariant so that without loss of generality one may assume
0,=0 and 0,, = 1. Then g,(x,) = x, and g,(x;,) = x> — 1, and also F(x) =
D(x), Fip(X) = —$(x), Fo(x) = —x¢(x)/2, and f*(x) = 1/p(x).

Entering into y (4.14) are the functions

(5.1) Hy(x) = § {I[x, = x] — FOOJFu(x) f*(x) dx
= — {{I[x, £ x] — O(x)} dx = x,,

and ‘

(5.2) Hy(x;) = § {I[x, = x] — F)}Fo(x) f*(x) dx

= — @) {{I[x; = x] — C()}xdx = (x! — 1)/4.

Substitution in (4.14) yields y = —3. Using (5.1) and (5.2) the kernel Q (4.13)
may be written

(5.3) O(x,, X;) = Qu(x,, X;) — x,x; — (x — I)(x;> — 1)/4, where
Qu(xis ;) = § {[x, = x] = CLOHI[x; = x] — P)}(1/4(x)) dx .

THEOREM 5.1. Let x,, - -+, x, be a sample from a normal cdf. Then the limiting
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distribution of

,—0, x;—0
5.4 DN <x% b, X 1)
( ) n Z #J QO 02& 025
is that of Y5, (Z — 1)k — (3) where Z,, Z,, - - - are i.i.d. standard normal
variables.

Proor. The expression (5.4) is 7, with the weight function (3.7). Theorem
4.3 has given us that (5.4) is equivalent to T,, — 3, where T, =
n=' 3,7 0(x;, x,;) and Q is given by (5.3). Theorem 2.1 shows that the limiting
distribution of T,, is that of Y| 2,(Z,* — 1), where {1,} are the eigenvalues of
Q (5.3).

The kernel Qy(®@~(s), ®~*(r)), 0 < s, t < 1, is the one discussed earlier in
(3.3) and (3.7). The first two Hermitian polynomials are 4,(x) = x and A,(x) =
2-#(x* — 1). Comparison with (5.3) shows that Q has eigenvalues 1/k, k = 3,
4, .... [

When either the mean or variance is known a result analogous to Theorem
5.1 may easily be derived.

The distribution of Y v_, (Z,* — 1)/k is tabulated in de Wet and Venter (1972).
They find this to be the limiting distribution of the test statistic L, — a, where
L, = X [(xim — 0)6;} — ©Y(ij(n + 1))}, with x,, < - < x,, the order sta-
tistics of x,, ---, x, and {a,} a sequence of constants approaching infinity
approximating the mean of L,. We expect the test based on (5.4) to be
asymptotically equivalent under contiguous alternatives to the one based on L,.
Subtracting the constants a, from L, corresponds to our removing the i = j
terms from (4.1) to obtain (4.2).

6. The asymptotic performance of the tests. In Sections 3, 4 and 5 have
been examples of tests whose asymptotic power properties may be studied by
means of Theorem 2.1. We identify the following asymptotic testing situation
depending on a probability space (27 B, P,): (1) Corresponding to each kernel
Q in a given class one observes a null hypothesis “test statistic” > 2,(Z,* — 1)
where {4,} are the eigenvalues of Q. (2) Under alternatives defined by ke
L2, B, P,) one observes the “test statistic” }} 4,[(Z, + a,)® — 1] where a, =
§ & f, dP, with {f,} the orthonormal eigenfunctions of Q.

Consider the following simple index of performance for a test based on Q
against the alternative A:

alternative hypothesis mean
null hypothesis standard deviation

(6.1) ={Z Aa’H2 X 47

= {11 Q(s, Dh(s)h(r) dPy(s) dP()H2 §§ Q*(s, 1) dPy(s) dPo(1)} .
For fixed alternative 4 and two tests of the same limiting chi-square type the
denominators of the indices (6.1) are the same and the ratio of the indices is the

o =
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ratio of the noncentrality parameters. This ratio of noncentrality parameters
is the true asymptotic relative efficiency, i.e., the limiting ratio of sample sizes
to give the same limiting power under the alternatives. In general the ratio of
indices (6.1) may be interpreted as the limiting ratio of sample sizes to give the
same value of the index (6.1).

