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ON FIXED OR SCALED RADII CONFIDENCE SETS:
THE FIXED SAMPLE SIZE CASE

By TERRY G. MEYER
Texas A and M University

Confidence sets in the form of balls of fixed or scaled radius with
respect to an arbitrary pseudometric are considered. Easily computable
lower bounds for the radius of these confidence sets are derived. As by-pro-
ducts, bounds for the minimax risk are given and a method of deriving
multiple decision procedures from point estimators is obtained.

1. Introduction. Although the geometrical form of a confidence set is not
specified by definition, simplicity of geometrical form enhances the communi-
cation of information about the underlying population. This paper is concerned
with confidence sets of a particularly simple and useful form: balls of scaled or
fixed radius with respect to an arbitrary pseudometric, centered about a popu-
lation parameter. By restricting confidence sets to this form, two difficulties
are overcome. First, every confidence set of this form is determined by a point
estimator. Thus the totality of confidence sets of this type is at least conceptu-
ally easy to determine and handle. Secondly, a natural definition of optimality
appears: minimizing the radius of the confidence set. The main results in this
paper yield lower bounds for the minimum attainable radius. The bounds, valid
for finite sample sizes, generalize and abstract similar results in Singh (1963) and
Farrell (1972).

Let .= {P,: § ¢ ©®} be a class of probability measures defined on a measura-
ble space (7, =”). In the fixed sample size estimation problem, the statistician
attempts to determine (estimate) a function #(4), 6 € ©, on the basis of the value,
x e 7, of the variable X which has distribution P,. The action space 57, con-
taining .~ = {#(0) |6 € O}, is the set of choices open to the statistician. The
penalty for choosing a in .+ when the distribution is Py, is given by d(a, 1(9))
where d maps .& x 7" into R*, the nonnegative reals, and is restricted herein
to satisfy:

(1) d(a,t)y < d(a,t')y+d(’, 1) forall a in ¢t
(1.1) in .7 (triangle inequality);

(ii) d(a,t) = d(t,a) forall r,a in 2 (symmetry).
If in addition to (i) and (ii), d(a, @) = O for all @ in 7, then d is a pseudometric
on./ x ./ or, by extension, on .=/ x .%7. Hereafter, d will be called a pseudo-
metric even though only the weaker conditions (i) and (ii) are required.
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A decision rule! or estimator, 7, is any function mapping .2” into .%. & is
the set of all such rules for which d(7, #(6)) is a measurable map of (7", &) into
(R*, &) for all § in ©, where <% is the Borel s-algebra on R*. Finally, the
symbol X is reserved for a nonnegative functional on &, that is K: .F°— R*.

To every element 7 in <7 a (possibly infinite) nonnegative number 2, depending
on d, & K and a, is assigned as
(1.2) A = inf{u:inf, o P,{d({, t(0)) S u-K(Pp)} = 1 — a}.

Thus each 7 in &7 determines a fixed (K(P,) = 1) or scaled (by K(P,)) radius
confidence set with probability of coverage greater than or equal to 1 — a. In
using confidence sets of this form, a logical choice of 7 is the estimator, if it
exists, corresponding to the smallest value of 2. This minimum value of 2,
called 2*, satisfies

(1.3) A* = inf {u: sup;. , inf, o P,{d(f, 1(0)) < u - K(Pp))} = 1 — a}.

In words, 2* is the smallest radius in K(P,) units of a confidence set of the form
{d(f, 1(0)) < u - K(P,)} with uniform probability of coverage greater than or
equal to 1 — a.

Theorems proved in Section 2 provide lower bounds on A*, while Section 3
contains applications of these theorems to a variety of situations. Section 4
provides an example where a bound derived is sharp and discusses accuracy of
the bounds. Section 5 contains a generalized version of theorems in Section 2,
which may be used to derive multiple decision procedures from point estimators.

