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ADMISSIBILITY RESULTS FOR GENERALIZED BAYES
ESTIMATORS OF COORDINATES OF A
LOCATION VECTOR!

By JaMEs O. BERGER

Purdue University

Let X be an n-dimensional random vector with density f(x — ). It is
desired to estimate 61, under a strictly convex loss L(d — 61). If Fis a
generalized Bayes prior density, the admissibility of the corresponding
generalized Bayes estimator, dr, is considered.

An asymptotic approximation to ér is found. Using this approxi-
mation, it is shown that if (i) f has enough moments, (ii) L and F are
smooth enough, and (iii) F(0) < K(|61] + 17—, 0:®)©3—)/2, then oF is admissi-
ble for estimating ¢:. For example, assume that F(¢) =1 and that L is
squared error loss. Under appropriate conditions it can be shown that
Or(x) = x1, and that Jr is the best invariant estimator. If, in addition, f has
7 absolute moments and » < 3, it can be concluded that 6 is admissible.

1. Introduction.

1.1. Summary of results. Considerable study has been given to the question
of admissibility of estimators of location vectors. The results obtained have,
for the most part, dealt solely with estimating the full location vector. The
question of the admissibility of estimators of coordinates of a location vector
has been long outstanding.

In this paper, admissibility results are developed for generalized Bayes esti-
mators of one coordinate of a location vector. The paper deals with a wide
class of loss functions, densities and generalized priors. The analysis in this
general setting is accomplished by using a new and powerful method of admis-
sibility analysis, developed by Brown (1974c). A heuristic discussion of this
method (as it applies to the problem in this paper) is given in Section 1.4, after
the necessary notation has been developed. For a more comprehensive dis-
cussion of this method, see Brown (1974c). In Berger (1974), the “other half”
of the problem is considered; namely, the question of when a generalized Bayes
estimator of one coordinate of a location vector is inadmissible.

It should be noted that the problem considered here has recently been partially
answered by Portnoy (1975). He has obtained results for the best invariant
estimator, using squared error loss, and for a class of distributions with mass
on the (n — 1) planes x, = 4+ m (where x, is the first coordinate of the random
variable and m is an arbitrary integer).
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Section 1.2 develops the necessary notation, and clearly defines the problem.
In Section 1.3, the problem is reduced to a relatively simple canonical form,
which is dealt with in the remainder of the paper. Section 1.5 summarizes the
various assumptions and results. In Chapter 2, approximations to generalized
Bayes estimators are developed. These may be of some intrinsic interest. Chapter
3 deals with the major admissibility results. Chapter 4 discusses possible gen-
eralizations.

1.2. Preliminaries. Let X = (X,, X,, ---, X,) be an n-dimensional random
variable with density f(x — ) with respect to Lebesgue measure (6 ¢ R"). Let
F be a bounded generalized prior density w.r.t. Lebesgue measure (i.e. 0 <
F(f) £ B < oo, while possibly § F(0) df = ©0).

It is desired to estimate 6,, under the strictly convex loss L(6 — 6,). (The
more general problem of estimating a linear combination of the ¢, can be reduced
to the above problem by a simple linear transformation.) Assume that L is
nonnegative and that L(0) = 0.

For convenience, the notation 4(x) = (3/dx,)h(x), k"9 (x) = (8*/dx, dx;)h(x),
etc., will be adopted for any function # with the appropriate number of deriva-
tives. (For simplicity in stating assumptions, let 27 = h'9), etc.) Since L is a
function on R, derivatives of L will be denoted by L'(y) = (d/dy)L(y), L"(y) =
(@/dy) L(y), and L"(y) = (d*}dy)L(y).

For convenience, K will be used as a generic constant. E, will stand for the
expectation under #. Let |£| denote the usual Euclidean norm of the vector £.
If x € R, define ||x|| = |x,| + 32, x;>. Note that this is not a norm. Consider-
able subscripting will be saved by this somewhat unusual notation, however.
Finally, define the differential operators &% , and <&, on twice differentiable
functions G: R* — R}, by

D G(x) = —[GV(x) + § T GE(x) — & 7Dy Gei(x)],
n+rn+1<n,
TG(x) = |GV(x)| + } T, |G (x)] .
When clear from context, the subscripts r, and r, will be dropped from Qr*l'rz.
The following conditions on L, fand F will be needed throughout the paper:

(i) All third order derivatives of L and F exist.

(if) For every ce R', E,L(X, 4 ¢) < oo and E|L'(X, + ¢)| < oo.
(iii) E,L'(X)) = 0.
(iv) § f(x — 0)F(6)d6 > 0, for every x ¢ R™.

(If no region of integration for an integral is given, it is to be understood to
be R*.) Assumption (iii) can really be made without loss of generality. Using
(i), (ii) and the convexity of L, it is easy to see that there exists a number ¢
for which E,L'(X, 4+ ¢) = 0. A simple translation of the density f will now
ensure that (iii) is satisfied, while leaving admissibility considerations unchanged.

Denote the generalized Bayes estimator of 6, with respect to F, by d,. Under
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the above assumptions, it can easily be checked that 9, satisfies § L'(d,(x) —
6,) f(x — 0)F(0) d6 = 0, and is unique.

For an estimator 4, define y(x) = d(x) — x;. Thus, for example, y.(x) =
O0p(x) — x,.

As usual, define the risk of an estimator d by R(d, 0) = { L(d(x) — 6,) f(x —
) dx. (Only estimators for which the risk is defined and finite for every ¢ will
be considered.) Also, define A,”(6) = R(d,, #) — R(9, #). The estimator g, is
said to be admissible if A;#(#) = 0 for all ¢, implies that A,”(¢) = 0. Thus 4,
is inadmissible if there exists an estimator d such that A;7(#) = 0 for all 4, with
strict inequality for some #. Finally, 9, is said to be admissible with respect to
Fif A;F(6) = 0 for all #, implies that A,”(¢) = 0 for ¢ in the support of F.

The following quantities play a crucial and relatively unheralded role
in questions of admissibility. Define b = E,L"(X,), and m;q, ja)... j0 =
E[(ITk, X;)L'(X))]. These quantities will be called the “moment structure”
of the problem.

1.3. Reduction to canonical form. The purpose of this section is to reduce
the moment structure to a relatively simple canonical form. Consider first the
terms m, = E,[X,L'(X,))]. It is clear that m, > 0 (since L is strictly convex).
Multiplying L by a constant does not affect admissibility considerations. Hence,
assume m;, = 1. Finally, consider the linearly transformed problem defined by
Y, =X, Y, =X, —mX, for i =2. It is easy to check for this transformed

problem (i.e. the Y problem with induced transformations on L, f, and F)
that

(1.3.1) m=1, and m=0 for ix=2.

Clearly, admissibility in the transformed problem is equivalent to admissibility
in the original problem, since all that has been done is a change of variables in
the integrals for the risks.

