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ROBUST ESTIMATION IN DEPENDENT SITUATIONS!

By STEPHEN L. POrRTNOY
University of Illinois, Urbana-Champaign

To analyze the effect of correlation in random samples on the perform-
ance of estimators of location, small correlation approximations for the
asymptotic variance are found. Approximately optimal estimators (in the
asymptotic minimax sense of Huber) are presented and compared to other
estimators in terms of maximum asymptotic variance over the class of e-
contaminated normals. The presence of relatively small correlation can
drastically inflate variances, and the optimal rules given here offer sub-
stantial improvements over previously considered estimators.

1. Introduction and optimal asymptotic variance. The effect of dependence
on robust procedures has previously been studied only for particular procedures
and particular distributional situations (e.g., see Gastwirth and Rubin [3]).
However, the problem of finding optimal robust procedures has not been solved.
In this paper, estimators of a location parameter which are approximately as-
ymptotically optimal in the sense of Huber ([4], [5]) are found for models which
are similar to (and asymptotically equivalent to) moving average schemes. The

basic model is as follows: let Y}, Y,, - .., Y, bei.i.d. with continuous, symmetric
cdf G, let Yy=Y,and Y,,, = Y,, and define fori = 1,2, .- -, n
(1.1) X;=0+Y, + oY, + oYy,

where ¢ is a location parameter and p is a parameter with |p| < 1 (and which
will generally be taken to tend to zero). The reason for defining Y, and Y, ,,
as above is so that the distribution of X, - - -, X, will be stationary (and, hence,
the marginal distributions will be the same), and so that the result of Theorem
1.1 (providing the optimal asymptotic variance) will apply directly.

Section 2 presents the basic expansion of the asymptotic variance for rather
general estimators in the form

(1.2) o' = 0, + cp + C(p’)

where ¢, would be the variance for an independent sample and ¢ depends on
the distribution, G. Section 3 uses methods of Huber ([4] and [5]) to find esti-
mators minimizing the maximum approximate asymptotic variance (1.2) over
distributions, G, which are ¢-contaminated normals. The minimax estimator
corresponds to a maximum likelihood-type estimator (M-estimator) defined by
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a function W which is piecewise linear with slope one near the origin and slope
—p in the tails. Thus, the possible presence of positive correlation can justify
the use of W-functions with a small amount of redescent.

Section 4 discusses how to find the maximum approximate asymptotic variance,
o*, over the class of ¢-contaminates of #7(0, 1), and lists numerical results for
a number of estimators. Conclusions are presented at the end of the section.

Section 5 presents an expansion of ¢® to terms in p*® and uses it to assess the
adequacy of the first term approximation. The appendix presents a theorem
providing asymptotic normality for general classes of M-estimators in m-depend-
ent situations. Since previously published theorems apply only to continuously
differentiable ¥ functions (even in the independent case) the theorem here (which
permits the derivative to be discontinuous) should be of independent interest.

Now consider a generalization of (1.1): let Y = (Y}, - - -, Y,)’ and assume the
observation vector X = (X, - - -, X,) satisfies

(1.3) X = fe + SY

where e = (1, ---, 1) and S is an n X n symmetric circulant matrix with first
row (1 p, p, 05 - - - p, 0,) (such that Sisinvertible). If Sis known, this model can
be easily reduced to the independent case. Letd =1+ p, + p, + p; + -+ +
0, + p,. Then Se — de, so S~e = (1/d)e; and, hence,

STIX =68""'e + Y = (0/d)e + Y.
Therefore,
(1.4) dS—*X = fe 4+ dY .

Thus, given an optimal estimator in the independent case, that procedure can
be directly applied to the coordinates of dS~'X to obtain an optimal estimator
for model (1.3). The major difference is that the variance will be inflated by an
amount d*; and, hence, it is clear that relatively small amounts of dependence
spread throughout a sample can rather seriously inflate the variance of estimators
over what would be expected in an independent sample.

In particular, combining these results with known results on efficiency of
estimators will provide lower bounds for the asymptotic variance of any sequence
of estimators. The recent results of Stone [7] will therefore yield

THEOREM 1.1. Let o be the inverse Fisher information for the distribution of Y
as defined by Stone [9]. Let {0,) be a sequence of estimators such that n¥(0, — ) —,
A0, 6*(0)). Then (i) o*(0) = d*s* for almost all 0, and (ii) if {0,} are location
invariant then o*(0) = d’cy for all 6.

We are interested in considering the effect of dependence on various estimators
based on the original sample (X,, X,, ---, X,). Since the relationship between
X and dS~'X is generally difficult to consider, the remainder of this paper is
concerned mainly with the special case of (1.1). However, it should be possible
to extend most results (at least qualitatively) to model (1.3).
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2. The basic small-correlation expansion of the asymptotic variance. Let
(X, X,, - -+, X,) be a random vector with stationary marginal distribution F,
where (setting the parameter § = 0) F is a continuous cdf symmetric about zero.
Let T be a real valued functional on the space of all cdf’s, and let F, be the
empirical cdf of the sample. Then Filippova [2] shows (under conditions in the
independent case) that

(2.1) T(F,) = T(F) + § I(x) dF,(x) 4 o,(1/n?)

as n — oo, where /I,(x) is the influence curve (or von Mises derivative) of T at F:
(2.2) Ii(x) = lim,_, L {T((1 — o)F + ¢3,) — T(F))
3

(and where 4, denotes a unit point mass at x). Assume /,(x) is skew-symmetric
about zero, and that T(F) = 0.
The main stochastic term is

§ 10 dF, () = - T 1K)

so that as long as the dependence is such that the central limit theorem holds,
we may expect

(2.3) mT(F,) —, 470, ¢%)
where
(2.4) 0" = EI*(X) + 2 2372, Cov (Ip(X)), Tp(X;))

= EIFZ(X) + 2 32, EIF(Xl)IF(Xi) .

It should be possible to prove a version of Filippova’s result (2.1) (which
requires essentially only the weak law of large numbers). However, the condi-
tions would be at least as complicated as those in [2]. The appendix proves
(2.3) for most M estimators when the observations are m-dependent. Formally,
an M-estimator is given by defining T(F) to be any value satisfying

§ W(x — T(F)) dF(x) = 0

where here W will be an odd real valued function. The fact that (2.4) agrees
with the expression in the appendix follows from the fact that the influence
curve for an M-estimator (as given in [5]) is

2.5 Io(x) = W(x)[E¥'(Y)

if ¥ is absolutely continuous (and where expectation is with respect to G).
The following result now evaluates ¢° in (2.4).