When Q (the test) is fixed and the alternatives /4 are varied some power results
may be obtained from Theorem 2.2 of Neuhaus (1976). The only change needed
in the arguments presented there to cover our case involves centering the random
variables and this change is easily made. (We would now require only 3 4,2 <
oo instead of } 4, < co.) The basic result is that for alternatives # defined by
eigenfunctions f; and f;, the asymptotic powers have the same order relation as
the eigenvalues 4, and 2; associated with the eigenfunctions. It is interesting to
note that for fixed Q the indices e, , enjoy the same property (see Dunford and
Schwartz (1963), pages 907, 908).

We now give the forms of (6.1) that result from chi-square tests and modified
Cramér-von Mises tests of Section 3. For the kernel (3.2) of the chi-square test

(6.2) eon = {2z (Y2k_, 1)*(de — di_)) ' H2(c — D}

The first factor of (6.2) is the noncentrality parameter under the alternatives
which was first given in a different setting by Eisenhart (1938). As the number
of cells ¢ approaches infinity while the maximum cell width approaches zero
the noncentrality parameter approaches the finite value § 4*. Thus the limiting
power will approach zero as ¢ — co for a particular alternative sequence.
However with increased ¢ the test has some power over a wider class of alterna-
tives. This decrease in power with increasing ¢ is noted in Kendall and Stuart
(1961), page 436.

For the kernel (3.3) of the Cramer—von Mises test

eon =V (V8 Ay*w(u) dul{2 §§ [min {u, v} — wv]w(u)w(v) du dv}~*.

7. Some large sample results for uniform variables. Let u,, ---, u, be i.i.d.
uniform (0, 1) variables and u,, < ... < u,, the associated order statistics. In
this section we obtain bounds on various functions of the u,,’s where a symme-
try exists between considerations for 1 < i < [n/2] and considerations for
[7/2] < i < n. For brevity we state the result for the complete set of ,,’s only
when it is notationally simple, otherwise we consider u,,, 1 < i < [n/2].

LeEMMA 7.1. For any A < 1,

lim,_, liminf, P{n=%| 37, {I[u, < u] — u}| < kut(1 —uw)*,0<u <1} =1.
Proor. Follows from Lemma 2.2 of Pyke and Shorack (1968).

Lemma 7.2. lim,_, liminf, P{i/kn < u,, < kijn, 1 < i < [n)2]} = 1.

Proor. Follows from Lemma 8 of Govindarajulu, Le Cam and Raghavachari
(1967).
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LemMAa 7.3, Ifi<a<land B> «a
SUPycyar 18| 20000 (U = ul — u}|u“"(1 —u)*—,0.
ProorF. From symmetry considerations it is sufficient to show that

(7.1) SUPO<usug P | Dt {4 < 4] — u}lu=e
converges to zero in probability. Let

B, = {|Xr {[u; < u] — u}| < ntkut, 0 < u < uy ey

ilkn < u,, < kijn, 1 <i < [n)2]},

where A < 4 is chosen so that { — A < 8 — a. From Lemmas 7.1 and 7.2 we
have lim,__, lim inf, P(B,,) = 1. The proof will be finished if (7.1) is bounded
on B,, and the bound approaches zero in probability as n — oo for fixed k.
. It is clear that the supremum of (7.1) over 0 < u < u,, converges to zero in
probability. On B,, the supremum of (7.1) over u,, < u < u,, ,,, is bounded by

SUP,, s sty gy NP = nb=8(1/kn)=< = o(1). 0

LemmMa 7.4, Ifl < a<2and B > a
SUPycy < 8 200 {I[uy < u] — wfu*(1 — )™ —, 0.

PROOF. As before, symmetry considerations make it sufficient to show

(7.2) SUPo<usuy (M F 2aima s < u] — ufu—e

converges to zero in probability. We bound (7.2) on B, of the previous lemma.
It is easy to see that the supremum of (7.2) over 0 < u < u,, converges to

zero in probability. Now for u,, < v < u, ,,, we have

Dt {u; = u] — ufure =[i(1 — u)* + (n — D=
< nlijn + ulu=*
< n[(i/n)u# + up;*] .
On B,, the above is bounded by

n[ke(ifn)'=% 4 K'=(i[n)'=*] < n2k*(i/n)*~«.
Therefore on B,, the supremum of (7.2) over u,, < u < u,, (,,, is bounded by
MaxX, g;gpnmht” Pn2ke(ifn)' =% = 2kent=f+a=t, ]
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