The reduction must be carried one step farther. (We revert to the usual (X,
L, f, F) notation, but assume (1.3.1) holds.) Let M be the (n — 1) X (n — 1)
matrix with (i, j) element m,, ;,, = E[X,, X;, L'(X)], 1 £i<n—1land 1l <
J < n— 1. Itisclear that M is a symmetric matrix. Hence, there exists a non-
singular (n — 1) X (n — 1) matrix P for which PMP* is a diagonal matrix with
diagonal elements d;, = —1 for 1 < i gl r,d,=1forr, +1<i<r +r,and
d,=0forr,+r,+1=<i<n—1. Let Q be the n X n matrix with elements
Go=1,9,=¢,=0for 2<i<n, and ¢, ; = p_y,u-y for 2 <i<n and
2 £ j< n. (The p,; are, of course, the elements of P.) Consider the trans-
formed problem defined by Y = XQ. It is straightforward to check that for the
transformed problem

m;; = —1 if 2<i=j<r+1
(1.3.2) = 1 if n+2<i=j<r+nrn+1

= 0 otherwise, for 2 <i and 2 <.
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Without loss of generality, it can thus be assumed that the moment structure
of the original problem satisfies (1.3.1) and (1.3.2).

1.4. Heuristic approach to results. As the technical aspects of the theoretical
development are somewhat involved, it seems desirable to briefly sketch the
important arguments. The main ideas are patterned after Brown (1974c), to
which the reader is referred for further discussion.

The first item of importance is to obtain an approximation to y,. Chapter 2
deals with this problem. The basic idea used is as follows.

Under the assumptions of Section 1.2,

(1.4.1) § L'(yp(x) + x, — 0) f(x — O F()do = 0.
Expanding L'(y,(x) + x, — 6,) in a Taylor series about (x, — 6,) gives
(1.4.2) L(rp(x) + X, — 0)) = L'(x; — 0)) + 7p(x)L7(x, — 0))

+ remainder.

If F(x) is “smooth® and “flat” in the neighborhood of x, it can be shown that
7p(x) is very small, and that the remainder term in (1.4.2) is o(y.(x)). Thus,
ignoring the remainder and using (1.4.1) and (1.4.2) gives

—§ L'(x, — 0) fix — 0)F(0) db
{ L"(x, — ) f(x — O)F(6)do

(1.4.3) 7a(x) =

Next, expand F(¢) in a Taylor series about x (up to third order terms). Again,
it will be possible to ignore the remainder term. Using the assumptions (1.3.1),
(1.3.2) and E,L'(X;) = 0, it is easy to see that
(1.4.4) §L'(x, — 0,) fix — O)F(0)do = =}, F(x).

(The other third order terms of the Taylor expansion can be ignored under
appropriate conditions.)

Similarly,
(1.4.5) §L"(x; — 0) f(x — 0)F(0) df = bF(x).
Combining (1.4.3), (1.4.4) and (1.4.5) gives
(1.4.6) re(X) = — D*F(x)/(bF(x)) .

This is the desired approximation. Again, it will be valid whenever F is ap-
propriately “smooth” and “flat” near x.

In Chapter 3, conditions are given under which d, is admissible. The proof
makes use of a standard statistical argument for proving admissibility. A sequence
of bounded, finite mass priors, g, is found, such that lim, . gx(0) = 1 for
every ¢ ¢ R*, and such that lim,_ § AY (9)F(0)g.(0)d0 = 0. (Here d, is the
generalized Bayes estimator for (Fg,).) It can then be concluded that 4, is
admissible w.r.t. F. The analysis proceeds as follows.

For simplicity, consider the case F(f) = 1. (Thus the admissibility of the
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best invariant estimator is being investigated.) Expanding L(dj(x) — 6,) =
L(yx(x) + x, — 0,) in a Taylor series about (x, — 6,), gives for appropriate g,
AZ(0) = R(3, 0) — R(35, 0)
(1.4.7) = {[L(x; — 0,) — L(0x(x) — 8)]f(x — 0)dx
= | —[ra()L(% — 0) + Brd(OL(x, — 0)]f(x — 0)dx .
Interchanging orders of integration (valid since the g, are finite priors), and
using (1.4.7) gives

(1.4.8) S AfR(ﬁ)gR(ﬁ) di = —§ rp(x) § L'(x, — 0,) f(x — 0)g5(0) db dx
— 3y § L7(x, — 0,) fix — 0)gp(0) dO dx .
Using (1.4.4), (1.4.5) and (1.4.6), with F replaced by g,, thus gives
§ AT(0)9r(0) A0 = § ([<7*gR(X)]"/[269(x)]) dx .

To complete the admissibility argument, a sequence of finite priors, g,, must
be found, such that lim,_., g,(6) = 1 for every #, and such that

(1.4.9) limg,., § ([Z*go(x)]'/[269x(x)]) dx = 0.

Such a sequence is given in Chapter 3 (where also the details of the argument
are filled in).

1.5. Summary of assumptions, results and examples. The assumptions that
will be needed for the results are first discussed. The conditions given are not
the most general possible, but they do include a wide variety of interesting
cases. Furthermore, their “relative” simplicity and ease of verification make
them desirable.

For use in the first assumption, let Q be a subset of R*, and define d(x) =
inf, g |[x — &|. (Define d(x) = |x| if Q = R™.) Thus d(x) is the distance from
x to Q. The region Q will be said to be * unbounded if sup,.q d(x) = co. Thus
if Q is * unbounded, it is possible to get arbitrarily far from Q°. For notational
convenience, the following modification of “0” notation will be adopted:

r(x) is o(l), if limg_. SUp,.qmsr |7(X) = 0.
AssumpTION 1. (Conditions on the generalized prior F.)
(i) F is absolutely continuous w.r.t. Lebesgue measure.
(iiy 0 < F(#) £ B < oo.
iii) There exists a * unbounded region Q, such that if x ¢ Q, then the follow-
g
ing conditions hold:
(2) F(x)> 0.
(b) F has continuous third order partial derivatives at x.
©) [FOX)] + [FH2(x)] + [FE20(x)] = 6(1)F(x).
[Fo2()] 4 [F9(00] = ()7 F(x),
[FO2(x)] = o(1) T, [FO(x)].
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(d) There exists a positive increasing function A*: R* — R', for which
the following hold:

1. [d — h*(d)] is increasing in d and positive for some d.

2. There exists ¢ > 0 such that [A(x)]~? = 6(1)F(x), where h(x) =
h*(d(x)).

3. If d(x) —h(x)>0, then for i=0, =0, k=1,
SUP s gi<ican [F07H(x 4 €)] = K[FEI(x)).

AssuMPTION 2. (Conditions on fand L.)

(i) L is strictly convex, L = 0 and L(0) = 0.

(ii) The third derivative of L exists.

(iii) § f(x — 0)F(6)d6 > 0O for every x e R™.

(iv) E[|XPL(X)] < o0, E|X|* < oo, and E[|X|*L<">(X,)] < oo, Where a =
max (¢ + 4, 5), L<*> is the ith derivative of L, 1 £ i < 3, and ¢ is from As-
sumption 1 (iii) d. 2.