THEOREM 2.1. Under model (1.1) assume that F (the marginal of X,) and T are
such that

(2.6) lp() =G and  |[lx(x) — L;(9)]| = CIF — G|,
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and that G has a finite second moment and has a characteristic function, ¢, (u), such
that § W'\, (u)| du < +oo. (Thisimplies that G has a density, g, with a continuous
bounded second derivative.) Then, with ¢* given by (2.4),

(2.7) o' = EIXY) — 4pEYI(Y) § I(x)g'(x) dx + (%) .
REMARK. If /;(x) is absolutely continuous, (2.7) implies
(2.8) 0* = ELXY) + 40EYI(Y)EI/(Y) + ¢/ (0%) .

Actually the regularity conditions on G can be transferred to /,(x); so that if
EY? < + o0, I, has a bounded, continuous second derivative and the second
part of (2.6) holds; then expanding I (x) in a Taylor series immediately yields
(2.8) (even if I,(x) is not bounded).

ProOF oF THEOREM. Under model (1.1), two observations are independent if
their indices differ by more than two; so only the variance and first two covariance
terms are needed to apply (2.4). Consider the characteristic functions of X and
of the pairs (X}, X,) and (X}, X;). Since EY? < -+ co, these can be expanded using

exp{iu[Y, 4 o(Y, + Y,)I} = e™"[1 + iup(Y, + Y,) + w¥(Y," + Y,)(0")] -
This yields (since EY = 0)

(2.9) () = op(W)[1 + W' ("],
which can be inverted to obtain
(2.10) fe(0) = 0(x) + 0" ()0

Hence, using (2.6), EI,(X) = EI,(Y) + </(p*). Similarly
Py V) = @y + p0)ey (v + pu)[1 + (0)]
= [y W)y (v) + plugr(0)ey' (V) + vo,(v)ey' (1))
+ o', v, p)J[1 + ("]
where ¢(u, v, 0) — — 31 ()¢, (v) + 2uve,"(u)e,'(v) + Vo, (V)¢,"(1)]as p—0
for each u and v. By hypothesis, g"’(x) is continuous and uniformly bounded,
so by change of variables and direct expansion,

Joreryrgrorp(6 3) = 9(0)9(y) — o{y9(p)g'(x) + xg(x)g'(»)} + 0*f(x, ¥, 0)
where f(x, y. o) is uniformly bounded in p. Comparing the above expansions,
@(u, v, p) is the Fourier transform off(x, ¥, p). Thus, using basic properties of
the convergence of Fourier transforms, for any bounded measurable function
h(x, v),

V8 ACe ) fx s 0) dxdy — §§ h(x, NIXg(x)9"(y) + 20'(x)9'(y)
+ V'0(»)g"(x)] dx dy
as p — 0. Therefore,
EL(X)1p(X,) = —20EYI(Y) § L(x)g'(x) dx + (o) .
In a similar manner,
EL(X) (X)) = (0% -
The theorem follows using the last part of (2.6) and (2.10).
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For M-estimators, if ¥ is absolutely continuous with ¥’ bounded, then (2.10)
implies that (2.6) holds. Thus, in this case, (2.8) becomes

@) o EV(Y) L EYU(Y)
(EW(Y))? EW/(Y)

+ (0" .

In other types of estimators, the influence curve, 7, will generally depend
more explicitly on F, and the resulting formulas for ¢* will tend to be substantially
more complicated. However, results for a restricted class of estimators which
are linear combinations of order statistics (including trimmed means) can be
easily found. Particular examples are presented in Sections 3 and 4.

3. Asymptotic minimaxity. This section considers the problem of minimizing
the maximum approximate asymptotic variance over various classes of distribu-
tions, G, in model (1.1). Since any influence curve can be achieved by an M-
estimator with appropriate ¢ function, we will restrict attention to M-estimators
and use formula (2.11) which gives the approximate asymptotic variance under
model (1.1) with ¥ ~ G. Also assume throughout this section that G has a
density g, and begin heuristically by considering the approximate asymptotic
variance in (2.11) here denoted by V(g, ¢).

We first fix g and find the function ¢, (as a function of g) which minimizes
Vi(9,¢). We then show that the minimum asymptotic variance V,*(g) = V (9, ¢*)
is simply (1 + 4p)V,*(g) + < (0®) where

3.1 Vo — , — _MESboz(Y)

(3.1) 0*(9) (95 Po) (Egy/(Y))

is the minimum asymptotic variance in the independent case. It follows that
the least favorable distribution for V(g, ¢) over any class of distributions is the
same as that for ¥,(g). Since Huber ([4] and [5]) has found this least favorable
distribution in certain cases, his results can be directly applied to find a minimax
procedure for the asymptotic variance ¥, (under model (1.1)). This will be done
explicitly for the class of e-contaminates of an ../7(0, 1) distribution, where a
formal optimality theorem will be proven. The equivalent optimal linear com-
bination of order statistics will also be given.

From results of Huber, V (g, ¢) is convex in ¢ (for fixed g) and will have a
unique minimum, ¢,, over the class of ¢ for which V(g, ¢) is finite. Hence,
for p small, V (g, ¢) will also have a imique minimum, ¢,, in a neighborhood
of ¢,. Using standard variational methods, if ¢, is a unique minimum for ¥},
then the directional derivative in direction 4 equals zero for all functions 4. In
particular, we want to find ¢, which satisfies the following equation for any
continuously differentiable function % vanishing outside a compact set:

(3.2) 0=lim,_, ; V(g ¢ + th) — Vi(g, ¢)}

_ 2EG(YV)(Y) _ 2EP(NER(Y) | 4 EYK(Y) _ 4 EYG(V)ER(Y)
(E¢/(Y)y (EY/(Y)) Eg/(Y) (Eg/(Y))?
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where Y has density g. Thus, letting
(3.3) a=EJ(Y), b = EQ(Y) and c=EY{(Y),
the minimizing ¢, must satisfy
0 = 2aEQ(Y)h(Y) — 26ER(Y) + 4pa®EYR(Y) — 4pacER (Y .
Now integrating E#’(Y') by parts yields
(34 0=1T[2a¢(y)9(y) + 2b9'(y) + 4pa’yg(y) + 4pacg’(y)]h(y) dy .

