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A NOTE ON PAIRED COMPARISON RANKINGS

By JAGBIR SINGH
Temple University

If m objects xi1, Xz, « - -, xm are compared pairwise, then let s;; denote
the number of times x; beats x; in n;; independent comparisons. In a rank-
ing, if x; precedes x; then one may require that the probability of x; beating
x; be at least . Such a ranking is called weak stochastic ranking. Let I(R)
be the set of all pairs (f, j) such that x; precedes x; in the ranking R in spite
of the paired comparison outcomes resulting in s;; < 55. A statistic D(R) =
Y1) (8i5 — 54:)%/n;; is derived and proposed for estimating a weak stochastic
ranking. Since D(R) is seen to be the sum of a random number of asymp-
totically distributed chi-square variates, a ranking is called minimum chi-
square weak stochastic if D(R) < D(R;), for t = 1,2, -+, m! It is proved
that minimum chi-square rankings share at least two properties with the
maximum likelihood rankings. That is, every minimum chi-square ranking
is Hamiltonian ranking and when in particular n;; = 1, every minimum
chi-square ranking minimizes the violations of observed outcomes. More-
over, the branch and bound algorithm can be used for estimating the mini-
mum chi-square rankings.

1. Introduction. In a paired comparison experiment, the elements of a set X
are compared two at a time. Thus, if ties are not allowed, a comparison between
x; and x; will result in either “x, beats x;” or “x; beats x,.” A pair may be com-
pared more than once. One considers these comparisons as constituting a sample
from the collection of all possible comparisons and thinks of 7,; = P(x, beats x;)
as being population parameters with z,; 4 7;; = 1. Let 7 = (73, Ty, - = 5 Ty m)
denote a typical point of the parameter space Q. An arrangement R = (x;,
X, ++ 5 X; ) of the elements of X is called a weak stochastic ranking if m;; = §
whenever x, precedes x; in R. Thompson and Remage (1964) studied the prob-
lem of estimating a maximum likelihood weak stochastic ranking based on paired
comparison samples. Determining the maximum likelihood weak stochastic
ranking R, or m.l. ranking R in short, was an optimization problem, since the
solution involved maximizing the likelihood function

L(x) = TLie; Cmpnsi
subject to the restriction that z,; >  Whenever x, precedes x; in R. In the
likelihood function, s;; is the number of times x, beats x; in n,; independent
comparisons. Let Q(R) = {z: =,; = } whenever x, precedes x; in the ranking R}.
Hence, R is a m.1. ranking if for any other ranking R,, t = 1,2, ..., m!

(1.1) SUP.eqm L(T) = SUP.eqen, L(7) -
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The unrestricted maximum likelihood estimate of =,; is #,; = s,;/n,;. Let# =
(%1 gy ++ +, #_y ) denote the maximum likelihood estimate of 7. The follow-
ing is essentially a result of Thompson and Remage.

THEOREM. The maximum of L(w) over Q(R) is L(%), where & = (fiy,, gy « - -,
R 1,m) i8S SUCh that

5

#,; if x, precedes x; in R and s, > s,

= if x, precedes x; in R and s; < s;;.

[N

2. Minimum chi-square rankings. Define I(R) = {(i, j): 5;; > s;; and x; pre-
cedes x; in the ranking R}. Notice that for (i, j) € I(R), %,; = 4, that is, an ob-
served outcome between x; and x; is being violated by ranking x; ahead of x;
in the ranking R. We notice that the logarithm of the likelihood ratio, 2(R) =
SUPq gz, L(m)/L(%), can be written as

(2.1) In A(R) = Xym nyllng — 25 In#,; — #;,In 7]

= — Zrm Mgl i In{l + Ry — #;)} + &5 In{l + (75, — 2,)}] -
Since —1 < (#;; — #,,) = —(#;; — #;;) < 1, using Taylor’s series expansion of
the logarithmic functions, simplifying and ignoring terms of higher orders, we

approximate
—2In AR) = Zyn sty — £5:)" = D(R) ,  say.

The statistic D(R) can also be written as

(2.2) D(R) = Y1) (855 — 8 Ine; = 4 Drmy (855 — 1y /2)? ;-
When n,; is the same for all pairs then we have the even simpler statistic D(R) =
Zirw (S — 850

If R is a m.l. ranking, then —21n A(R) < —21In A(R,) for any ranking R,.
Instead of using the method of maximum likelihood, we propose to use D(R) to
estimate a weak stochastic ranking. From (2.2), D(R) is seen to be the sum of
asymptotically and independently distributed chi-square variables, each with
one degree of freedom. We notice, however, that the number of elements in
the set /(R) is random; and, therefore, the distribution of D(R) is not really
chi-square. Regardless, a ranking R is to be called minimum chi-square weak
stochastic ranking, or m.c. ranking, if D(R) < D(R,) for any other ranking R,.
We now prove two interesting properties of the m.l. rankings retained by the
m.c. rankings. '

PrROVERTY 1. Every m.c. ranking is a Hamiltonian ranking in the sense that, if
x; is the immediate predecessor of x; in a m.C. ranking, then s;; < §;,.