2. Main theorems. For any at most countable subset, M = {f(/)} of O, a
probability distribution P on (2, ©”) may be generated by

(2.1) P(e) = 20 SiPyis(+) »
where {s,} are any “prior weights” for which s, = 1l and 0 < 5, < 1 for all /.
Denoting {s;} by s and P(-) by s o M(.) define 52 (.2°) to be the class {(s, M)}
where M ranges over all at most countable subsets of © and s ranges over all
possible sets of prior weights for each M. Note that 7 (~”) contains both (s,
M) and (s’, M") as separate, distinguishable elements whenever s # s’ or M +#
M’, even thought it is possible to have s o M = s’ o M’ in the sense of equality
of measures.

For two probability distributions P and Q defined on (22 =), define the
function j(., +) as
(2.2) j(P, Q) = inf, max [P(C), Q(C")] .

The function j is the greatest lower bound for the larger of two misclassifi-

cation probabilities when deciding between P and Q. Obviously j(s o M, r o N)
is defined for any pairs (s, M) and (r, N) in 5Z ().

1 All results contained in this paper generalize with only minor modifications to allow fcr
randomized decision rules. The additional complexity in notation and explanation compromises
too much in clarity of presentation to be included, however.
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Since j(+, «) < 4 for continuous distributions, H () in Theorem 2.1 is usually
empty if @ > 1.
THEOREM 2.1. For0 < a < 1, let
(2.3) H(a) = {(so M, roN): (s, M), (r,N) in () and
J(se M, roN)> a}
and let

d(1(6(i)), 1(6'(}))) ﬂ .
K(Pyi)) + K(Py.(5)

Gy(a) = SUP (s ear,r 0 Wye 1ry) |:inf0(i)eM,0’(j)eN [
If 2* satisfies (1.3), then A* = G (a).
PROOF. Let (so M, r o N) be in H\(a),
soM =3 5Py, , roN=3r;P,., .
Define #(6(i)) as ¢, and W in < by
W =U{d(l, 1) = 2- K(P,,))
for fixed 7 in & and associated 2 given by (1.2). Now
So M(W*) =1 — 31 5,Py, (W)

= 1= X siPo(di, ) < 2- K(Pyy))
S1—3s(l —a)
=a.

Since (so M, ro N)e Hy(a), ro N(W) > aor Y, r;P,; (W) > a. There exists
therefore an index k for which P, (W) > a. If we denote #(6’(k)) by 1, we
have
w=U. {d(f’ L) =4 K(P0(i))}
S Uild(ts 1)) — d(i, 1)) < 2 K(Py,,))
C (inf, [d(1,, ;) — AK(Py,,))] < d(i, 1))

=V,
hence Py (V) > a. By assumption P, {d(f, 1)) < 2AK(Pyp )} =1 — a so V
and {d(7, 1,') < AK(P,,)} must intersect. Thus

A K(PO'(k)) = infi [d(ti’ tk’) - ZK(Po(i))]
or
inf,; [d(t;, ") — A[K(Py)) + K(Pyu)] = 0.

Therefore inf, ; [d(1;, ;") — A(K(Py;,) + K(Py.;))] < 0 which implies

2= inf, ey g [f’({(f’i(,"),)_’__’,(‘?'_(f)))} ,
- wem e K(Po(i) + K(Pﬂ’(i))

Hence 4 = G,(a) which implies the result. []
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Another bound for 2* in Theorem 2.2 below is an abstraction and a generali-
zation of a result by Farrell (1972).

THEOREM 2.2. For0 < a < 1,

Hya) = {(s o M, roN):(s, M), (r,N) in (), s0 M&LroN,

(2.4) and there exists a p > 1 such that
_a_,(f_.?_y__,)_:\p d(r o N 1 — P l—p}
S'”[d(rozv) (roN) <(I —aya
and

G2 a) = "])(soM roN)E « “1 De .0 e — AL N N .
( ) S ,7 o N)E Hgla) 1 A ,0 N K(Po(i') K(Po,(].))

If 2* satisfies (1.3) then 2* = Gya).

Proor. The method of proof is to show H,(a) 2 H,(«a) and thus G,(a) =
G,(a). To show H («) includes H,(a) let (s o M, r o N) be an element in Hy(a).
For any set C in v, we have for the guaranteed p > 1 by Holder’s inequality

50 M(C) = {yd(so M) = |, [‘;‘(r ‘;-»"]j;]c«r o N) < [{od(r o N)J=s
[ [t o]
Since
[T o] <[5 [0 e m] <o
we have

(s o M(C)/(1 — @)=Y < ro N(C)/a  forall C in & .