This implies that (at least for almost every y) the integrand in brackets in (3.4)
must vanish. Hence solving for the minimizing ¢,,

(3.5) $ilx) = —2pax — <2b +2: pac> Z,((j))
_ ’; [(1  2ac pl’(x)> + 4‘”‘]
where

e = tog ot = 220,

Since M-estimators are unchanged if ¢ is multiplied by a constant, we may take
the minimizing ¢, to be

(3.6) $i(x) = —(1 + P)l'(x) — pax
where (with a, b and ¢ given in (3.3)),
2a 2ac
3.7 === and =27
(3.7) a= =L ="
Note that the function ¢, minimizing V(g, ¢) is ¢(x) = —I'(x). Hence,

$i(x) = Po(x) — p(ax + pI'(x)) ,
and the first order correction to ¢, in the dependent model is to subtract the
odd function (ax + plI'(x)).
From Theorem 1.1 withd = (1 + 2p) the minimum asymptotic variance must
be

(3.8) Vi(9) = (1 + 200Vi%(9) = (1 + 4p + Do) V()

where V*(g) is given by (3.1). This could be obtained directly by inserting
(3.5) in Vy(g, ¢,) and using first order approximations. Thus, for any family of
distributions the least favorable distribution is the same as in the independent

case. In particular, for the family .o, of e-contaminates of .#70, 1), the least
favorable distribution (as found in Huber [4]) has

—I'(x) = —5)’; log g(x) = x x| < k

=ksgnx, |x| >k
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where k depends on ¢ and satisfies

(3.9) 20(k) — 1+ 2 g(ky =
k I —e¢

where ®(x) is the unit normal cdf and ¢(x) is the unit normal density. Hence,
to apply (3.6) to find the minimax rule, it remains to compute « and f, at least
to first order terms. To do this requires computing a, b and ¢ (3.4) for ¢(x) =
¢o(x); and this only requires EI”(Y), E(I'(Y))’, and EYI'(Y), where [ is the loga-
rithmic derivative of the least favorable density and Y has this least favorable
distribution. Direct computations (which use (3.9)) yield

a=21—eQPk) —1) and f=2.

Therefore, formula (3.10) yields the function ¢,, which is minimax over the
class ..#, with respect to the approximate asymptotic variance Vy(g, ¢):

61() oc (e[l 4 o(f — a)}x x| = &

' le(1 + oB)k sgn x — apx x| > k

(3.10) [ M=k

' lksgnx — L% (x—ksgnk) |x| >k
L+ p(f — a)

(x x| < k

—lksgnx— ipﬂmﬂ_(x—ksgnx) |x| > k

1+ 20(1 — a)
where a = (1 — ¢)(2@(k) — 1) and k is defined by (3.9).

There are two modifications which can be made to ¢,. First, since terms of
order p? are being ignored, it seems reasonable to simplify ¢,(x) by eliminating
the higher order terms (involved in the second term for |x| > k). Also note that
for x large (positive) ¢,(x) decreases linearly to —oco. Actually if EX* < + oo,
the probability that ¢,(x) is negative is less than the probability that |X| > c/p,
which is less than ¢~20*EX?. Since we are only interested in first order terms it
seems not unreasonable to truncate ¢, when it crosses the x-axis (in particular,
this will yield an estimator of the form suggested by Hampel in [1]). Therefore,
we will generally take the following function ¢, as the minimax ¢-function:

di(x) = x x| < k
(3.11) = ksgnx — 2pa(x — ksgnx) k< |x| <Kk
=0 x| = K’

where k satisfies (3.9), a = (1 — ¢)(2®@(k) — 1) and

(3.12) K= (1t 209)
2p0a

We now give a rigorous theorem showing that ¢,(x) is optimal in a certain
sense:
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THEOREM 3.1. Let ¢ of the form (3.11) be fixed. For each vector C = (c,, c,,
¢, ¢,) let 7(c) be the set of distributions G, in .»*| such that E¢'(Y) = ¢, > 0,
EY? < ¢,, G has a density, g, which is twice continuously differentiable except on a
closed set D of Lebesgue measure zero (with 0 ¢ D), sup, |g(x)| < c,, and for each u

Scomprinan 197 (X)] dx = ¢
where for each u, D(u) is a neighborhood of D with Lebesgue measure u. For G e
“(c) let {0,) be any sequence of invariant estimators such that n}(f, — 0) —,
470, 6%G)) and (using Theorem A.4) let 0,)(G) denote the asymptotic variance of
the M estimator defined by ¢». Then for sufficiently large ¢ there is B = B(c) < 4+ oo
and p, = p,(c) > 0 such that

SUPge (o) 9(G) = SUPse o) 90%(G) — Bp*  for o] = py .
Proor. We first extend the derivation of (2.11) to distributions in .&(¢). For
each sufficiently small p, let g, be a density such that g,(x) = g(x) if x ¢ D(p),
90 — g,()| < p for xeD(p) and  §lg,"(x) dx < b

where b depends only on c (this is possible since |g,”(x)| < b/0 on a set of measure
p). Let Y'» denote a random variable with density g, and note that for any
bounded function f,

(3-13) [EA(Y) — EfQY') < o [f(O9(xX) — g,(x)] dx < by0* .
From the appendix,
o (G) = EPX) + 2EP(X)4(Xy) + 2EP(X)g(Xy)
(Eg" (X))’
Now let b denote a generic constant depending on ¢ (and perhaps also on the
bounds for ¢ and ¢’). Then, from (3.13)
EQH (X)) = EQ(Yy + p(Yy + Y))) = EQA(Y\ + (Y, + Y3) + b (p?)
= EQ(Y,'") + bC(p*)
= Eg(Y,) + b0/ (o)
where the third equality uses the proof of Theorem 2.1. Similarly,
EQ(X)P(Xy) = —=20EY, (V)EP'(Yy) + b (0%)
EQ(X)P(Xy) = b (07)
EQ' (X)) = E¢'(Y) + b (o) -
Thus, ¢,%(G) is given by (2.11) with error uniform on ..#7(c). In Section 4 it is
shown that ¢/*G) is maximized over ../ by a distribution, F*, concentrating
all the contamination at a point mass on the first break point of ¢. A direct
calculation shows that the contribution to ¢(F*) from integrals over |Y| < k/p
equals the contribution to ¢,%(F,) where F, is the least favorable distribution for

., given by Huber. Since both the normal distribution and F, have finite
variances, P{|Y| = k/p} < bo*. Therefore, since F,e.~(c) for ¢ sufficiently
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large, there is B, = B(c) and p, = p,(c) with
SUPge (o) 90°(G) = 0,*(Fy) + b (p%)
EHU) :
< +40) 2Y) 4B for |o| < oo,
= (1 +4p) (EQ(U)): + Byp lo|l < 0o
where U has distribution F, and the last equality uses (3.8).
Now by Theorem 1.1 (since d = 1 + 2p),

SUPge e 9°(G) Z (1 + 20)’ %'22%)2

and the theorem follows.