PRroOF. Suppose x; is the immediate predecessor of x, in a m.c. ranking R but
s5;; > ;. By definition of I(R), (i, j) € I(R). Let R, be the ranking obtained from
R by interchanging x, and x;. Note that neither (i, j) € I(R,), nor (j, i) € I(R,).
Consider any other subscript pair (k, [) € I(R,). It follows that x, precedes x, in
the ranking R,, and s,, < s,,. Since x; is the immediate predecessor of x, in R,
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and R, differs from R by the interchange of x, and x; only, we notice that
(k,I)ye I(R). Hence I(R,)) C I(R). Thus D(R,) < D(R). This is a contradiction
of the hypothesis that R is a m.c. ranking.

PROPERTY 2. When each pair is compared exactly once, then every m.c. ranking
minimizes the number of violations of observed paired comparison outcomes.

Proor. If n; = 1, then #,; is either zero or one. In either case, it follows
from (2.1) that —2In A(R) is a constant multiple of the number of elements in
the set J/(R). On the other hand, D(R) equals the number of elements in the set
I(R). Hence, when n; = 1, the m.l. rankings and the m.c. rankings are the
same. Since the m.l. rankings minimize the violations of observed outcomes
when n;; = 1 for all pairs, the same is true for the m.c. rankings.

For a given ranking R, D(R) is very simple to compute. DeCani (1972) ob-
served that the branch and bound algorithm is useful for estimating the m.1. rank-
ings. To see that the algorithm is also useful for computing m.c. rankings, let

g = (Su5 — 850)"[ns if s, < sy

=0.

Now we can write
D(R) = X i,jyerCij»

where (i, j) € R indicates that x, precedes x; in R. Let Z = min D(R). Obviously
Z = 0. We are seeking that ranking which gives Z. Let Zijigi, be a lower
bound on Z when x; precedes x,, x; precedes x,, and so on X, precedes X,
in the ranking. It is easy to see that

Zi1i2~~~i7 = g;i Dik=it1 Cijip, +
Thus, given any partial ranking, we can obtain lower bound on Z. We briefly
outline the algorithm; for details, see deCani.

For some x; and x;, compute z,; and z;,, and choose the smaller of the two.
Suppose it is z,;. Then for some x,, compute z,;, Z,;;, Z;,;, and choose the smallest
one. Continue this way. Thus, if m objects are to be ranked, at the (m — 1)th
stage, m lower bounds are computed based on the smallest lower bound com-
puted at the previous stage. Call Z,(1) the smallest of the lower bounds. Ties
can be resolved arbitrarily. Delete all the other (m — 1)th stage lower bounds
since they clearly do not give m.c. rankings.

The process of calculation generated a tree. The (y — 1)th stage has y branches
terminating in y nodes. The nodes with smallest lower bounds were chosen for
subsequent branching. From (m — 1)th stage, go down the tree, eliminating
nodes with lower bounds bigger than Z, (1). Ifanode cannot be deleted then from
this node branch back up reaching a new (m — 1)th stage and a new minimal
lower bound Z,,(2). Choose the smaller of Z,(1) and Z,(2), and proceed to
eliminate additional nodes. Sooner or later the algorithm will terminate after
finding all m.c. rankings. In using the algorithm, one can search and remove
all those branches which would not lead to Hamiltonian rankings.
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Consider an example from Thompson and Remage (1964). In the example,
m=4 n; =4, 5,=3,5,=1,5,=1, 8, =3, 5, =3, and s, = 3. Thec,;
are always very easy to compute. In this example, additional simplification
occurs, since n;; = 4 for all (i, j). Hence if we replace n,; by one in the defi-
nition of ¢;;, we find ¢, =0, ¢, =4, ¢, =4,¢,=0,¢,=4,¢, =0, ¢,;, =0,
€y =4,0,=0,¢5=4, ¢, =0, and ¢, = 4. Algorithm will proceed as shown
in the following table based on a preliminary best to worst ranking x,, x;, X, X,.

TABLE 1
Branching sequences and bound values
First sequence Second sequence Third sequence

1. Z23 — 0
z2 =4 Branch up from z;,

2. Z234 = 0 Z324 — 4
Z243 = 4 Branch up from Z243 Zg42 = 8%

2423 — 8* Zyzo = 12%

3. zsn =4 Zo43 = 8% Zgoq = 8%
Zo314 = 8% Zoa13 = 12% Z3214 = 12%
Zo134 = 12% Zo13 = 16%* Z3124 = 8*
Z1234 = 8% Z1og3 = 12% Z1324 = 12%

* Means deleted nodes.

The m.c. ranking is x,, x,, x,, x;, which is also the m.I. ranking.
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