Suppose r o N(C) < @. Then s o M(C) < 1 — @ or s o M(C®) > . Instead sup-
pose s o M(C) < a. Then s o M(C°) = 1 — a hence r o N(C°) > a. Thus for all
C in ‘¢ either 50 M(C) or r o N(C°) exceeds a. Suppose then there exists a
sequence of sets C, in ‘< for which lim,,_,, max (s o M(C,°), r o N(C,)) = a. This
implies there is a subsequence for which either

s M(Ciy) S @ <roNCyy) and lim,oro NCyp) = @
or

roNCyp) = a < 5o M(Cyy) and lim, ., 50 M(Ciy)) = a.

In the first case,

I — oS 50 M(Cya) < [re NCua)1?=7 [ 5, [ 20220 Faro ) [
7 Ld(roN)
Taking the limit as k — oo, we have

1 —a < (a)yr-vrr [S? [tj{((iij;\/f)) ]n dr o N)]I » ’
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a contradiction, since (s o M, r o N) is in Hy(a) and the right-hand side is thus
strictly less than 1 — «. The second case is similar, hence we conclude j(s o M,
ro N) > a. []

A third bound for 2* in Theorem 2.3 is an improvement and a generalization
of a result in Singh (1963).

THEOREM 2.3. For0 < a < 1, let

(2.5) Hya) ={(so M, roN): (s, M), (r, N) in 2£(L")

and supg.,. |so M(C)y —ro N(C)| < 1 — 2a}
and let

Gs(a) - Sup(soM,roN)eII3(a)
. l:infﬁ(i)EM 0'(jreN [ d(t((?(l)),t(ﬁ’(]))) ]] .
' K(Py)) + K(Py ;)

If 2* satisfies (1.3), then 2* = G,(a).

Proor. The proof is similar in method to the proof of Theorem 2.2. Let
(so M, r o N)beany element in Hy(a) and C any set in <”. Suppose s o M(C) =
ro N(C). If so M(C) < a, r o N(C) also must be less than or equal to . Hence
roNC)=1—a>asincel — 2a > 0 or else Hy(«) is vacuous. Ifr o N(C) <
a, ro N(C° = 1 — a and by the definition of H,(a) and the assumption s o
M(C) = ro N(C) we have s o M(C) < 1 — a@or so M(C°) > a. Clearly the argu-
ment is symmetric in s o M and r o N so that for all C in ‘" either s o M{C) > «
or r o N(C°) > a. If thereis a sequence C, of sets in % ‘such that lim,,_,, max (s o
M(C,), r o N(C,)) = «a, we arrive at the same dichotomy presented in Theorem
2.2. It is clear both cases again lead to similar contradictions, hence j(s o M,
roN)>a.[]

In general it will be difficult to compute all elements in H (a), i = 1, 2, 3, and
hence difficult to find G («). Fortunately, the proofs of Theorems 2.1 through
2.3 make it clear that any element in H (a) will provide a lower bound for 2*.
This comment is summarized in Corollary 2.1.

COROLLARY 2.1. Let (so M, roN) be in H(a), i = 1,2,3. If 2* satisfies
(1.3),

(2.6) 2% = inf, e o [,4’(’({9("))’ 1(0"()) ]
= O(ryeM,0'(j)eN K(Pgm) + K(Pg/(j))

In particular if s gives prior weight one to P, and r gives prior weight one to
P,., we have the following corollary.

COROLLARY 2.2. If j(Py, Py) > a and 2* satisfies (1.3)

(2.7) o> Au0), 16)
— K(Py) + K(Py)

ReMARK 1. In any of the above theorems or corollaries, it should be noted
that the fixed radius case (as opposed to the scaled radius case) may be obtained
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by using the functional K(P,) = 1 for all # € ®. Often 1* = co unless K(P,)
depends on nuisance parameters. In these cases, the functional form of K(P,)
can usually be inferred from singularities in the bounds for 2*. Then K(P,) can
be replaced with an estimator. This technique is illustrated in the third example
of Section 3.

