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IMPORTANCE SAMPLING IN THE MONTE CARLO
STUDY OF SEQUENTIAL TESTS!

By D. SIEGMUND

Columbia University

Let xj, X, - - - be independent random variables which under Py have
probability density function of the form Pg{xy € dx} = exp(6x—¥(9)) dH(x),
where T is normalized so that ¥(0) = ¥/(0)=0. Let a<0<b, sn=
Y% xk, and T = inf{n: sx ¢ (a, b)}. For u < 0, an unbiased Monte Carlo
estimate of Py(sr = b) is the average of independent Py-realizations of
Iispz) exp{(u — 0)sr — T(¥(u) — W(F))}. It is shown that the choice § = w,
where w > 0 is defined by ¥(w) = W(u), is an asymptotically (as b — oo)
optimal choice of 4 in a sense to be defined. Implications of this result for
Monte Carlo studies in sequential analysis are discussed.

1. Introduction and summary. The direct approach to Monte Carlo studies
is to estimate probabilities by relative frequencies: to estimate a = P(A), the
probability of an event 4, one uses the average of n independent realizations of
1,, the indicator variable of 4, which under P has the distribution P{/, = 1} =
a =1 — P{I, = 0}. This estimator is unbiased and has variance equal to 1/n
times

(1) Var, (I,) = a(l — a) .
If a is small, rather large values of n are required to provide an accurate estimate.

Importance sampling (cf. Hammersley and Handscomb, 1964, pages 57-59)
suggests that it may be helpful to write

2) P(A) = §,LdQ

for a suitable probability Q. Here L denotes the likelihood ratio of P relative
to Q. (L = p/q if P and Q have densities p and ¢g.) Then one may estimate «
by the average of n independent realizations of 7, L, generated to have the dis-

tribution induced by Q. This second estimator is also unbiased and has variance
equal to 1/n times

(3) Var, (I,L) = §{,L*dQ — o,
which may be smaller than (1). For example, if L < 1 on 4, then
(.L2d0 < §,LdQ = P(A) = a,

and (3) is not larger than (1). It is apparent from (3) that a suitable choice of
Q, for the purpose of reducing the variance of the resulting estimator of «, is
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674 D. SIEGMUND

one that makes L small and nearly constant on 4. If 4 is the rejection region
of a statistical test and P belongs to the null hypothesis, then to the extent that
the test is approximately a likelihood ratio test a suitable Q may presumably be
found among those probabilities permitted by the alternative hypothesis.

In this paper the technique of importance sampling is illustrated on the prob-
lem of estimating the error probabilities of the sequential probability ratio test.
Since Wald’s (1947) well-known approximations supplemented by more recent
techniques (e.g., van Dobben de Bruyn, 1968; Siegmund, 1975a) provide rea-
sonable numerical approximations to these probabilities under fairly general
conditions, practical implications of these results are most important in more
complicated problems in which alternative methods either do not exist or are to
be checked for accuracy by simulation. Some examples are given in Section 3.
The principal theoretical result is that in the case of a sequential probability
ratio test the “natural” choice of Q is asymptotically optimal in a sense to be
defined. It has the interesting interpretation that the analytic device employed
by Esscher (1932), Wald (1947, page 48), Bahadur and Ranga Rao (1960), and
Feller (1966, Chapters XI and XII) to estimate gambler’s ruin and other large
deviation probabilities is optimal when regarded as a Monte Carlo technique.

2. Notation and precise statement of main results. Let x,, x,, - - - be inde-
pendent random variables with a common distribution function, such that
“4) —oo0 < Ex, <0 and P{x,>0}>0.
Let s, = Y7 x;, and for a < 0 < b let
%) T=inf{n:n=1,s,¢(a,b)}.

The subject of this paper is the Monte Carlo technique of “importance sampling”
in attempting to estimate

(6) a = P{s, = b}

with an emphasis on asymptotic considerations as &6 — oo (a arbitrary).