We conclude this section by noting that a linear combination of order statistics
can be found which is equivalent to ¢, (3.10) and is also asymptotically minimax
to first order terms. Since the influence curve for ¢, is proportional to ¢,, the
same shaped influence curve can be obtained by choosing a J-function (defining
the linear combination of order statistics as in [5]) as follows:

(3.14) J(t) = —2p t<y or t=1—7

1+ 4yp

t< 1 —
2, r<t< 7

where 7 is an appropriate constant, 0 < y < 1. The influence curve for this
estimator can be found to be

1+ 4
(3.15) I(x) = _1+_2P_7 x x| < k(r)
— 47
=120 nx—2px x| 2 k()
1 — 2y
where k(y) = —F~'(r). In the next section, we show that the approximate as-

ymptotic variance (2.7) is maximized over .5, by choosing F* to be .#(0, 1)
with probability (1 — ¢) and a 2-point distribution concentrated at +k(y) with
probability e. Thus, the maximum over .7 is achieved for k() satisfying

=27 = (1 — 9QOK() — 1).

It follows that if 7 is chosen so that k(y) = k for ¢, (given by (3.10)) then a
direct calculation shows that the influerice curve (3.15) at F* is exactly the same
as that for ¢, at its least favorable distribution. Therefore, the linear combina-
tion of order statistics defined by the J-function (3.14) is also minimax over .7,
for the first order asymptotic variance (2.7).

4. Comparing estimators by maximum asymptotic variances over /. This
section compares the estimators derived in the previous section with several
estimators suggested in Andrews et al. [1]. The comparison will be in terms of
the approximate asymptotic variance (2.7), maximized over the class .57, of e-
contaminates of a normal distribution. We first show how to find the maximum
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variance for estimators of the last section. We then discuss the maximization
for more general estimators, and conclude with a discussion of numerical results.

In particular, first consider M-estimators (including ¢, given in (3.11)) of the
form suggested by Hampel in [1]: ¢ is piecewise linear (and odd) with break-
points at +a, +b and +c and with slope one about the origin, slope zero be-
tween a and b, slope negative between b and ¢, and equal to zero beyond c.

For M-estimators in e-contaminated situations, the relevent expression to maxi-
mize is

@1 o= (L= OBPZ) + EPX) | 4, (1 — 9EZY(Z) + cEXP(X)
[(I — )EY'(Z) + EJ'(X)P (1 — EJ'(Z) + <E¢'(X)

where Z ~ _77(0, 1) and we want to maximize (4.1) over all distributions for X.
For Hampel estimators, ¢’(x) is either zero, one or negative; and, hence, both
denominators in (4.1) are minimized by any distribution concentrated on [, c] U
[—ec, —b]. Since ¢(x) = 0 for |x| = ¢, the numerators are also maximized by
such distributions. Furthermore, since such distributions make the denominators

constant (say at a value, D), it remains to choose a distribution for X which
maximizes

(42)  eEFX)ID* + 4oeEXP(X)ID = £ E(gX) + 4pDX(X)}

The quantity (4.2) is maximized by simply choosing X to be concentrated at a
value maximizing ¢*(x) + 4pDx¢(x) that is at some value +x for b < x < c.
Since ¢ is piecewise linear, the function is maximized either at x = 4 or at a
unique point in (b, ¢) which can be easily found. In fact for p small it is easy
to see that (d/dx)(¢*(x) + 4pDx¢(x)) is negative on (b, ¢) and, hence, the maxi-
mum is at x = b.

The maximization is somewhat harder for the linear combinations of order
statistics like (3.14), since the break-points in the influence curve depend on the
distribution. Actually, as (3.14) is written, the maximum variance is infinity
since the influence curve (3.15) is not bounded. However, if distributions are
restricted to those not concentrating too much probability on the set where |x|
is large, (3.14) will be approximately equivalent to an estimator which trims a
very small proportion of extreme order statistics (instead of giving them negative
weight); and the maximum variance over a moderately large interval should be
a reasonable value for comparing estimators.

We now want to maximize (2.7) with I, given by (3.15), and F an e-contami-
nate. Here, 7 is a constant defining the estimator, and /,(x) is piecewise linear
with positive slope for |x| < k(y) and negative slope for x > k(y) (where k(y) =
—F~Y(y)). The asymptotic variance here is

(4.3) 0= (1 — e)ELXZ) + <ELXX)
+ 40l(1 — EL/(Z) + eEL/(X)[(1 — EZIW(Z) + EXI(X)],



32 _ STEPHEN L. PORTNOY

where Z ~ 470, 1) and ¢ is to be maximized over the distribution of X. As-
suming F is continuous and letting Y ~ F, then the probability is exactly 2y
that |Y| = k. Therefore

(4.4) EL/(Y) = 27(—2p) + (1 — 27) <llJ: 42prr> 1

independent of what F is. Thus, we must maximize
(4.5) EIA(X) + 4pEXT,(X) .

Clearly, to maximize (4.5), F should be chosen so that k(y) (and, hence, I itself)
is as large as possible. If y < ¢/2 then k(y) may be chosen to be as large as
possible and, hence, ¢ will approach oo as F puts more probability in its tails.
If 7 > ¢/2, the maximum value for k(y) isk, = — O} ((1/(1 — &)}y — ¢/2)) (where
@ is the .#7(0, 1) cdf). So here ¢* is maximized by concentrating probability
at +x, where x, maximizes I*(x) 4+ 4pxI,(x). This function is proportional to
x* for |x| < k, and is a different quadratic for x > k,. Either the tail quadratic
has a unique maximum which will define the maximum variance, or the function
has a local maximum at k, which, although not a global maximum, will in this
case be taken to define the maximum variance. In the tabulated values later
presented, this local maximum will represent a maximum at least over the range
—20 < x < 20.