REMARK 2. Ostensibly Theorems 2.1, 2.2 and 2.3 provide a bound only for
the minimum radius of a confidence set in the form of a ball. But in fact these
theorems provide a bound for any number, 2, for which inf, o P,{v(d(%, 1(6))/
K(P))) < 4} =z 1 — « if v is a monotone increasing map of R+ into R*. Thus
|0 — 6> or |In (6/6)]* can be handled without additional analysis though these
functions do not satisfy the triangle inequality (ii) in (1.1).

REMARK 3. Although it appears that one difficult problem (determining # cor-
responding to 1*) has been traded for another (determining elements in H,(a),
i =1, 2, or 3) this is not necessarily the case. Neyman-Pearson theory can be
employed to determine elements in H(a). If this is difficult, the integral defin-
ing H,(a) may be easy to evaluate, hence a bound may be computed using an
element in Hy(a) and Theorem 2.2. Unfortunately, experience has shown that
in cases where it is computationally difficult to use either Theorem 2.1 or
Theorem 2.2, it is also difficult to use Theorem 2.3.

REMARK 4. Although the method of deriving confidence sets by considering
families of hypothesis tests is well known, it is surprising to find a relation
between the radius of a confidence set and the (pseudometric) distance between
hypothesis testing alternatives.

REMARK 5. H,(«a) and Hy(a) are empty for & > 4, and H,(«) is usually empty
for « = §. Although this presents no difficulty since one is typically interested
in confidence sets with probability of coverage near 1 (a near zero), it is pos-
sible to extend Theorem 2.1 to cases where «a is near one. This is done in
Section 5 only because the converse to the extended version of Theorem 2.1
may have useful applications.

REMARK 6. Since determining elements in any H,(«) does not require know-
ledge of the pesudometric involved, one element in any H,(a) may be repeatedly
used to provide bounds for 2* for any number of pseudometrics. This technique
is illustrated in Example 2 of Section 3.

REMARK 7. By use of standard inequalities, Theorems 2.1—2.3 can be used
to determine lower bounds on the minimax risk as shown below.

THEOREM 2.4. Let v be a monotone increasing map of R* into R*. Then
(2.8) inf;. , supyco E,v(d(#, 1(0))/K(Py)) = SUPye o, [@ - V(G y(a))]
where G(a), i = 1,2, 3 is defined in Theorems 2.1, 2.2 and 2.3 respectively.

ProoFr. Let
9 = supyeq E,v(d(f, 1(0))/K(P,))
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for some fixed 7 in & for which g is finite. Then by Markov’s inequality, for
any « in (0, 1) and for all # in O,

P,{o(d(E, (0))/K(Py) > gla} < a - Lol O)K(Py)

g

which is less than or equal to « by definition of g. Thus for all ¢ in O,
P,{d(E, (0)/K(P,) < v (gje)} 2 1 — a,
so by Theorems 2.1—2.3,
vY(gja) = G(a) .
Hence
inf;eg (9) = av(G (a)) .

Since this holds for each « in (0, 1), the result follows. []

ReMaRrk 8. Since #(d) is often a k-dimensional vector and d is often a Eu-
clidean pseudometric, the applicability of Theorems 2.1—2.3 to these cases
deserves special mention. In particular, since sup,., |¢'t — a| where G < R*,
1€ R* is a pseudometric, there are applications to confidence sets for contrasts.
Similarly, any ellipsoid (¢ — a)’ };7'(t — a), t€ R¥, )] positive definite, can
be written as ||C'a — C't||* = ||a, — C't||* for some nonsingular C and hence
ellipsoidal confidence sets are amenable to analysis by Theorems 2.1—2.3. (
is the [, pseudometric.) Finally, since

A+ Ay
2

(Zl<t—a<lz):<lt—a—— <hh) = (- @<

for a, r in R, Theorems 2.1—2.3 actually provide bounds on the length (4, —
;) of a confidence interval rather than on the radius of a symmetric confidence
interval.