Perhaps the most important special case arises when the x’s are log likelihood
ratios. Then T is the stopping rule of Wald’s sequential probability ratio test,
and Wald’s well-known arguments give an approximation to « under fairly
general conditions (cf. Wald, 1947).

Assume that the probability P can be embedded in an exponential family {P,}
as in Siegmund (1975b). The result of this embedding, which is fairly standard
and not reproduced here, is that for ¢ in some interval with 0 as an interior
point, under the probability P, the random variables x,, x,, - - - are independent
with common probability density function of the form

7 Py{x, € dx} = exp(6x — W(0)) dH(x) .
The function ¥ is normalized so that

(8) T(0) = ¥(0) =0,
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and then dH(x) = Py{x, € dx}. For example, if originally the x’s are normally
distributed with mean g and variance 1, then under P, they are normal with
mean ¢ and variance 1, so that their probability density is given by (7) with
W(6) = 46* and dH(x) = (27)~* exp(—x?/2) dx. Also ¥ is a strictly convex func-
tion for which

©®) V'(0) = Eo(xi),  W"(0) = Vary x,
so by (8) and (9)
(10) sgn Ey(x,) =sgnd .

Let u denote that value of ¢ such that P = P,. By (4) and (10) « < 0. By (8)
and the convexity of ¥ there exists at most one value w, necessarily positive,
for which

(11) T(w) = W(u) .

Assume that such a value w exists.
It is easy to show (cf. Lemma 1 in Section 4) that for arbitrary ¢

(12)  a=Pfs; 2 b} = iz expl(v — O)s; — T(W(u) — W(0))] Py,
which for § = w, by (11), becomes

(13) a = P,{s; = b} = (25 exp[—(w — u)s,] dP, .

The identity (13), from which follow at once the inequalities

(14) P s; = b} < exp[—(w — u)b]P,{s, = b} < exp[—(w — u)d],

forms the basis for Wald’s analysis of the sequential probability ratio test. With
the proper interpretation (cf. Lemma 1), equation (12) is a special case of (2)
and (regardless of whether one makes this interpretation) suggests using the
average of n independent P,-realizations of

(15) Liapzs) eXp[( — O)s, — T(¥(u) — ¥(0))]

to estimate @. For the important special case § = w the variance of this estima-
tor is 1/n times

Sopzs) Xp[—2(w — u)s;] dP, — o
(16) = exp[—(w — )b] § 20y €Xp[— (W — w)s,] dP, —
= exp[—(w — w)b]Ja — o?,

which even for moderate values of b is much smaller than the a(1 — «) of direct
Monte Carlo. To the extent that (14) is almost an equality this variance is O(a?)
as b — co rather than O(a) as in straightforward Monte Carlo. A numerical
example is given in Section 3.

The algebraic simplification in (12) which results from the choice § = w makes
possible some analysis and hence Wald’s approximation to a. However, for
Monte Carlo purposes one may well ask whether some other choice of § would



676 D. SIEGMUND

result in yet greater variance reduction. Choosing § to minimize the variance
(under P,) of the random variable (15) is equivalent to minimizing

(17) U(0) = Sispzs) €Xp[2(0 — O)sp — 2T (Y (u) — W(0)) dP, .

The following theorem shows that in the family {P,} the choice § = w minimizes
, asymptotically as b6 — co. (No restriction is placed on the behavior of a
except that a < 0.)

THEOREM 1. Assume that the random variables x, have a nonlattice distribution
or a lattice distibution supported by 0, +h, +2h, --. for some h > 0 and that
E,(x;) < co. Then as b — oo, for all 6 # w p(w)/py(0) converges to 0 at an ex-
ponential rate. (In the lattice case b — co through multiples of h.)

A proof is given in Section 4.