For more general M-estimators, the method of moment spaces may be used
toshow that if o = 0, then the maximum asymptotic variance over .= is achieved
at a distribution contaminated by a two-point distribution (concentrating prob-
ability { at +x). In particular, let .& be the family of all symmetric distribu-
tions, and let ¢ be an odd function defining an M-estimator. Consider the affine
transformation 4: .~ — R’ defined to have coordinates

(4.6) A(F) = Eg¢'(X),  A(F) = E;¢%(X),

where G is a function of F: G = (1 — ¢)® + ¢F. Since .~ is a compact convex
set for which the extreme points are the two-point distribution, the set B = A(../")
is a compact convex subset of R* for which the extreme points are images of
two-point distributions. In fact the upper boundary of B (under general smooth-
ness conditions on ¢) will just be the image of the curve {F,: 0 < x < a}, where
F, is the two-point distribution concentrating probability 1 at +x. Figure 1
gives an example of B for ¢(x) = sin 4x (for |x| < 2z, and ¢(x) = 0 for |x| > 2x)
where the upper boundary corresponds to {F,: 0 < x < 2r}. To maximize the
asymptotic variance, we must find the point (x, y) in B which maximizes y/x*.
Considering the convex functions y = bx* as b increases, we see that the maxi-
mum value occurs at the value of 4* for which the convex curve y = b*x* is
tangent to the concave upper boundary of B. Since this point of tangency is a
unique point corresponding to a two-point distribution, the maximization prob-
lem is reduced to finding the maximum of a real valued function of a single
real value.
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x = Ey'(X)

FiG. 1. Boundary of moment space for W(w) = sin 3w for |w| < 2z and W(w) = 0 for |w| > 2=
under (1 — &)..#7(0, 1) + ed(+2z).

To maximize the asymptotic variance (2.11) for p # 0, a third coordinate
A(F) = E,X¢{(X) (again with G = (1 — ¢)® + ¢F) must be considered. Again
if ¢ is smooth enough, the set B will be the convex hull of the curve correspond-
ingto{F,: 0 < x < a}. Once again, it is likely that the maximization over ../
is achieved at a distribution contaminated by a two-point distribution. Thus,
again, maximization can be carried out over a single real parameter; that is, we
need only consider maximizing the following function over x > 0:

(4.7) V= [(1 — 9EQ(X) + ef*(x))/D*()
+ 4o[(1 + EXG(X) + exg(x)])/D(x)

where D(x) = (1 — ¢)E¢'(X) + ¢¢’(x) and where expectation is under ../ (0, 1).
Admittedly, this statement has not been proven. The best this argument pro-
vides is that the maximum must occur at a distribution contaminated by a convex
combination of at most three two-point distributions. I believe that maximiza-
tion of (4.7) over x suffices for all the cases considered here; in any event, it
should yield an approximation good enough for the comparisons made here.

In the calculations listed here, only the case o > 0 is considered. From (2.7)
it is clear that p < 0 only reduces the variance. Thus, it is most important to
have protection against the presence of positive correlation.

Values of maximum asymptotic variance are listed in Table I for a number
of estimators as a function of the contaminating fraction: ¢ = .05, .1, .2, and .3,
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and the correlation p = 0, .1, .2 and .3. The optimal estimators (3.11) and
(3.14) will be considered first. The M-estimator, (3.11), depends'on an assumed
value & for the contaminating fraction and g for the correlation. Since they are
Hampel-type estimators, they will be denoted by H(¢ = +, p = +)for & = .05, .1,
and .2 and p = .05 and .1. One interesting conclusion should be noted at this
point. Calculations were also carried out for § = .25 and they show that, over
the range of ¢ and p in Table 1, p = .1 is always a uniformly better assumption
than p = .25 (in terms of asymptotic variance).

The optimal linear combinations of order statistics, (3.14), depend on assumed
values 7 for the trimming proportion and g for the correlation. They are denoted
by L(7 = +, p = -) and listed in Table 1 for 7 = .1, .2, .25and .4 and p = .05,
and .1. Again, the choice p = .1 is always preferable to the choice p = .2 over
the range of ¢ and p in Table 1.

These optimal estimators may be compared with other estimators discussed
in [1]. In particular, calculations were carried out for the Hampel estimators
H(a, b, c¢) which are M-estimators where the ¢-function is piecewise linear with
breakpoints at +a, +b, and +c. Over the range in Table 1, H(1.2, 3.5, 8) is

TABLE 1
Maximum asymptotic variance for contaminating fraction ¢ and correlation p.

Part (1). Optimal M-estimates for assumed & and {

estimator 3 =0 o=".1 o=.2 p=.3
H(E = .05, p = .05) .05 1.28 1.77 2.35 2.93
.1 1.56 2.14 2.91 3.70

2 2.33 3.08 4.31 5.59

.3 3.56 4.48 6.26 8.18

HE=.05p=".1 .05 1.31 1.77 2.25 2.75
.1 1.62 2.14 2.70 3.32

.2 2.50 3.17 3.89 4.78

.3 3.98 4.87 5.77 6.95

HE=.1,p=.05) .05 1.30 1.78 2.33 2.89
.1 1.55 2.11 2.83 3.57

2 2.24 2.94 4.07 5.24

.3 3.32 4.17 5.79 7.52

Hé=.1,p=.1 .05 1.34 1.78 2.25 2.74
.1 1.62 2.11 2.65 3.24

.2 2.42 3.03 3.70 4.53

.3 3.74 4.52 5.33 6.43

HE=.2,p=.05) .05 1.35 1.83 2.37 2.92
1 1.58 2.13 2.84 3.56

.2 2.21 2.9 3.99 5.11

.3 3.18 4.01 5.58 7.22

HEé=.2,6=.1) .05 1.40 1.84 2.30 2.79
.1 1.67 2.13 2.67 3.24

2 2.40 2.95 3.62 4.41

.3 3.59 4.26 5.04 6.11
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Part (2). Optimal linear combination of order statistics for assumed } and p

estimator e p=0 o=".1 =.2 p=.3
LG = .1, p = .05) .05 1.28 1.77 2.36 2.94
.1 1.59 2.22 3.08 3.96
=.2 o o ) =)
Li=.1p6=.1) .05 1.31 1.77 2.25 2.76
.1 1.63 2.17 2.78 3.46
=.2 oo oo o) oo