3. Examples. In this section, we illustrate some uses of Theorems 2.1 and
2.2 and Corollaries 2.1 and 2.2.

ExXAMPLE | (ease of computation). Let P, be the joint distribution of n
independent Normal random variables each with mean p and variance ¢?, and
let = be the set of P, ,, for ©® = {(x, 0): (¢, 9) € R X R*}. Set K(P,,) = 0,
t((p, 0)) = p, = R and d(a, p) = |a-— p|. Let 6 = (p, 0) and ¢’ = (v, 0)
and use Corollary 2.2. In order that j(P,, P;) > a, it is clear from Neyman-
Pearson theory that
200741 — a)

nt ’

(3.1 lr— v <

where ®@-! is the inverse cumulative distribution function of a standard Normal.
Hence Corollary 2.2 implies

20071 —a) _ D71 — a) ‘

(3.2) =
(0 4+ o)nt n}
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In this case, invariance arguments (see, e.g., Ferguson (1967), pages 168 to 172)
give 2* = @1 — «/2)/n* from the estimate / = X, the sample mean. The ratio
of 2* to the bound is less than 1.28 for o < .1.

ExAMPLE 2 (changing the pseudometric). Let Z“and K be as in Example 1,
but change #((y, 0)) to |p|* and d,(a, |p*) = |a — |p|?| for se R, s+ 1, s # 0.
Corollary 2.2 can be applied to the same pair P, , and P, ,, as in Example 1
since determining (s o M, r o N) in H,(a) does not depend on ¢, d, or K. Using
(3.1) and assuming O is still {(¢, 0): (¢, 6) € R X R*}, one concludes that 1* =
+ oo whenever s = 1 and s = 0.

ExAMPLE 3 (determining K; confidence sets with random radius). Leave d,
t, Z’and O the same as in Example 2, but allow K(P, ,)) to be ¢?, z > 0. Then
using the same pair (P, ,,, P, ,,) as in Example 1, it can be seen that for s < 0
or s >1, 2* = 4+o00. Also, if 0 <s< 1 and z+ s, ¥ = +00. However,
when z = s (i.e., K(P,,) = ¢°) Corollary 2.2 and relation (3.1) yield 2* >
32 - @1 — a))*/n**. Using the estimate |X|°, 2 is proportional to n~**so that
the rate provided by Corollary 2.2 is correct. Moreover, ¢° can be replaced by
an estimate to get a confidence set with a random radius.

ExAMPLE 4 (benchmark). Return to Example 1 with K(P, ) = g, 1((¢1, 0)) =

¢ d(a, p) = |a — p|, but change ® to © = {(p, 0): (¢, o) € I X R*, I an interval}.
Since there always exists a ¢ for which

200741 — «)

(3.3) -

< m(l), m(I) = length of 1,

there exists a pair (P, ,), P ,) which is in H(a) and the bound (3.2) applies.
Since for X (the sample mean) 2 = ®~!(1 — «/2), any other estimate reduces
the length of the interval at most by (®='(1 — a/2) — ®~}(1 — a))/(P (1 — a))
percent. As noted before, this is at most 289 if « < .1. This result applies
whenever there is a pair (¢, ¢), (v, ¢) in © satisfying (3.3). Thus in determining
a scaled width confidence interval for g, the statistician may judge whether the

assumed restrictions on © and the search for an estimate better than X are worth
the small gain involved.

EXAMPLE 5 (use of Theorem 2.2 in regression analysis). For yin R™, let P, ,,
be an n-variate normal distribution with mean vector Ay, for fixed n x m matrix
A, and covariance matrix ¢’. Let ® = {(y, 0): pin R™, ¢ in R*}, let t((¢, 0)) =

ts K(P.,) = o, and d(a, p) = |la — p|| where is the [, norm. Apply Theo-
rem 2.2 with p = 2,

r={1},
N ={(0, 0)},
s = {s}iy s

M = {(ps 0)}ics
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to yield
3.4 A* = supmin, ., ||p]|/20
where the supremum is taken over all sets M satisfying

3.5) kL Duko18,5;exp fi"%"iﬁ < (1 — a)a
for some set s.

If 4’4 is singular, 2* = 4 oo, a result that could be derived using the theory
of estimable functions in Scheffé (1959), for example. Hereafter, assume 4’4
is nonsingular.