(v) If |¢| < D, then there exist K, > 0 and C,, > 0 such that |L<*>(x; 4+ §)| <
Kp|L<>(x))| + Cp, 0 < i < 3.

(vi) E,L'(X,) = 0.

(vii) (1.3.1) and (1.3.2) hold.

DiscussioN. Though numerous, these assumptions are often quite easy to
verify. Assumption 1 (iii)c is a “flatness” assumption, guaranteeing that lower
order derivatives ‘““‘dominate” higher order derivatives. Assumption 1 (iii)d is
mainly technical, but it is usually quite easy to check. For example, if F(x) =
(1 + |x|»~%, choose Q = R" (so d(x) = |x|), A(x) = |x|*, and ¢ = 3. The verifi-
cation of 1 (iii)d is then trivial.

The need for so many moments in Assumption 2 (iv) arises mainly for techni-
cal reasons. For a rough idea of how many moments are needed, note that if
L(x,) = x;* and F(f) = 1, it is possible to choose % so that ¢ = 1. Hence, f must
have 7 absolute moments. Assumption 2 (v) is mainly technical, but again is
usually easy to verify. Recall that 2 (vi) and 2 (vii) can really be made with-
out loss of generality, since the problem can be transformed to ensure their
validity.

Two particular regions Q are of interest:

(1) Q, = R* — %, where 2¢"is a compact set. Note that in Q,, if |x| > T,
then d(x) > T — ¢, where ¢ = sup,., |§|. Hence d(x) and |x| are equivalent for
asymptotic purposes. Chapter 3 will deal entirely with this region.

(2) Q, ={xeR*:|x| > c}. This region is of interest when the prior F(f)
depends only on #,. (Recall it is , that is to be estimated.) Again, it is easy
to see that for asymptotic purposes, |x,| is equivalent to d(x).

In Chapter 2, the following result is established.

THEOREM A. Assume Assumptions 1 and 2 hold. Assume also that the following
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strengthening of 1 (iii)d. 2 holds: there exists g > 0, such that [h(x)]~* = 6 (1)DF(x).
Then,

:.‘?L(x)_ + &(x), where |5(x)| = L‘@F(x) .

() = bF(x) bF(x)

ComMENTs. This asymptotic approximation to 7, is important in admissiblity
studies. Besides its use in this paper, it is needed to verify an inadmissibility
condition in Berger (1974).

As an example of the application of this theorem, let

F@o) =1 if 161

= |0, if 16/>1,a>0.

It is easy to check that Assumption 1 can be satisfied with Q = Q, (¢ = 1),
h*(d) = dJ2 and g > a. To satisfy the additional assumption of Theorem A,
choose ¢ = a + 1 4 . If fand L are such that Assumption 2 is valid, Theorem
A thus gives

—D*F(x) | -\ DF(x) _ —a -

X)) = —— 2 7 1 —— = 1 1 .
0= = O Gy T, W)

The following additional assumption is needed to prove the admissibility

results.

AssumpTION 3. (Further conditions on F.)

(i) Fissuch that Q = Q, can be chosen in Assumption 1.

(ii) There exist positive numbers ¢, T and C,, such that if |x| > T, then
[A(x)]7? < C,F(x)||x||"%. (Here A(x) is as in Assumption 1.) Note that this con-
dition is stronger than 1 (iii)d. 2. Thus the ¢ found to satisfy this assumption
will be the ¢ used in Assumptions 1 and 2.

(iii) There exist T > 0 and C, > 0, such that if |x| > T, then

@) [FOE)|/F(x) = Ciljx||~
(b) F(x) = Gy|x[[o=mr.

DiscussioN.  Assumptions 3 (i), 3 (ii) and 3 (iii)a are mainly technical and
are quite easy to verify. Note that ¢ should be chosen as small as possible in
3 (ii), in order to make the number moments needed in Assumption 2 (iv) as
small as possible. Observe, also, that the faster F decreases in the tails, the
larger ¢ must be, and hence the larger the number of moments needed by
Assumption 2. This is due to the method of analysis; it is easier to approx-
imate a flat F than a quickly decreasing F. In fact, for many finite priors F,
such as those with exponential tails, the theory will not even apply. (Of course
it is already known that such F give admissible estimators.)

Assumption 3 (iii)b is the central condition on F, necessary to ensure admis-
sibility. In Berger (1974) it is shown that if F is much bigger than the given
bound, then 4, is inadmissible.

Chapter 3 proves the following theorem.
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THEOREM B. Under Assumptions 1, 2 and 3, 0, is admissible with respect to F.
If F(0) > O everywhere or f(x) > O everywhere, then d, is admissible.

An application of Theorem B is next given, in order to demonstrate the ap-
plicability to the assumptions, and to give the reader a more concrete situation
to think of.

Assume L(x,) = |x,|*, where a = 2 or @ > 3. Consider the generalized prior
F) = (1 +16]")~", r = 0. Assumptions 1 (i) and 1 (ii) are clearly satisfied. For
1 (iii), let @ = R* — {0} and d(x) = |x|. It is then trivial to verify a, b and ¢
of Assumption 1 (iii). Choose A(x) = |x|/2. Assumptions 1 (iii)d. I and I (iii) d.
3 are then easy to check. Assumption I (iii)d. 2 will be verified when 3 (ii) is.
Assumption 2 is easy to check for the above L and F. 2 (iv) says that max (5 +
a, ¢ + 3 4 a) moments of f are needed.

Finally, consider Assumption 3. Assumption 3 (i) is clearly satisfied. Using
the obvious fact that ||x|[} < |x| + 1 < 2|x| for |x| > 1, it is easy to see that if
|x| > 1, then

(AT = 20074 < 209 - 1)

Hence, choosing C; = 2"+9, T = 1, and g = r+ 1, Assumption 3 (ii) is verified.
A similar calculation will verify Assumption 3 (iii)a. Finally, it is necessary to
check 3 (iii)b. If n < 3, F clearly satisfies the assumption. If n > 3 and [x] > 1,
then |x|~=% < 2=9||x||¢=m/2, Thus 3 (iii) b is satisfied if » — 3 < r. Theorem
B thus implies

COROLLARY Bl. Assume

(i) L(x,) = |x|* where a = 2, or a = 3.

(i) F(0) = (1 + |0|")7", wherer = 0.
(iii) f has max (5 4+ a, r 4+ 4 + a) absolute moments.
@iv) n<r+4 3.

Then the generalized Bayes estimator, o, is admissible for estimating 0,.

CoRrOLLARY B2. For squared error loss, the best invariant estimator of 0, is
admissible if f has T absolute moments and n < 3.

PRrROOF. Obvious, noting that ¢ = 2 and'r = 0. ]
2. Generalized Bayes estimators.