L(# = .2, p = .05) .05 1.35 1.81 2.34 2.88
.1 1.57 2.11 2.81 3.53

.2 2.22 3.01 4.27 5.56

.3 3.52 4.88 7.36 9.91

Li=.2,p=.1) .05 1.40 1.83 2.29 2.77
.1 1.64 2.12 2.65 3.24

. 2.35 2.96 3.74 4.65

3 3.77 4.66 5.97 7.60

L(? = .25, p = .05) .05 1.41 1.86 2.38 2.91
.1 1.62 2.14 2.81 3.50

.2 2.20 2.93 4.06 5.22

.3 3.19 4.30 6.28 8.33

Li#=.25p=.1) .05 1.47 1.90 2.35 2.83
.1 1.71 2.16 2.69 3.25

2 2.35 2.91 3.63 4.47

3 3.45 4.18 5.27 6.62

L} = .4, 6 = .05) .05 1.65 2.09 2.60 3.11
.1 1.87 2.36 2.99 3.63

2 2.42 3.06 4.05 5.07

.3 3.25 4.11 5.68 7.30

LG =.4,06=.1 .05 1.77 2.18 2.63 3.10
1 2.02 2.45 2.95 3.49

2 2.67 3.13 3.79 4.55

3 3.63 4.15 5.05 6.15

Part (3). Other M-estimators

estimator ¢ 0=0 o=.1 0=. o=.3
H(1.2,3.5, 8) .05 1.31 1.83 2.36 2.88
.1 1.61 2.28 2.95 3.62

.2 2.52 3.55 4.59 5.62

3 4.16 5.73 7.30 8.87

H(2.1,4,8.2) .05 1.40 2.00 2.60 3.20
.1 1.92 2.76 3.59 4.43

2 3.62 5.08 6.54 8.00

.3 7.18 9.62 12.05 14.48

sin, (4.8)a = 1/2.1 .05 1.39 1.99 2.59 3.19
.1 1.88 2.72 3.56 4.41

2 3.46 4.97 6.49 8.02

.3 7.19 9.93 12.67 15.41

cont.
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estimator

sin, (4.8) a = .5

sin, (4.8) a = .6

sin, (4.8) a = .7

sin, (4.8) a — .8

Olshen, (4.9)a = .5

Olshen, (4.9) a = 2.0

Olshen, (4.9) a == 3.0

Olshen, (4.9) a == 4.0

exp, (4.10) @ = .10

exp, (4.10) @ = .125

exp, (4.10) a = .15

STEPHEN L. PORTNOY

W~

Part (3) Continued

0=20 o0 =".1 0o=.2 0o=.23
1.37 1.95 2.54 3.13
1.84 2.64 3.46 4.27
3.35 4.78 6.23 7.67
7.00 9.58 12.16 14.75
1.33 1.87 2.41 2.96
1.73 2.44 3.16 3.88
3.08 4.29 5.50 6.71
6.73 8.85 10.98 13.11
1.32 1.84 2.36 2.87
1.70 2.36 3.02 3.68
3.04 4.12 5.19 6.27
7.32 9.11 10.97 12.85
1.35 1.85 2.35 2.85
1.73 2.35 2.98 3.61
3.18 4.18 5.18 6.18
9.09 10.49 12.15 13.87
1.84 2.28 2.73 3.17
2.22 2.72 3.22 3.72
3.40 4.05 4.69 5.34
5.77 6.65 7.52 8.40
1.37 1.83 2.30 2.77
1.61 2.15 2.69 3.24
2.31 3.03 3.77 4.51
3.48 4.46 5.47 6.49
1.31 1.79 2.27 2.76
1.56 2.12 2.70 3.29
2.25 3.03 3.85 4.68
3.39 4.49 5.63 6.79
1.29 1.78 2.28 2.79
1.54 2.14 2.75 3.38
2.26 3.11 4.00 4.92
3.42 4.64 5.91 7.22
1.30 1.81 2.32 2.84
1.63 2.27 2.92 3.57
2.64 3.64 4.64 5.65
4.65 6.22 7.79 9.37
1.31 1.81 2.31 2.81
1..63 2.24 2.86 3.48
2.62 3.55 4.49 5.42
4.64 6.09 7.54 8.99
1.33 1.82 2.31 2.80
1.65 2.24 2.84 3.44
2.65 3.55 4.43 5.32
4.75 6.12 7.49

8.87
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uniformly better than any other Hampel estimator presented in [1] (including
ADA, which is asymptotically equivalent to H(1, 4.5, 8) for the distribution
maximizing the asymptotic variance). Thus, H(1.2, 3.5, 8) is listed; and, for
purposes of comparison, H(2.1, 4, 8.2) is also listed.

Lastly, three other M-estimators with the following ¢-functions are listed
(where “a” denotes a parameter defining the estimator):

(4.8) $y(x) = sinax |x| < %
=0 = =,
a
_ X
(4.9) $a(x) = PRl
(4.10) dy(x) = xexp{—ax?}.

The estimator defined by ¢, (denoted by “sin, (4.8)”) was suggested by Andrews
[l] when @ = 1/2.1. Asymptotic variances are listed for a = 1/2.1, .5, .6, .7,
and .8. Numerous other values were used in calculations, but either a = .6, .7,
or .8 was always uniformly better over the range in Table 1. The ¢, estimator
(denoted by “Olshen, (4.9)”) was suggested by Olshen when a = .5. Results
are listed here for @ = .5,2,3 and 4. The ¢, estimator is included since it
seems a priori to be a reasonable alternative to ¢, and ¢,. Results are listed for
a =.1,.125, and .15, which appear to be optimal over the range in Table 1.

The main conclusions which can be drawn from Table 1 are the following:

(1) Relatively small amounts of correlation can drastically inflate asymptotic
variances; and many estimators which appear to be quite good when o = 0 can
be extremely poor when p = .2 or p = .3 (for example, consider H(2.1, 4, 8.2),
“sin” for a = 1/2.1, or “Olshen” for a = .5).