Although finding constants s, and vectors g, that give the best (largest) bound
is difficult, useful results are still available. As an example of one choice of the
w.’s, let the p,’s be the m eigenvectors of 4’4, each of fixed length act. If {z;}

are the corresponding (positive) eigenvalues of 4’4, (3.5) becomes

m_os2ent — 1) < (1 — a)?/a — 1
7.11( )—( )

since
mos =1.

=17
By choosing all s,’s zero except s; = 1, (3.4) and (3.5) yield
(3.6) 7 = [In[(1 — ayjalj(4z)}, V;.

As a second choice of the p,’s let the vector u; have all zero elements except
the jth one which is taken to be gct. By similar arguments as above,

(3.7) ¥z [In[(1 — apjalj(4a)],

where a;; is the (j, j) element of A’A.

If the pseudometric is changed from |ja — p|| to |a — p;| where g, is the jth
element of g, equation (3.7) still applies. Thus, for example, in estimating the
coefficient of x* in a polynomial regression,

(3-8) 2 = [In[(1 — ay/a]/(4 - 25, %))

EXAMPLE 6 (pseudometrics that are difficult to handle). One valuable property
of Theorems 2.1 through 2.3 is their remarkable generality. Another paper
(Meyer (1976)) will show their application to a nonparametric problem, while
this example shows how pseudometrics that are ordinarily difficult to handle are
easily analyzed by Theorems 2.1 through 2.3. Consider the special case of a
linear regression, where ../; ©, K, 4 and g retain the same meaaings as in
Example 5. Let ¢z = (p,, 1) in R?, let the first column of 4 be (1, 1, 1, .-, 1)/,
and let the second column of 4 be (x, — %, x, — %, - -+, x, — %)’. (This cor-
responds to the model ¥, = s, + p,(x; — X) + e, where the e, are i.i.d. N(0, ¢?%).)
Now for § = ((1y, ), 0) let #(0) = p, + py(x — %) and d(a, 1(0)) be

[§[a(x) = (1 + palx — X)) dW(x)J*
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where I € R and §, dW(x) = 0. Explicitly, we wish to find

A* = inf {'2: inf(pl,#2)€R2,06R+ P((pl,yz),a) {[Sz [f(x) — M
— py(x — X)PPdW(x)]t £ A0} = 1 — a for some i(x) in Z}

where P, ., {+} is the joint distribution of n independent random variables,

{Y.}io,, with Y, having a Ny, 4+ p(x, — %), ¢®) distribution. Define and assume

finite
Bo = §1 dW(x)
Br= {1 (x — %) dW(x)
By = {1 (x — %)*dW(x)

T=1 (xi — )_C)Z
n

sz =

To simplify the analysis, assume 8, = 0.
Apply Theorem 2.2 with p = 2, r = {1}, N = {(0, 0)}, s = {1}, M = {(g, 9)},
© = (¢ o), to yield
20 - 2% Z SUp [, (i + mlx — %) dIV(x)]}
= sup [p*By + 15’8,
where the supremum is over all (g, #,) such that
er' A4t < (1 — a)fa
or
w4 52 = (@) In[(1 — aya].
Clearly,

* In [(1 _ a)z/a] - max [‘stx_za ‘Bo] g

It is enlightening to compare this with the 2 corresponding to the least squares
(LS) estimates of y, and p,, i.e., the 2 corresponding to

a(x) = ¥ + (x — %) 20, (x; — X)Y/ns?.

If we make the further simplifying assumption that 8, = B,s,7%, the exact A can

be calculated as
1= [XgJ—a.Boir“

n

where Py’ < y3,_.} = 1 — @ where y;? is a chi-squared variable with two
degrees of freedom.
The ratio of A for the LS estimator to the bound is

[ ‘!lil,—,a_ﬁ__}*
In[(l — a)}/a]
which is less than 2.97 for a« < .1.
Although a ratio of radii of 3 may seem large, compare this ratio with 2.4,
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the ratio of 2* to a similarly calculated (using Theorem 2.2, s = r = {1}) bound
in the simple case of estimating the mean of a normal distribution. In this light,
a ratio of 3 is strong evidence that, if not optimal in the sense of achieving 2*,
the LS estimator is close enough so that considering the ease of computations
involved with it, its use is strongly recommended. (Some other estimators are
reviewed, proposed, and compared in Dunn (1968) and Halperin and Gurian
(1968).) In fact, a similar analysis of the same problem with

d(a, 1(0)) = sup,., |a(x) — u; — uy(x — %)|

gives 2.7 as the ratio of the 1 corresponding to the LS estimator to the bound
derived using Theorem 2.2. In this case, as Dr. L. D. Brown pointed out to the
author, the LS estimator is optimal. (This fact follows from Brown and Fox
(1974).)