2.1. General result. In this chapter, an approximation to generalized Bayes
estimators is developed. The results will be applied to the priors (Fg,), as well
as to F. Hence, for this section, consider an arbitrary generalized prior density
Hon R". If §,(x) = 7,(x) + x, is the generalized Bayes estimator for 4,, it is
desired to find an approximation to [y,(x) — a(x)], where a(x) is a measurable
function such that |a(x)| < 4 < co. The approximation will be established
locally, at a fixed point x. For this section, assume only that Assumption 2
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holds and that d,,(x) satisfies
(2.1.1) §L'(yu(x) + x, — 8)f(x — O)H(O)dO = 0.
Expanding L'(7,(x) + x; — 6,) in a Taylor expansion about [a(x) + x; — 0,]
gives
(2.1.2)  L'(ru(x) + x, — 0)) = L'(a(x) + x; — 0,) + [ru(x) — a(x)]L"(a(x)
+ x; — 0) + F(ru(x), X1 0) »
where
G(E, x1, 0,)) = S:i:ra;l:xil—)ﬂl) L)€ + x, — 0, — n]dy.
Define
Uy(x) = § L'(a(x) + x, — 0, f(x — O)H(8) db,

Valx) = § L(a(x) + x, — 0,)f(x — O)H(6) 0 ,
W, x) = | G2, x,, 0,) f(x — O)H(6) db .
Note that V,(x) = 0. Combining (2.1.1) and (2.1.2) gives
(2.1.3) Uy(x) + [1u(x) — a(x)]Va(x) + Wu(ru(x), x) = 0.
LemMma 2.1.1. If |§ — a(x)| < 1, then W(§, x) is continuous in §.

Proor. Straightforward, using Assumptions 2 (iv) and 2 (v), the boundedness
of a(x) and the dominated convergence theorem. []

THEOREM 1. Assume V(x) > 0. Assume also that there exists C > 1, such that
if 6| < A + 1, then

(@) VIL(E + %, — 0)|f(x — O)H(O)db < CV,(x)[2,  and

(b) |Un()|/Vr(x) < 1/(10C) .
Under these assumptions, it can be concluded that
(2.1.4) [7u(x) — a(x)] V.9 €U, )

= —(1 4 &(x)) 222, where |e(x)] < Z K N«
) V. I Va0

Proor. In this and following proofs, the notational dependence of Uy, V,
and W, on the prior is dropped. Recall, x is considered fixed. Define

r(e) = —(1 + )U(x)/V(x) + a(x) .
Clearly, (2.1.4) will be formally satisfied if ¢ can be found so that r(¢) = 74(x).
Using (2.1.3), this is equivalent to finding ¢ for which
(2.1.5) W(r(e), x) = eU(x) .

Consider first the case U(x) = 0. Clearly ¢ = 0 is then a solution to (2.1.5),
since r(0) = a(x) and W(a(x), x) = 0.
If U(x) # 0, a solution ¢ must be found to

(2.1.6) W(r(e), x)/U(x) = ¢ .
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Note first that
(2.1.7) L&, %1 0)] = Stacs oy (L (IS + %, — 0, — 7] dy
< (6 — a(0) Yairiaoy [L7 ()] dy -
Using Assumption (b), it is clear that |r(c)| < (1 4 ¢)|U(x)|/V(x) + |a(x)| < 1 + A.
This, together with the definition of W, (2.1.7), and Assumption (a) gives
[W(r(e), 9] < [r(e) — a()] §§aia =) IL7 ()] flx — 6)H(0) dy db
= [r(e) — a(0)[[§5) (CV(x)/2) dn|
= Clr(e) — a(x)|*V(x)/2
= C(1 + ey U/@V()) -
Assume for the moment that |¢| < (. Then
[W(r(e), 0)I/[Ux)] = C(1 + e |U(x)|/2V(x)) = (T)CIUX)|/V(x) -

Thus the left-hand side of (2.1.6) has the above bound. By Lemma 2.1.1, it is
continuous in r(¢) and hence in ¢. But then for some ¢, where |¢| < C|U(x)|/V(x),
(2.1.6) must be satisfied. By Assumption (b), [¢|] < C|U(x)|/V(x) < {5;. Hence
the above result is valid and the proof is complete. []

2.2, Asymptotic approximation of 0,. Theorem 1 will be very important in
the admissibility proof. In this section a more direct application of the theorem
is considered; namely, proving Theorem A (see Section 1.5). The result obtained
will itself be essential in proving the main admissibility theorem.

Throughout this section, assume Assumptions 1 and 2 of Section 1.5 hold.
Section 2.1 will be applied with H = F and a(x) = 0. Thus,

Up(x) = § L'(x, — 0)) f(x — 0)F(6) d0,
Ve(x) = § L"(x, — 6,) f(x — 0)F(0)db,
We(és x) = § (120" L ()IE + x — 0, — 7] dy) fix — O)F(6) df .

LeMMA 2.2.1. There exists T > 0, such that if d(x) > T, then

Up(x) = D*F(x) + ¢(x), where |e(x)| < 6(1)2F(x) + K[h(x)]".
Proor. Let Q = {6:|x — 0| < h(x)}. Clearly
(2.2.1) U(x) = §o L'(x, — 6,) f(x — O)F(6) do
+ Yoo (3, — 0,) f(x — O)F(8) O .
A simple Chebyshev argument and Assumption 2 (iv) give
[Sge L'(x, — 6,) f(x — 0)F(6) db)|
< B[h(x)]7?§ |x — 07| L'(x, — 0,)| f(x — 0)df < KB[h(x)]7.
Thus it is only necessary to consider the integral in (2.2.1) over Q. Now if

|x — 0] < h(x), then d(f) > d(x) — h(x). (Recall d(x) is just the distance from
x to Q°) By Assumption 1 (iii)d, it is clear that there exists a T such that if
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d(x) > T, then d(x) — h(x) > 0. Hence, d(f) > d(x) — h(x) > 0 and 6¢cQ.
Since this holds for every e Q, it is clear that F(f) can be expanded in a
Taylor expansion about x. Using the expansion (up to fourth order terms) gives
SoL'(x, — 0)f(x — O)F(0)do =1, + 1,
I = §o L'(xy — 0) f(x — O)[F(x) + 23, (0 — x)F(x)
+ & 2 205 (00 — x)(0; — x;)F0(x)] db
L= §o L0y — 0) flx — O)& 20 205 200 (0 — x,)(0; — x;)(0x — xy)
X FOoB(t(x, 0)x 4+ (1 — t(x, 0))0)] 46 ,
where #(x, 0) is a measurable function such that 0 < #(x, ) < 1. Let ¢ denote
the expression within the brackets in the definition of ;. Clearly
(222)  L={L(0xn—0)f(x—0)p]dd — o L'(x, — 0,) fix — O)[¢] 6 .
Using Assumptions 1 (iii)c, 2 (iv), 2 (vi), and 2 (vii), it is clear that
VL% — 00) f(x — O)[ ] 40
= D) + § L'(x — 0) fx — 0)(0; — x,)
X [3(0, — x)FH0(x) + 2ie (0: — x)F*0(x)] dO
= D*F(x) 4+ 6(1)DF(x) .
The second integral in (2.2.2) is bounded by KB[A(x)]~? using another Chebyshev
argument and Assumption 1 (iii)c.