(2) The optimal M-estimators appear to be slightly better than the linear com-
binations of order statistics, and substantially better than any of the Hampel-
type estimators suggested in [1] or any of the “sin” type or “exp” type estimators
considered here. They are also substantially better than Olshen’s suggestion
with @ = .5. In particular, if the contaminating fraction ¢ is thought to be
moderate but not too large, the estimator H(l, 1, 10) would probably be about
as good as possible; whereas if ¢ is thought to be small, H(1.5, 1.5, 10.0) should
work well.

(3) The Olshen type estimators for a between 2.0 and 4.0 also seem to have
extremely good asymptotic variance over the range of Table 1; and one such
estimator might be preferable for actual use since it would be smooth. In par-
ticular, if ¢ is likely to be moderate, @ = 2.0 is a good choice, and if ¢ is small,
a = 3.5 is a good choice. These estimators are good probably because values
of a which keep the asymptotic variance moderate in the independent case, also
keep the slope from becoming too negative.
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(4) The optimal linear combinations of order statistics also seem to be some-
what better than most of the other estimators considered in [1]. Since they are
easy to calculate, they could also be strongly recommended in cases where small
positive correlation is not entirely unexpected.

5. Third order expansion for asymptotic variance. The expansions of Theo-
rem 2.1 can be carried out to higher orders in p in a straightforward though
tedious manner. The only major complication is that a strengthening of the last
part of (2.6) is required. To obtain an expansion to terms in p°, the following
assumption on the estimator, 7, and the cdf G in model (1.1) will be made:

- Ie(x) = Is(x) + pVa(x) + T(0*)

uniformly in x where J, depends on G but not on p. Equation (5.1) can be ex-
pected to hold whenever G and T are smooth. In particular, consider an M-
estimator such that both ¥ and ¥’ are bounded. Under the regularity conditions
on G in Theorem 5.1 below, the density f of X; can be expanded as in (2.9) and
(2.10) to obtain

[x(x) = g(x) + p(EY?)g"(x) + 99(x)7(0") -

Therefore,
EW(X) = EW/(Y) + p(EY?) § W(x)g"(x) dx + (o) .
Thus, »
¥ . ¥(x) S EY?§ W (x)g"(x) dx .
62 1= iy = vy prgy )

= Is(x) — cp*W(x) + T(p")
(for appropriate ¢); and, hence, (5.1) holds.

THEOREM 5.1. Under model (1.1), assume that F (the marginal of X,) and the
estimator T satisfy (5.1) and the condition |I.(x)| < C,. Assume also that G has
finite fourth moments and a density g with absolutely integrable fourth derivative
(equivalently, § u'|py(u)| du < + o). Let ¢ = EY?. Then

0" = EI(Y) — 4pEYI(Y) § Io(x)9'(x) dx
+ OHREL(Y)o(Y) + ¢ § 12(x)g"(x) dx + 2¢[§ I(x)g'(x) dxT}
(5-3) — 202AEYIL(Y) § Jo(x)g'(x) dx + EYI(Y) § I(x)g'(x) dx]
+ § 1e(0)[20'(x) + xg"(x)] dx § Io(x)[2xg(x) + (x* + ¢)g’(x)] dx
+ GEYIL(Y) + cEYIL(Y)) § Io(x)g""(x) dx} + O(o*) .
The proof is a straightforward generalization of the proof of Theorem 2.1 and
is not given here. Again integration by parts will yield an equivalent expansion

which will hold whenever I; and J; are smooth enough. Furthermore, inserting
(5.2) in (5.3) and integrating by parts in the terms involving derivatives of g
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TABLE 2
Coefficients of p™ in approximation ¢* = Vi + Vap + Vizp? + Vip?
under (1 — ¢).#7(0, 1) + e.#7(0, w?)

estimator 3 w Vi Vs Vs Vi
HE = .1,p=.05 .1 3 1.31 5.17 4.87 4.15
5 1.35 5.80 9.54 7.29

.3 3 1.93 8.09 11.53 12.98

5 2.13 10.59 31.85 45.70

H(1.0,4.5, 8.0) .1 3 1.33 5.13 4.89 4.79
5 1.36 5.30 9.60 11.23

.3 3 1.98 7.97 11.78 14.96

5 2.17 8.84 33.02 52.45

H(2,2,10) .1 3 1.28 5.33 4.13 2.02
5 1.31 5.67 8.14 4.52

.3 3 2.03 8.60 9.18 5.97

5 2.26 10.12 25.81 22.29

gives the following expansion for the case of M-estimators:
oo EPY) g EYe(Y)
(E¢"(Y)) EJ'(Y)
2 EQ"(Y)EG(Y) | EP"(Y)g(Y) + E¢'(Y)
2 — -4 1
P =t e+
(EQ"(Y)EGRY?® — 3¢Y)(Y) + EY"(Y)E(Y* + ¢)/(Y)}

208
S
(E¢"(Y))

where, as before, Y has cdf G and ¢ = EY?2.
Thus, we have an approximation of the form

o =Vi+ Vip + Vip* + Vip*.

Table 2 lists values for V,, V,, ¥, and V, for a small number of Hampel-type
estimators for distributions of the form (1 — ¢). /70, 1) 4 & /{0, w?), where
w=3and 5and ¢ = .1 and .3. The estimators presented represent the worst
cases among the Hampel type estimators of Section 4 in the sense that ¥, and
V, tend to be largest for these estimators. Results for smooth estimators in situa-
tions in which the contamination is degenerate should be quite similar. However,
relative errors should be somewhat smaller when both the estimator and the
distribution are sufficiently smooth. The basic conclusions to be drawn from
Table 2 are the following:

(1) The first term approximation is an underestimate, and in fact, o* may be
substantially larger when both p and ¢ are much larger than .1. This would be
expected from the discussion in Section 1.

(2) For p < .1, the first term approximation is probably quite adequate,
having a maximum relative error in the tabulated range of about 109,. The

approximation is probably adequate for rough comparisons as long as p or ¢ is
less than .2.
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(3) Since values for V, and V, are of similar magnitude, the comparisons of
Section 4 are legitimate. However, actually variances listed in Table 1 may be
somewhat in error for p = .3 and ¢ = .3.

APPENDIX
Proofs of consistency and asymptotic normality:

Lemma A1, If X, X,, - - - is asequence of bounded m-dependent random variables
then X, — EX, —, 0.