4. An example where 1* = G,(a); accuracy of Theorem 2.1. Example 6 in
the preceding section shows one difficulty in applying Theorems 2.1—2.3.
Whenever 2 corresponding to 7 differs from the bound, it is not clear how much
of the discrepancy is attributable to 7 not being optimal (in the sense that 2 #
2*) and how much is attributable to the fact that the bound may not be sharp.
Very little is known about the accuracy of bounds provided by any of the theo-
rems in Section 2. Heuristic arguments must be used (as in Example 6) except
in two special cases. The first, when the bound is + co (as in parts of Example
3), of course indicates that no fixed (or scaled) radius confidence set exists with
finite radius. The second is the only known case in which 2* = G,(«). This
case, given below, is significant since it shows that any improvements in Theo-
rem 2.1 must reduce to Theorem 2.1 in this situation.

Let P, be the uniform distribution on (¢ — 4,6 + 1), v =0 = R, K(P,)) =
1, t(0) = 0, and d(a, 10)) = |a — 6|. Forn = 2and § < r < 1, define

0,,=2ir—r i=1,2,.---,n
=r+2r i=-—1,-2,-3, —, —n
s :(zn)*l’ i = __tl’ iz’ ) in

N, =1{0,.}
Sa = {5,,n}
0,,=2r, i=0,+1,4+2, ..., +(n—1)
re,=0@2n)™" i= 41, +2, 43, , =(n—1)
= n! i=0
M, = {0}
o = {ria}
P,=5,0N,
Q,=r,oM,
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Using Neyman-Pearson results it can be shown that
J(Pn» @) = (1 — r)2n — 1)/2n .
In order that (P,, Q,) be in H,(a), j(P,, Q,) > « or

2na
r 1 — === .
< 2n — 1
Since d(1(0, ,), 1(¢},,)) = r, by Theorem 2.1, 2* = r/2. Since r may be arbitrarily
close to I — 2na/(2n — 1) independently of n or a,

o hex
2n — 1

2*

v

1
2

for all n = 2. Hence
= (1 —a)2.

Consider now the estimator / = X. The distribution of |X — | is the same
for all values of ¢, so restrict attention to # = 0. Clearly the smallest £ satisfy-
ing P{|X| < A} =1 —ais(l —a)/2. Hence 2 = (I — a)/2 = 2* = (1 — a)/2,
2* = (1 — a)/2 (and G (a) = (1 — @)/2). Hence the bound given by Theorem
2.1 is sharp for @ < } and f = X is the estimator which achieves this bound.

The above argument could be generalized to show the bound provided in
Theorem 2.1 is sharp for other families of unimodal, truncated, translation
parameter distributions besides the uniform. The only requirement is that the
parameter be allowed to vary over an unbounded interval. Unfortunately,
attempts to extend the class for which 2* = G,(a) have failed. The underlying
reasons why Theorem 2.1 is sharp in the case above remain obscure.

5. Multiple decision problems; composite hypotheses. It has been noted that
G (a) is usually O for « > . This nuisance is overcome by considering 7, the
set of all triples, (B, B’, B”), of measurable subsets of .2 which partition .7
that is for which BUB UB’'=.72 and BN B'"=Bn B =B nB" =¢.
Define for any three measures O, P, Q on (£, .5)
(5.1) ji0, P, Q) = inf, 5 5., max (O(B"), P(B"), Q(B")).
Using jy(+, «, »), the following generalization of Theorem 2.1 can be proved.
THEOREM 5.1. Let
(5.2) H%a) ={(soM,s o M',s" o M"):s0M,s" o M', 5" o M" in 7 (-F)
and jyso M,s" o M', 5" o M") > a},
and for any two countable subsets, M and M’ of 0, let
, . d(t(6(0)), t(0'(j
(5‘3) ¢(M’ M) = lnfﬂ(i)e,w,o'(j)ew l:( ( ())“( U)):l .
K(Pom) + K(P()'(j))
If 2* satisfies (1.3),