Finally, consider the integral /,. By Assumption 1 (iii)d. 3, which is applicable
since d(x) — h(x) > 0,

SUPyeq [F78(1x + (1 = 00)] = sUPeuieranny [F7H(x 4 §)] < K|FH0(x)| .
Assumptions 1 (iii)c and 2 (iv) can thus be used to conclude that I, =
6(1)ZF(x). [

LEMMA 2.2.2. There exists T > 0, such that if d(x) > T, then

Ve(x) = bF(x)(1 + a(1)) -

Proor. By an argument similar to that in Lemma 2.2.1, it can be shown that
Ve(x) = bF(x)(1 4 (1)) + K[A(x)]7? (F(x) will be the dominant term in the
Taylor expansion, since its coefficient b = E L”(X,) > 0.) Assumption 1 (iii)d
2 can be applied to complete the proof. []

LEMMA 2.2.3. There exists T > 0, such that if d(x) > T and |c| < 1, then

§IL"(c + x; — 0)| f(x — 0)F(0) df < K, Vy(x).

PROOF. As in Lemma 2.2.2, it can be shown that { |L"'(c 4 x, — 6))| f(x —
0)F(0)df < KF(x). But from Lemma 2.2.2, it is clear that for large enough 7,
F(x) < 2Vy(x)/b. The result follows. []

THEOREM 2. Under Assumptions 1 and 2 of Section 1.5, there exists T > 0 such
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that if d(x) > T, then
re(x) = —ZFF(x)[(bF(x)) + &(x) ,
where |e(x)| < [6(1)ZF(x) + K(h(x))~71/(bF(x)).
Proor. Lemmas 2.2.1 and 2.2.2 give that if d(x) > T, then
[Us(/Vr(x) < K[ZF(x) + (R(x)V/F(x) -
By Assumptions 1 (iii)c and 1 (iii)d. 2, this is 6(1). Thus 7 can be chosen so

that |U,(x)|/Vz(x) < 1/(20K,), where K, is from Lemma 2.2.3. The conditions
of Theorem 1 are then satisfied. It can thus be concluded that

75(%) = — (1 + () Up(x)/ V(%) »

where |e)(x)| < 2K|Up(x)|/Vy(x). Using Lemmas 2.2.1 and 2.2.2 again, and
combining error terms, gives the desired result. []

COROLLARY 2.1. yn(x) = 6(1).
Proor. Obvious. []

Note that Theorem A follows immediately from Theorem 2 under the ad-
ditional hypothesis.

3. Admissibility.

3.1. Introduction. In this chapter, it will be assumed that assumptions 1, 2
and 3 of Section 1.5 hold. It will then be shown that §, is admissible w.r.t. F
for estimating #,. The proof will be based on the following theorem, which is
basically Stein’s sufficient condition for admissibility (Stein (1955)), but in the
form given is due to Farrell (1964).

THEOREM 3. Suppose gy is a sequence of generalized priors such that § g,(0)df <
oo for every R, and such that limy_,, gz(0) = 1 for every 6. If d, is the generalized
Bayes estimator for the prior G (0) = F(0)gz(6), assume

(3.1.1) limg, ., § [R(05, 0) — R(0z, 0)]F(0)gp(0)do = 0.
Then 6, is admissible with respect to F. Furthermore, if F(0) > 0 everywhere or
f(x) > O everywhere then d, is admissible.

Proor. The proof is exactly analogous to the proof in Farrell (1964). []

In order to proceed, a suitable sequence of priors, g,, must be found. The
heuristic results of Section 1.4 indicate that the sequence g, should satisfy
(1.4.9). It can be checked that the following sequence of priors does this.

9:(0) =1 if o] =1
(3.1.2) =[1 = (n|lg])/In R)* if 1 <0 = R
=0 if ]|0]] > R.

Perhaps a word is in order as to how the above sequence of priors was found.
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First, roughly speaking, the flatter the prior is, the smaller Z*g,(x) will be in
(1.4.9), and hence the larger the chance of success. Priors of the form

7x(6) = 1 if |0 < 1
=[1—(n|6)/InR] if 1<[f<R
—0 if |6 >R,

are about as flat as can be obtained (subject of course to the restrictions that
9z(0) — 1 and § g(0) df < oo). A quick check shows that the priors must be
functions of ||¢||, rather than |f|, in order for (1.4.9) to be satisfied. (As an
intuitive guide, the components of Z*g,(x) should be of comparable magni-
tude. Using ||0|| ensures this.) Choosing the 23rd power of [1 — (In ||¢||)/In R]
is basically a necessary technicality, although at least the fourth power is neces-
sary to satisfy (1.4.9).

It is clear that if g, is given by (3.1.2), then § g,() df < oo for every R and
limg ., gp(f) = 1 for every 6. Hence, by Theorem 3, it is only necessary to
show that (3.1.1) is satisfied to prove that 9, is admissible w.r.t. F. Verifying
(3.1.1) is the goal of the remainder of the chapter.

3.2. Preparatory lemmas.
LEMMA 3.2.1. |rp(x)| £ 4 < oo.

ProOF. An argument analogous to that in Farrell (1964) shows that 7, is
continuous. By Corollary 2.1, there exists T > 0 such that if |x| > T, then
lr#(x)| < 1. Since y, is continuous, the lemma follows. []

LeMMA 3.2.2. If|c| £ Aand |x| £ T, then
(i) § L"(c + x, — 8,) f(x — 0)F(0) d is continuous in ¢ and x,.
(i) § L"(c + 6,)f(0) db is continuous in c.
(iil) There exists e , > O such that
§L"(c + x, — 0,) f(x — 0)F(0)db = ¢, , .
Proor. Straightforward, using Assumption 2. []

LeEMMA 3.2.3. There exists T > 0, such that if |x| > T, then

(i) §L(7a(x) + X — 0,)f(x — O)F(0)d0 = bF(x)(1 + e(x)), where [e(x)| < }.
(i) §|x — O |L<>(c + x; — 0)| f(x — 0)F(0) d6 < KF(x), where |c| < D <
o0, i <4, and 1 <j<3.
(i) 1§ (8= X)L (7 (%) + X,—0,) f(x—O)F(6) dB| < K(X3o, [F9 ()] + [A(x)]),
2<iZn.
(iv) A(x) < ||x|| + ¢, where ¢, < oo.

Proor.

(i) By Lemma 3.2.2 (ii), there exists 2 > 0 such that if |¢] < 4, then
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§ L"(c + 0,)f(0)d0 = 3b/4. (Recall that b = § L"(0,)f(0)d0 > 0.) An argu-
ment identical to that of Lemma 2.2.2 thus gives

§ L (e 4 %, — 0) flx — O)F(0) d = (§ L"(c + 0,) f(0) dO)F(x)(1 + o(1))
= (3b/H)F(x)(1 + a(1)) .
Choosing T large enough so that if |x| > T, then |y,(x)| < 4, the conclusion
follows.

(ii) The argument here is similar to previous ones. In the appropriate region,
F(0) is expanded in a Taylor series about x. The F(x) term will dominate the
derivative terms. Note that it is here that all the moments of Assumption 2 (iv)
are needed. Assumption 2 (v) must also be used.