REMARKs. (i) The expected number of x’s required to compute a single reali-
zation of (15) is a function of ¢ and rather than minimizing p,(f) one may prefer
to find that value of # which minimizes (cf. Hammersley and Handscomb, 1964,
page 51)

(18) (ET)(1a(0) — @) -

However, E, (T) = O(b) as b — o (e.g., Chow, Robbins, and Siegmund, 1971,
page 29), and since the convergence to 0 in Theorem 1 is exponentially fast the
choice # = w would still be asymptotically optimal under the criterion (18).
From a practical point of view one will frequently want to estimate along with
a the expectation of 7. Hence the x’s generated under P, to estimate P (s, = b)
can also be used to estimate E,(7') (and by a similar argument, those x’s gener-
ated under P, to estimate P, (s, < a) can also serve to estimate E,(7)). Thus
the possibility that E,(T) exceeds E,(T) typically will not present serious objec-
tions to the use of importance sampling.

(ii) The representation (13) has proved very useful in developing analytic
approximations to a (cf. Wald, 1947; Siegmund, 1974 a; and in a similar although
not identical context, Feller, 1966, page 393). Its usefulness has depended in
large part on its simplicity compared to the more general (12). Theorem 1 shows
that in the class of representations (12) the choice § = w which yields (13) has
an intrinsic optimality property for estimating a which explains its success in a
more satisfactory manner than does the convenience of algebraic simplicity.

(iii) To understand better the preceding remark it is instructive to consider a
simpler fixed sample size problem. For any fixed n, it is easy to see from (7)
that

(19)  Py(su = 8) = (V20 eXp[(# — 0)s,] dPy) exp[ —n(¥(u) — ¥(0))] -

For obtaining asymptotic approximations for P,(s, = b) as n — oo, the represen-
tation (19) has proved useful, but in this case with the choice ¢ = 0, giving

(20) Py(sy = 0) = exp(—n¥(®)) {i,z0 eXp(us,) dP .
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(cf. Bahadur and Ranga Rao, 1960, or in the present notation Siegmund, 1975b).
From the point of view of variance reduction in Monte Carlo, one should choose
6 in (19) to minimize

21 Viapze) €XP[2(u — 0)s,] dPy exp[—2n(¥(u) — ¥(6))] -
By (7) and (8), this quantity equals
(22) $is,z00 Xp[(21 — 0)s,] dPyexp[—n(2¥ (u) — U(0))] -

An application of the central limit theorem to the integral in (22), as in Bahadur
and Ranga Rao (1960), shows that this integral is for large n a multiple of n—%.
Hence (22) is minimized asymptotically as n — oo by minimizing the exponential
factor, which by (8) and the strict convexity of ¥ is achieved by putting ¢ = 0.
Thus in this fixed sample size case, as in the sequential case, the convenient
analytic choice of ¢ is the asymptotically optimal Monte Carlo choice.

3. Examples. The following numerical example compares direct simulation
of & with the average of independent realizations of

(23) Lopz0) eXp[—(w — u)s,]
generated according to P,. Under P, the random variables x;, x,, - - - are inde-
pendent and normally distributed with mean ¢ and variance 1.

For this example @ = —b and results are given for different values of 4 and

u = E,(x,). The entries in Table 1 are not obtained from an actual simulation
but are analytic approximations based on the results of Siegmund (1975a).
Columns of Table 1 give the values of b, —u, a, ¢ = standard deviation of (23),
[a(1 — @)]t, the relative efficiency a(1 — a)/s?, and Wald’s approximation to a.