A* Z SUP e oo sy e o {MUD [G(M, M), G(MT, M”), p(M, MT)]}
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Proor. If M = {0(i)}, M' = {0'(j)}, M" = {0"(k)}, let W, = U, {d(i, 1) <
K(Pyi) - 23 W = U (d(is 1)) < K(Pois) - 2 W = U (d(is 1) < K(Pyroge) -
A}, where 1, = 0(i), t;/ = 6'(j), t,/” = 0"(k) and 2 is the number associated with
fe 2 by (1.2). Byarguments similar to those used in Theorem 2.1, s o M(W,°) <
a, s o M'(We) £ a, s o M"(W¢,) < a. Thus there can not exist a partition
B, B, B” for which B> W,, B 2 W,, and B” 2 W, by definition of H®(«).

Hence either W, n W, or W, n W, or W,, n W,, is nonempty. If W, n
W,. # ¢, there exist indices i and j for which

{d(i, 1) < AK(Py))} 0 {d(E, 1)) < AK(Py )} # ¢
since

{d(i, 1)) < AK(Py.)} S {d(t,s 1)) — AK(Pyy) < d(Es 1))}, A= ¢(M, M").
Similar conclusions follow if M’ n M" = ¢ or M n M" = ¢. Hence
2z min [§(M, M'), (M, M), p(M", M")]
and the result follows. []

ReMARK 1. Clearly use of triples of measures is arbitrary. The same theorem
applies to n-tuples of measures if /' ,, j,, and H'®(a) are correspondingly gener-
alized. Then 4* would equal or exceed the ¢ value of the minimum of the
n(n — 1)/2 pairings of subsets M, for every n-tuple in H(a). In fact the same
argument generalizes to countable sets of subsets M,.

REMARK 2. Theorem 5.1 and its generalizations are not useful in bounding
2* from below, since determining elements in H™'(a), where Neyman-Pearson
theory is inapplicable, may be more difficult than determining 4* itself. In fact
this is precisely the intended purpose—namely using knowledge of estimation
problem to derive hypothesis tests. This idea is contained in Corollary 5.1, the
converse to Theorem 5.1, and in the interpretation of j,, which follows it.

COROLLARY 5.1. Let {M} be a sequence of countable subsets of ©. Suppose 2
satisfies (1.2). If

(5-4) 4 < infi; [p(M, M;)]
then for all classes of prior weight sets s,, 5,y - - -,
(5.5) Jo($* My, 5, M,, - 0) <

For any (B,, B,, - - -) in / _, choose s, o M, as the true population distribution
if Xis in B,. Then s, o M(B°) is the probability of an incorrect decision if the
true population distribution is 5, o M,. j_, is the infimum of the supremum of the
error probabilities. That is, if j, < «, there exists a nonrandomized decision
rule such that the probability of being incorrect is at most . Thus to find a
multiple decision rule the statistician chooses an estimator, f, and arbitrarily
picks a pseudometric, d. After the 2 corresponding to 7, d and « is found, a
nonrandomized rule may be found for deciding which is the true population
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among any s, o M,’s for which (5.4) is satisfied. (The rule, of course, is: decide
s; o M; whenever Xe W, = U {d(f, t;;) < K(Py. ;) - A} where M; = {0(i, j)}ss
16, j)) = t,;, and decide anything if X'¢ |J; WMj.)

But more can be said, since Corollary 5.1 holds for all classes of prior weight
sets, including those which put prior weight one on only one element in a
particular M,;. Hence the proposed test actually decides among composite hy-
potheses, i.e., from which of the sets (M,’s) the true population distribution
comes. This observation applies to the case of M, versus M,, i.e., composite
null versus composite alternative. Of course any tests derived by this method
may not be endowed with any optimality properties whatever.
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