(iii) Expanding L'(yz(x) + x, — 6,) in a Taylor series about (x, — 6,) gives

1§ 0: = x)L'(rr + 2 — 0) flx — O)F(6) db] = 1, + 1y,

L= |§ (0; — x)L'(x, — 0,) f(x — 0)F(0) db)| ,

I = |§ (SE537" L (n) d)(0; — x,) f(x — O)F(0) db)] .
I, is analyzed as in Lemma 2.2.1, since by (1.3.1) the coefficient of F(x) in the
Taylor expansion of F(0) is § (8, — x,)L'(x, — 0,)f(x — 6)d0 = 0. Thus the
secondary terms F'”(x) are dominant. The error terms which arise can be

bounded by [#(x)]~? using the familiar Chebyshev argument.
To handle /;, note that a change of variables gives

where

I < 3P § L5, — 0, -+ 0)(60: — x,) f(x — 0)F(8) db d) .

Since |ry| is bounded, part (ii) of the lemma can be applied to give I, <
|7 #(x)|KF(x). Theorem 2 and Assumption 1 (iii)c finally give the desired bound.

(iv) Recall Q = Q, = R* — 9" (where 27" is a compact set). It is thus clear
that there exists ¢ > 0, such that d(x) < |x| + ¢. By Assumption 1 (iii)d. I, there
exists a T > 0 such that if d(x) > T, then A(x) < d(x). Finally, note that |x| 4
¢ = XXl + e = |x|| + ¢+ (n — 1). Henceifd(x) > T, then A(x) < d(x) <
X+ e <Xl + e 0

The proofs of the next three lemmas are straightforward and are omitted.

LEMMA 3.2.4.

(@) ||x||* is subadditive.

(b) Ix — &l = ([[x[* — [10]]%)".

© If[lx = 0|l = € = ||x]|, then ||6]] = [||x]]* — C*T*.
d) [x=0F =[x —0] — L.

LEmMMA 3.2.5.
Vissa<iiai<n SUIX]) dx = 0,y §G u=V2f(u) du
where p,,_, is the volume of the unit (n — 1) sphere.

LEMMA 3.2.6. If ¢(R) > O and lim,_,.. [q(R)/R] = O, then
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(i) [R = q(R)]F = Rt — (1 + o(1))q(R)/(2RY),

(i) In[R/(R — g(R))] = (1 4 o(1))¢(R)/R.

Some information will be needed about the derivatives of g,. Note that in
I'p = {x:1 < ||x|| < R, x; # 0}, gp(x) is infinitely differentiable. For notational
convenience, let s = s(||x||) = In (R/||x||). Note that if xe I'y, then

9a(x) = [1 — (In[[x[[)/In R = s(||x[|)*/(In R)**.
Note also that s(||x||) is a decreasing function of ||x||.

LemMA 3.2.7. If xe Ty, then

2352 Ks*#

9.0 (x)| = (ln_R)”H—xH , l929(x)] = HTR)W )
@ Ks*(1 + 5) 14 M
|gR (X)I = W ’ IgR (X)l = (ln R)zallxlli s
YN < Ks®(1 + 5 + 5% , RUERSLY = Ks*( + 5 + 5 + 57) :
|97 ) = (In R)23||x||§ lg ()l = (In R)”'H)C”2

Proor. Straightforward. Note that every time a derivative w.r.t. x, is taken,
a factor of ||x|| occurs in the denominator. A differentiation w.r.t. x;, i > 1,
only gives rise to a ||x||! in the denominator. []

LEMMA 3.2.8. Assume that Inln R < ||x|| £ R — Rtt. Then uniformly in x,

L In R)®
lim,,_, (0R — o,

O e

In R

e

(i) limg... =0.

ProoOF. It is easy to check that s=¢||x||=%, @ > 0 and b > 0, is maximized
at the end points InIn R and R — Rt of the given interval.
To prove (i), note that s(InlnR) = In R — InInIn R. Clearly

(In Ry _
(InR — Inlnln R)®(In In R)#*
Also, by Lemma 3.2.6 (ii), S(R — R)t* = (1 4 o(1))R~":. Hence,
(In Ry® (n Ry _ o

11 TIi limR—'m 1
[s(R —_ Rn)]za[R — Rr%]z% R==

lim,_,

limg_,

Thus part (i) is established. Part (ii) is verified in a similar manner. []

3.3. Approximations to 6, — 0,. In this section, estimates and bounds are
developed for [yx(x) — rp(x)]. (Recall d, is the generalized Bayes estimator for
Gr(0) = F(0)gx(0).) The results of Section 2.1 will be applied with H = G and
a(x) = rp(x). By Lemma 3.2.1, |rp(x)] £ 4. Also, results will be obtained
only for the region {x: ||x|| < R — R#}. Itis easy to check that for large enough
R, and x in this set, d,(x) is given by § L'(d4(x) — 0,) f(x — 0)G () df = 0. Hence
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the results of Section 2.1 can be used. As in Section 2.1, define

Un(x) = § L'(yp(x) + x; — 0,) f(x — 0)F(0)gx(0) db ,
Va(x) = § L"(7p(x) + X, — 0,) f(x — 0)F(0)g(0) db ,

W€, x) = § (Serily, (€ + x, — 0, — 7] dy) f(x — O)F(0)g(0) db .
As usual, estimates must first be found for these quantities.

Because of the nondifferentiability of g,(x) at x, = 0, results must be obtained
separately for x, > 0 and for x; < 0. The analysis in each case is identical,
however. For simplicity, in the rest of this section assume that x; > 0 and
[|x|| < R — Ri. (Note that {x: x;, = 0} has measure 0 and can hence be ignored.)

Assume, finally, that 7' is a number chosen to satisfy Lemma 3.2.3, and that

¢y, 4 is the number from Lemma 3.2.2 (where A is the bound on |y|).
Results will be developed first for the case ||x|| < Inln R.

LemMA 3.3.1. There exists R, > 0, such that if R > Ryand ||x|| < Inln R, then
(i) |Up(*)| = K(In R)™,
(il) Vp(x) = ey 4/2 for |x| < T, Vg(x) = bF(x)(1 + ¢(x)) for |x| > T, where
le(x)] <%,
(iii) § [L""(6 + x, — 6,)| f(x — O)F(0)gx(0) df < KVp(x) for |§] < A + 1.
Proor. (i) Using the definition of g, and the fact that § L'(y, 4+ x, —
0) f(x — 0)F(0)dé = 0, it is clear that
|Ur(¥)| = [Sissionsr L'(re + % — 01) f(x — O)F(O)(1 — gx(0)) db
+ Swnosm L'(re + X0 — 0,) fix — 0)F(0) db)| .
Define P = {#:1 < ||f|| < In R}and Q = {0:|#|| > In R}. Noting that g.(f) <
1, it is clear that
(3.3.1) U = §p [L(rp + %1 — O)f(x — O)F(O)(1 — gx(0)) 40
+ $o [ (re + % — 0| f(x — O)F(0) db .
Using the monotonicity of g,, Assumptions 2 (iv) and 2 (v), and Lemma 3.2.1,
it is clear that for large enough R,,
Ve [L(rp 4 %0 = O] f(x — OYF(O)(1 — g4(0)) d0

(3.3.2) < K[l — g,(InR)] = K[l _ (1 B l_rilinRR )23}

KlnlnR _ 4 gyt
In R

A

Finally, consider the second integral in (3.3.1). Since ||¢]| > In R for 6 ¢ Q,
and since ||x|| < Inln R, Lemma 3.2.4 (b) and (d) establish that for large R

¥ — 0 = (|l — 6]} — | = (Inln R} — [In R} — 1 = In R/2.