TABLE 1

b —u=w a I [a(l — a)]t R.E. Wald

9 .5 6.92 x 10-5 3.11 x 10-5 8.32 x 103 7.16 x 10¢ 1.23 x 104
9 .25 8.24 x 103 2.07 x 10-3 9.04 x 10-2 1910 1.10 x 10-2
9 125 8.35 x 10-2 2.73 x 102 2.77 x 10! 102 9.53 x 102
5 .5 3.76 x 10-3 1.71 x 103 6.12 x 102 1280  6.66 x 10-3
5 .25 5.78 x 102 2.00 x 10-2  2.33 x 10! 136 7.59 x —10-2
5 125 1.99 x 10t 1.02 x 10t 3.99 x 10! 15 2.23 x 101

Many statistical problems exhibit sufficient symmetry to permit combining a
second variance reducing technique with importance sampling to produce yet
more effective estimation of a. The following paragraph describes briefly one
technique which is complementary to importance sampling. Its effect is greatest
for u near 0, where importance sampling degenerates into direct Monte Carlo.

If ¥(0) = ¥(—0) and the P, distribution of x, is symmetric so that P,{x, e
dx} = P,{—x,edx}, and if a = —b, then P {s, = b} = P, {s, < —b}. Under
these conditions one may estimate a by an average of independent P, realizations
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of the convex combination
(24) cI(sT;,,) exp(—2wsy) + (1 — c)I(sTé_,,)

for 0 < ¢ < 1. Since the two terms appearing in (24) are negatively correlated,
for a proper choice of ¢ the variance of the combination estimator is smaller
than the variances of the individual terms. It is easy to see that (24) has minimum
variance for ¢* = 1/(1 + a +o*/a), where as above ¢* = Var, [I,,..;, exp(—2ws;)].
For example, for 5 = 5 and w = .125, corresponding to the last row of Table 1,
the optimal value c* is .8; and with this choice the relative efficiency for the
combination estimator compared to importance sampling used alone is 29, which
gives an overall relative efficiency of 435 compared to direct Monte Carlo. In
practice c¢* must be estimated either by approximate calculations or empirically.

The following examples illustrate situations in which analytic methods are less
satisfactory or do not exist, and then Monte Carlo methods play a more impor-
tant role.

(i) Sequential z-test: For testing whether a normal mean g is negative or
positive when the variance ¢® is unknown, Rushton (1950) suggested that one
use a sequential probability ratio test based on the r-statistic for testing H,:
tlo = —0, against H,: pjo = J,, where 0, and 0, are two positive numbers.
Wald’s error probability approximations apply when y/o equals one of the two
values—d, or d,, but for other parameter points there is no known analytic
method. While the optimality property of Theorem 1 may not hold for this prob-
lem, importance sampling of the kind discussed in this paper can be profitably
used as a variance reducing technique in Monte Carlo studies.

(if) Robbins and Siegmund (1974) (cf. also Flehinger and Louis, 1970) study
the problem of testing which of the two normal means, 4, and g, is larger in
such a way that a minimum average number of observations is taken on the
population giving the smaller mean response. They discuss a sequential prob-
ability ratio test stopping rule and various sampling rules. While the Wald error
probability approximations apply in this problem, the expected sample size ap-
proximation does not except for essentially deterministic sampling rules. In the
course of studying the expected sample size by Monte Carlo it is no additional
work to obtain estimates of the error probabilities which are usually more accu-
rate than Wald’s approximations and whose accuracy would be increased still
further by importance sampling. A version of this problem for binomial data
is now under investigation. In this case Wald’s approximations do not apply at
all, except through the central limit theorem, and Monte Carlo methods are
necessary.

(iii) In the previous two examples the stopping rule was of the form of a se-
quential probability ratio test but accurate computation of error probabilities was
made more difficult because the stochastic process under consideration was not a
random walk. By way of contrast, for the stopping rules of Schwarz (1962) and
Chernoff (1961) approximations to the error probabilities have not been obtained
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even in the case of independent normal random variables. For closed stopping
regions made up from straight live segments as in Anderson (1960) or a truncated
sequential probability ratio test, exact results may be obtained for Brownian
motion which yield approximations of the order of accuracy of Wald’s for a
discrete normal process. In these problems simulation may be helpful to evalu-
ate probabilities or check approximations, and importance sampling as suggested
in Section 2 gives some gain in efficiency over direct simulation although the
magnitude of this again and the possibilities for further improvement vary from
one situation to another.