Throughout the rest of the appendix we consider observations X, = Z, + 6
(i=1,2,...) where {Z, Z,, - - -} is an m-dependent sequence of random vari-
ables, and all probability statements are under a fixed value 6,.

THEOREM A.2. Assume W is continuous, bounded and E,W(X) is strictly increas-
ing in a neighborhood of ¢ = 0 with E,2W(X) = 0. Let 6, —, 6, and let 8, be the
root of the equation 0 = Y.7_, W(X, — 0) nearest to 0, (and larger if there are two
roots equally distant from 8,). For definiteness, let §, = 0 if there is no root. Then

b, —,0,

CoOROLLARY A.3. Leta > 0 and b > 0 be fixed and let d(0) be a strictly increas-
ing function on (—b, b) with d(0) = 0. Let & be the set of continuous functions W
satisfying

(i) |¥(x)| < a for all x;

(ii) E,¥(X) > d(0) for 0 < 0 < band E,¥(X) < d(f) for —b < 6 < 0.

Then 8, —, 0, uniformly for ¥ ¢ 7.

THEOREM A.4. Assume the hypotheses of Theorem A.2; and suppose in addition
that W is differentiable except on a closed set D with zero Lebesgue measure, W' is
uniformly continuous and bounded off any neighborhood of D, 0 ¢ D, and E,W'(X) =
¢ > 0. Suppose furthermore that the marginal distribution of X, under § = 0 has a
bounded density in a neighborhood of D. Define

o* = lim, ., 1 Var (X2, U(X)..
n

Then if ,, is the root of 0 = Y1 W(X, — 0) defined in Theorem A.2, n¥(0, — 6) —,,
A0, d*/c?). ‘

Proor. There exist functions Wy(x) (k = 1, 2, ---) which equal ¥ outside a
small neighborhood D(d/2) (where D(6) > D is chosen below depending on the
distribution), are bounded (uniformly in k), are continuously differentiable
with [W,/(x)| < B for all x, and such that (i) ¥, (x) — ¥(x)| < 1/k for all x, (ii)
EW,/(X) — E,¥'(X), and (iii) 9, — o as k — co where ¢,* is defined analogously
to ¢* above. Now note that since ¥, = ¥ in a neighborhood of zero, all ¥,
lie in the same set, ./, of the form described in Corollary A.2. Hence, if 67”"
satisfy 0 = 7., W, (X, — 0) (and, say, are the nearest roots to 5n) then d,* —, 0,
uniformly in k.
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Using the standard Taylor series expansion,
(A.1) ni@,* — 6,) = _% S U(X, — 0) /% N (X, — 6,5
where 6,5 —, 6,. It is first shown that
(A.2) % S WX, — 6,4 - EW,(X)  uniformly in k.

Let ¢ > 0 be given. Choose N, and an open set D(d) = {x: inf,., |y — x| < 8}
such that for n > N,,

(3 3
= <
SREr

where M is the number of {X;, — 6} lying in D(d). This follows from Lemma A.1
since the distribution of X has a bounded density on D(6) 4+ ¢ and, hence, the
probability of a single observation in D(3) + ¢ is proportional to the Lebesgue
measure of D(G) (which can be made arbitrarily small by choosing ¢ small).
Now since W, (x) = W(u) for u ¢ D(3) choose ¢’ < 6/2 such that if |u — v| < &'
and u ¢ D(0) then |¥,(u) — ¥, (v)| < ¢/3 for all k. Choose N > N, such that for
n = N, and for all k, P{|f,* — 6, = 8} < ¢/3 and

Ml

n

! : :
Pl ID W - 0) - BY 2 S = S

(this last inequality uses Lemma A.1 again). Then, letting C= {i : X, — 6, ¢ D(3)},

oS wox, —any — Eo‘qfk'(X)’ > e}

R
n

1 , 5 ,
< P I WX = 0 = S0 - 0) 2 5

P Do (W — ]+ (W - 0)) = £

1
+ P{ D W - 0 — B[ 2 2
< PO} — 6, = 6} + P {%Mﬂﬂ’w@kxx),’ > —‘,}} +i<e.
‘ n
Hence, (A.2) holds.
Now by the Berry-Esseen theorem for m-dependent random variables (see

Stein [6]),
% 2 WX, — 6y) —5 470, 0,2 uniformly in k.
n
Therefore, using equations A.1 and A.2, n%(én" — 0 —5. 7 (0, 6,°) uniformly

in k where
6= o}/ (E¥,/(X)).
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To complete the proof of Theorem A.4, let ¢ > 0 be given. By choice of ¥,

1 1 4 1 A 1 A
— | =YX —0,) — — 2 V(X — 0,) = — | X V(X — 0,)],
k n n n

and again using a Taylor series expansion
1 A P | , =
7 Z?:l IIfk(Xi - 07») = (07» - 0nk) 7 =1 IIj.lc (Xi - 0nk)

or
|én — énk| < = 2 T(X — én)

/|i' L WX, — 6,8
n

= 1 - .
~ K|(1jn) i WX — 6,5

Now, as above, there is N, such that for n > N,

6
Thus, since E,¥,/(X) — ¢, there is K such that for k > K

P {l WX, — 0,k > %EO"IJ',"(X)} >1—-°5 forall k.
. !

2
ck

3

P{|9n—9”"|g }21_? for n=N,.

Choose N, > N, so that |P{n}(0,* — 6,) < y} — ®(y/6,)| < ¢/6 forall yfor n > N,;
and (since 6, — o/c as k — oo) for each n choose k = k(n) > K so that for all x

o(FH ) () < & ang [N 20) () 5 ¢

é, /I~ 6 G o/~ 6"
Then, for n = N, (with k = k(n)),

P, — 0) < x) < P{Im(@F — o)) = x + 20 4 &
C

q)<x+%n*/ck>+%§q)<iv>+ 3

a, g 2

IA

and similarly, P{n}(0, — 60,) < x} = ®(cx/os) — ¢/2 and the theorem is proven.

REMARK. It is clear that the conditions for these theorems hold for the mini-
max ¥ given by (3.11) for any distribution G with a bounded density and giving
sufficient probability to a small enough neighborhood of the origin. Further-
more, if G is contaminated by finitely many point masses, there will be at most
a finite set of values of p for which the conditions of Theorem A.4 do not hold.
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