Thus Q  {6:|x — 6> = In R/2}. A simple Chebyshev argument will thus show
that the second integral in (3.3.1) is bounded by K/In R.
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(ii) Since L” > 0, it is clear that
Vix) Z Yoo L"(rr + X, — 0)) flx — 0)F(0)gx(0) db .
For 6 ¢ Q° and large enough R,, it is clear from (3.3.2) that g,(6) = 1 — (In R)~%.
Hence
(3.3.3)  Va(x) = (1 — (InRY) Yo L"(rp + X, — 0,) f(x — O)F(6) df .
If |x| < T, then Lemma 3.2.2 (iii) and a Chebyshev argument give

oo L"(re + %, — 0 f(x — 0)F(6) do
= § (e + % — 0 f(x — O)F(8) O
— o L(rs + X, — 0 f(x — O)F(8) b
=>¢, 4, — K/In R,

The conclusion follows for |x| < T.

If |x| > T, a similar analysis, using Lemma 3.2.3 (i), shows that Vy(x) =
bF(x)(1 + e(x)) + ey(x), where |e(x)| < %, and [e,(x)| < K/In R. Using Lemma
3.2.3 (iv) and Assumption (1 (iii)d. 2) gives for large R

(3.3.4) lea(x)] < K/In R < ([[x]| + €)™ < [A()]7* = o(1)F(x) .

The second conclusion in part (ii) follows.

(iii) The result follows immediately for |x| > T by Lemma 3.2.3 (ii) and part
(ii) of this lemma. If |x| < T, the integral is uniformly bounded in ¢ and x, by
assumptions 2 (iv) and 2 (v). The conclusion then follows from part (ii). []

THEOREM 4. There exists Ry > 0, such that if R > Ry and ||x|| < Inln R, then
(i) [Up(x)[/Vr(x) = K(In R)7H,

(ii) U(x)/Va(x) < K/In R,

(i) [7a(x) = 77(x)] = —(1 + e(x))Un(x)/V(x), where [e(x)| < 5.

ProoF. (i) The result is obvious for |x| < T, using Lemma 3.3.1. If |x| > T,
then by Lemma 3.3.1, |Ugx(x)|/Vx(x) < K(In R)~#/F(x). As in (3.3.4) it can be
shown that (In R)~# = 6(1)F(x). The result follows.

(ii) The proof goes as in (i).

(iii) A simple application of Theorem I, using (i) and Lemma 3.3.1 (iii). [

It remains to consider the region {x:Inln R < ||x|| < R — R¥ and x, > 0}.
If x is in this region, it will be desired to expand g,(#) in a Taylor expansion
about x. For this purpose define

X7 = (= Xy, Xgy vt 0y X)
Bt ={0:6,>0, |lx — 6] <{[x[|/3, and [|f]] <R} .
B~ =1{0:0,<0,||x~ — 0] <|x]|/3, and [|f]| < R}.

It is easy to check that B,* and B,~ are convex. By Lemma 3.2.4 (c) (with
C = ||x]|/3), it is clear that ||0]| = [||x||* — ||x||!37%]* > 1 for large enough R.



ADMISSIBILITY OF GENERALIZED BAYES ESTIMATORS 351

Hence neither B,* or B, ~ intersects {#:]|¢|| = R, or 6, =0, or ||0|| = 1}.
Therefore, all derivatives of g, exist and are continuous in B,* and B,~. Clearly
xe B," and x~ € B,~. Hence g,(f) can be expanded in a Taylor series about x
in B,*, and about x~ in B,~. Note that

(3.3.5) gr(x) = gx(x7) and 9:9(x) = gp¥(x7) for i>1.

The next few lemmas in some sense give the heart of the theory, since they
deal with the important region where both g, and F are “smooth” and “flat.”

LeMMA 3.3.2. There exists Ry, > 0, such that if R > R, InInR < ||x|| £ R —
Rit, and x, > 0, then

(36 (Ul = ke | MG -]

Proor. For notational convenience, define P = {6:||x — 0|| > ||x]|/3} and
0 =1{6:]|0]| > R}. Clearly
U0 = [§p L'(rp + X1 — 0,) f(x — 6)F(0)g:(0) d6)
+ 8o L'(rp + %0 = 0,)f(x — 0)F(0)9(6) db)] -
Call the integrals above /, and /, respectively.

To deal with 7, note that by Lemma 3.2.4 (d) and the definition of P, |x —
01 > ||x — 4] — 1 > ||x]|/4 (for large enough R;). Since g,(f) < 1, a simple
Chebyshev argument and Lemma 3.2.3 (ii) thus give I, < KF(x)||x||-%

Consider next /,. Noting that g,(f) =0 for #eQ, and observing that
P°n Q°= B," U (B,~ n P°), it is clear that

I, = lSBx+ L'(yp + x, — 0,) flx — 0)F(0)9(0) db
+ S(Bx—nPC) L'(rp + Xy — 0,) f(x — 0)F(0)gx(0) d0) .
Expanding g,(6) about x for ¢ € B,*, and about x~ for # ¢ B,~ n P°, and using
(3.3.5) gives
L < |gn(%) Spenge L'(rp + X, — 0,) f(x — O)F(0) db|
+ |Z?=2 gR(i)(x) SPCch (‘91' - Xi)L'(rF + X — 01)f(x - 0)F(0) dﬁl
+1927(x) V5 + (0,—x) L'fF df + g (x7) S5~ ape (01+ X)) L'fF db)|
(3.3.7) + similar terms in  g,%*?(x) and g,%(x)
+ K ik Vu,+ [0 — x| L'(7p 4 x; — 0,)] f(x — 0)F(6)
X |gp® B (tx 4+ (1 — 1)0)| df
+ similar remainder term over (B,” N P°).
The terms in (3.3.7) will be bounded one at a time.
(1) Noting that § L'(y, + x, — 6,) f(x — 0)F(0) d6 = 0, it is clear that
192(X) Spenge L'(7r + X, — 6,) f(x — 0)F(0) db)
= o W Ge + X — O flx — 0)F(0) db
+ 9u(%) $o [L (e + X0 — 0)| fix — 0)F(6) db .
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The first of these two integrals can be bounded as I, was. For the second, note
that since ||x|| < R — Ri* and ||§|| > R, Lemma 3.2.4 (b) and (d) and Lemma
3.2.6 give

(3.3.8) e — OF = |lx — 6] — 1 2 [(R — R¥)! — R — 1
> [(1 + o(1))R=/2]2 — 1 = R¥#/9.
Hence a Chebyshev argument and Lemma 3.2.3 (ii) give
Vo IL'(re + X1 — O f(x — O)F(0) df < KF(x)R™}%.
Noting that s(||x||) < In Rand 1 < ||x|| < R, it follows that if R, is large enough,
then
gr(X)F(x)R71 = F(x)s™(1 4 9)]|x]|7(In R)™.
(ii) Using the same types of arguments and Lemma 3.2.3 (iii), the second
term of (3.3.7) can be bounded by

K 515 020(3) [Z [FO(0)] + (] + Fo)lIx]|™ + F)R™H].
Using Lemma 3.2.7 to bound g, (x), Assumption 3 (iii)a to bound [F'7(x)],
and Assumption 3 (ii) to bound [/(x)]7%, the desired result is obtained.