(iv) The following example illustrates the dangers of the careless use of im-
portance sampling. In the theory of open-ended tests Darling and Robbins
(1968) study stopping rules of the form

(25) N=first n=1 suchthat s, =5,
=oo if s,< b, forall n,
where
(26) 0<b,/n—0 n— oo,
is such that
(27) Pi{N < 0} < 1.

By (10), (26), and the strong law of large numbers P){N < oo} = 1 forall ¢ > 0,
and hence Lemma 1 with ¢’ =0, §” = 6, A = Q, and r = N implies

(28) PN < oo} = Ej[exp(—0sy + NU(8))] 6>0.

Darling and Robbins (1968) suggest that P(N < co) may be estimated by Monte
Carlo methods by averaging independent P,-realizations of

(29) exp(—0Osy + N¥(0))

for suitable # > 0. The example is different in principle from those previously
discussed, for direct simulation is impossible due to (27), and some other method
must be found.

If N were defined by (25) with b, = b + cn, then a shift in location of the x’s
would transform this problem into a limiting case of the problem of Section 2
with @ = —oo. It is easy to see from the proof of Theorem 1 that in this case
an asymptotically optimal ¢ would exist. However, the theory of open-ended
tests requires that b, = o(n) as n — oo, and with this condition, R. Berk (1969)
has shown for normally distributed x’s that

(30) E,[exp(—rbsy + rN¥(0)] = oo forall r> 1.

A simpler proof which is not restricted to normally distributed x’s is given in
Section 4.

4. Theoretical developments. Let P, denote the restriction of P, to the
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space of x;, - -+, x, (n =1, 2, ...). It follows from (7) and (8) that for each ¢’, 6

31) dP§y = exp[(0' — 60"”)s, — n(¥(0') — W(0"))] dPy .

In particular by (11)

(32) dP, ™ = exp[—(w — u)s,] dP,™ .

For any stopping rule = for the sequence x,, x,, - - - let % denote the class of
all events 4 such that 4 n {r = n} is defined in terms of x;, - - -, x, for every
n=1,2,.... A version of the fundamental identity of sequential analysis (cf.

Chow, Robbins and Siegmund, 1971, page 33) is
LEMMA 1. For each ¢, 0" and Ae & _
(33) Py (Afr < 00}) = {4ccem) XP[(O" — 0"")s. — T(W(0") — W(0"))] dPy., .

PRrROOF. Writing (. <., = 27 {4(:=a) and appealing to (31) and the definition
of & yield (33).

ReEMARK. According to Wald (1947, page 157) P,{T < oo} =1 for all 6.
Hence for ¢’ = u, " = 0, A = {s, = b}, and = = T the equation (33) becomes
equation (12).

Proor ofF THEOREM 1. To simplify the exposition and eliminate some special
cases, assume that W (@) is defined for all real § = u. Then by (4)
(34) lim,_, ¥(0) = +oo.

Lemma 1 may be interpreted to say that if P, is considered as a measure on
F . N {t < oo} (which by a slight abuse ot notation will still be denoted P,),
then for any two values ¢’, ", the measures P,, and P,,, are mutually absolutely
continuous and

(35) dP, [dP,., = exp[(6' — 0")s, — (¥ (@) — ¥(0"))].
Putting ¢’ = 6, 6" = 0, and r = T in (35) allows (17) to be written
(36) 145(0) = Vugzs) €XPL(20 — O)5, — TQRW() — W(6))] 4P, .

From (36) it is apparent that any choice #, < 0 can be improved on by any
value 6, > O such that ¥(6,) < W(4,). Also by (34) there exists § > 0 such that

(37) V() = 20 (u) .
On [u, 0] define & = £(f) = 0 by
(38) U(E) = 2W(u) — V().

It is easy to see that ¢ is strictly increasing on [u, 0], strictly decreasing on [0, 5],
and by (8) and (11)

(39) E0) =0, £0)=0, Ew=¢Ew=w.
Putting ¢" =0, 6” = ¢ and ¢ = T in (35) shows by (38) that (36) may be



IMPORTANCE SAMPLING' 681

rewritten as
(40)  p,(0) = exp[(2u — 6 — £)b] §(ap2s) XP[(2U — O — &)(s; — b)] dP,
foru <6 <6. Letr, =inf{n: s, = b}. Thenforany 2 >0, ® >0

(41)  Sipan exp[—A(sy — D)} P,
= Efexp[—A(s;, — O]} — Vupze) Eu(eXP[—A(se, — D)]]57) 4P, .

It is an easy consequence of the renewal theorem (cf. Feller, 1966, page 356)
that the expectation and conditional expectation on the right-hand side of (41)
converge to a nonzero (finite) limit as b — oo, and for the conditional expecta-
tion convergence is uniform in s,. Hence for # < ¢ < @ the integral on the
right-hand side of (40) lies in (0, 1) and is bounded away from 0. (Typically it
will converge, but since no restriction has been placed on the behavior of a < 0,
it may oscillate.)

It follows that if £(f) + 6 has a unique maximum in [0, #], then the theorem
is established for all § < 6.

From (39) it follows that £(0) + 0 = £(@) + 0 = 0 and &(w) + w = 2w. By
strict convexity of ¥, (15), and (16)

1¥Q2w) = H(W(0) + ¥(2w)) > ¥(w) = ¥(u),

so by (37) and the monotonicity of ¥ on {0, co)
(42) 2w > 0.
Hence £(#) + 6 must assume its maximum on [0, 6] at an interior point 6* at which
(43) e +1=0.
Differentiating (38) gives ¥'(§)§’ = —¥’(#), so that at 6* satisfying (43)
(44) W(§(6*)) = ¥'(6%) -
However, U’ is strictly increasing and hence (44) implies that §(6*) = 6*, for
which the unique solution is 6* = w.

Since by the preceding argument log p,(w) ~ —2b(w — u), to complete the
proof it suffices to show by direct computation that for all 6 = @ there exists
¢ > 0 such that

(43) p(0) = exp[—2b(w — ¢ — u)]
for b sufficiently large. The following argument shows that in fact lim,_, p,(6) =
co for § > 6. A slightly simpler argument incorporating (42) shows that (45)
holds for 6 = 4, which completes the proof.

Assume then that § > 6, so that
(46) T) — 2¥(u) > 0.

Then
#2(0) = Siapzs) eXp[(24 — 0)s, — TQ2¥(u) — ¥(0))] dP,

(47) > Py(s; = b, T = bY, x, < b) exp[2(2u — 6)b
+ BH(W(0) — 2% ()] .
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By (46) and (47), to show that p,(f) — + oo as b — oo, it suffices to show that
bPy(sy, = b, T = b¥, x, < b)

is bounded away from 0 as b — co. But

(48) Psp 2 b, T = b}, x; < b) = Py(s; 2 b) — Py(sp = b, T < bY)

— P(T = b, x, =2 b) — P(T > 1),
and hence it suffices to show that bPy(s, = b) is bounded away from 0 and that
the remaining three terms on the right-hand side of (48) are o(Py(s, = b)) as
b — co. The following three lemmas complete the proof in the case that |a|/b
remains bounded as b — co. The case |a|/b — co may be treated similarly. The

case lim inf |a|/b < co and lim sup |a|/b = co may be reduced to the preceding
by considering subsequences.

LEMMA 2. Leta =O0anddefiner_=inf{n: n>=1, s, < 0}. Then P{s, = b} ~
—E;s.-[bas b— oo.

(For a more precise result cf. Siegmund, 1975a.)
Proor. By (9) and Wald’s lemma
(49) 0 = Eys; = Py(sp = b)b + §ipzs) (52 — 0) APy + §(apz0) 57 AP, -
Now
(50) S(STso) spdP, = E;s,_ — S(,Tg,,) Ey(s.-|sp)dP, .
It follows from the renewal theorem that the conditional expectation on the

right-hand side of (50) converges to a finite limit as & — co uniformly in s, on
{s; = b}. Hence

(51) S(sTst)) sp dPy = E;s.— + O(Py(sp = b)) .
Similar reasoning shows that
(52) $opzn (57 — b)dPy = O(Py(sy = b)) + o(1) .

The lemma follows upon substitution of (51) and (52) into (49).
In Lemmas 3 and 5 [x] denotes the largest integer < x.
LEMMA 3. 45 b — oo
Pys; = b, T < b¥) = O(exp(—bt)).
Proor. By the Doob-Kolmogorov inequality for submartingales (cf. Chow,
Robbins and Siegmund, 1971, page 24), for any 6§ > 0
Py(sp = b, T < bt) < Py(max, ;3 5, = b)
= P(max,g,.,? exp(fs,) = exp(6b))
< exp(—0b)E(exp(Osy;:41))
< exp(—0b + bIW(9)) .
Since W(0) ~ (E,x)6%2 as § — 0, the lemma follows from the choice 6 = b-1.
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LEMMA 4. P(T < b*, x, = b) = O(e~?) as b — co.
Proor. For arbitrary ¢ > 0,
P(T < b, x; = b) < Py(max,gps x, = b)
= BP(x; = b) = b (2, e~ 't dp,
< b4e—0b+W(0)
from which the lemma follows at once.
LeMMA 5. If |a| = O(b) as b — oo, then
(53) P(T > b*) = O(e™").
PrOOF. Assume |a|/b < ¢ — 1 for all large b. Then by independence of the
x’s and the definition of T
(54 P(T > b*) < P(max,g;cpa [Sppz; — Sta—1em| < €b)
< {Pof[sppa—n| < b}
By the central limit theorem the probability within braces on the right-hand

side of (54) converges to a limit < 1 as 6 — oo, and the lemma follows.

REMARK. A more sophisticated argument shows that (53) remains true even
if |a|/b — co. However, in this case it is easier to replace Lemma 2 by Py(s, =
b) — 1 and (53) by the weaker result that P{T > b} < Pfr, > b'} > 0asb — oo
in order to complete the proof of Theorem 1.

ProoF OF (30). Let # > 0 and r > 1 be arbitrary. Let ¢ > 0 be such that

(55) (r — HW(@) — 3erd > 0.

Since b, = o(n), for all n sufficiently large b, < e(k + 1) for all k = n. Then

since s,_, < by,

E,[exp(—rOsy + rNW(0))] = §(y>nay<enm) EXPI—70(by-1 + eN) 4+ rN¥(6)] dP,

= Siwsney<er EXpL(PY(0) — 2er0)N] dP,
= exp[(rW(0) — 2er@)n]Py{N > n, xy < eN}.

Also since {N > n} is independent of x, ., X, 435 «*

PN > n, xy < eN} = Py{N > n} — P,{N > n, x, = N}

= Py{N > n}(1 — 25, Pofx, > ek})
= $P4{N > n} for n sufficiently large.

Now by (31)

Py{N > n} = § ysa exp(0s, — n¥(0)) dP,
= Vw>na,z-ne €Xp(0s, — n¥(0)) dP,
> exp(—ned — n¥(0))P{N > n, s, = —ne}

= exp(—ned — nW(0))[P{N = oo} — Pfs, < —ne}].
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By (10) and the law of large numbers P,{s, < —ne} — 0; hence the preceding
estimates in conjunction with (27) and (55) show that

Ejlexp(—rls, + rTW(6))] = % exp[{(r — 1)W(0) — 3er@}n](P{N = oo} — o(1))

— 0 as n—oo.
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