(iii) Noting that |6, + x,| < |6, — x,| for § € B,~, it is clear that the third
term of (3.3.7) is bounded by

1920 § 10, — ] [L 77 + % — 0| f(x — O)F(0) b .

The result now follows from Lemma 3.2.3 (ii) and Lemma 3.2.7.

(iv) The bounds for the terms involving g,%#(x) are obtained in a similar
fashion. For the terms involving g, 7% (x), Lemma 3.2.8 (ii) must be used in
conjunction with Lemma 3.2.7 to obtain the desired bound.

(v) and (vi). The bounds for the remaining terms of (3.3.7) follow from the
following observation. Consider the integral over B,* for simplicity. Since
0 ¢ B,*, xe B,* and B,* is convex, it is clear that (tx + (1 — #)f)e B,*. (Of
course, 0 < #(x, ) < 1.) By Lemma 3.2.4 (c) (with C = [x]|/3), it is clear
that if ||x — 6]| < ||x||/3, then [|0]| > ||x||/6. Letting M = {6 ||0]| > [[x[|/6}, it
follows that B,* — M. Hence by Lemma 3.2.7 and the fact that s(||x||) < In R,
it follows that

g5 (1x 4 (1= 00)] < suPye [95°55(0)
=< supy. K][0]]7 = 36K]|x||™*.
Applying Lemma 3.2.3 (ii) to the remaining integral completes the proof. ]

LEMMA 3.3.3. There exists R, > 0, such that if R > Ry, InIln R < ||x|| £ R —
R, and x, > 0, then
Va(x) = bgp(x)F(x)(1 4 e(x)), where |e(x)| < .

ProoF. Similar to that of Lemma 3.3.2. Lemmas 3.2.7 and 3.2.8 are used
to show that g,(x) dominates the higher order derivatives of g, in the Taylor
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expansion of g,(¢). Lemma 3.2.3 (i) is also needed, to handle the coefficient
of gp(x). [

LeEMMA 3.3.4. There exists Ry > 0, such that if R > R, InIn R < ||x]] < R —
Rit, x;, > 0, and |§| < A + 1, then

VIL"(E + X, — O)|f(x — O)F(0)9r(0) df < KV () -
Proor. Similar to preceding proofs. []

THEOREM 5. There exists R, > 0, such that if R > R, InInR < ||x|| < R —
Rt and x; > 0, then

U = [ sl (R T oL .
0 o0l < K[l sy ) = O wiformy inx s R — oo,
(i) UV ax) = KF()(n Ry x|~

(i) [7u() — 70(9] = —(1 -+ S(NUR(Y Vo), where ()] < -

ProoF. (i) The bound follows immediately from Lemmas 3.3.2 and 3.3.3.
The convergence to zero follows from Lemma 3.2.8.

(ii) Another simple application of Lemmas 3.3.2, 3.3.3 and 3.2.8.

(iii) A simple application of Theorem 1, using (i) and Lemma 3.3.4. []

3.4. Verification of (3.1.1). The following theorem completes the admissi-
bility argument.

THEOREM 6. If Assumptions 1, 2 and 3 of Section 1.5 hold, and if g, is given
by (3.1.2), then

lim, .. § [R(8p> 0) — R(8, 0)]F(0)gn(6)db = O .

Proor. Let D = {x:||x|| = R — R!}. Interchanging orders of integration
(legal since the g, have finite mass) gives

V[R(0p, 0) — R(0z, 0)]F(0)9(0) dO = Iy + I,
where
It = Vo V [L(re(¥) + X, — 0,) — L(7a(x) + 2% — 0)]f(x — 0)F(0)gx(0) d6 dx
Iz = $pe § [L(ra(x) + %0 = 0,) — L(7a(x) + X, — 0,)1f(x — 6)F(0)gx(0) d6 dx .
Part (i). It is desired to show that 7,"— 0. Consider first

I = {p{ Ly + %2 — 0) f(x — 0)F(6)g(0) d6 dx .
By definition, { L(c + x; — 8,) f(x — 0)F(0)gx(0) d6 is minimized at ¢ = 74(x).
Hence, defining E = {#: ||0]| £ R — 2R'}}, it is clear that
(B41) P §, V5 L0 — ) f(x — O)F(0)gx(0) dB dx

+ $p Vge L, — 0,) fx — 0)F(0)9(0) d6 dx .

These integrals will be considered separately. For ¢ € E and x € D, an argument
like that in line (3.3.8) shows that |x — #] = R™/3. A simple Chebyshev
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argument and Assumption 2 (iv) thus give
(3.4.2) §p $ L(x, — 0,) f(x — 0)F(0)g(0)df dx < KR~ §, F(6)d0 .
Using Assumption 3 (iii)b and Lemma 3.2.5 gives
{5 F(0)d0 < §,[10]|*"d0 < §Fudu=RY2.
This, combined with (3.4.2), shows that
(3.4.3) §p Sz L(x; — 0,) f(x — 0)F(0)gx(0)df dx < KR™"2 — 0.
Next, consider the second integral in (3.4.1). Note first that g,(#) = 0 for

[|6]] > R. On the remaining part of E°, g,(¢) is decreasing in ||f||. This, to-
gether with Lemma 3.2.6 (ii), shows that if R — 2Riz < ||0]| < R, then

9r(0) < gx(R — 2R'Y) < KR-Hi(In R)™ .
A simple calculation (again using Assumption 3 (iii)b and Lemma 3.2.5) thus
gives
o §e L(x, — 0,) f(x — O)F(0)g,(0) 0 dx < KR=1(In R)™ (%_ 11 u du
= K(In R)=*(1 — R~2/2) - 0.
Combining this with (3.4.3) and (3.4.1) shows that I,;* — 0.
Next, consider the other component of I}, namely §, § L(y, + x, — 0,) f(x —

0)F(0)g,(0)d dx. Since |y,| < A < co, Assumption 2 (v) can be used to reduce
the situation to that considered above. It can thus be concluded that I;' — 0.

Part (ii). It is desired to show that I, — 0. Expanding L(y, + x, — ;) in a
Taylor series about (7, + x, — 6,) gives

It = Npe $ [(re — 7R)L(rp + %1 — 01)
= 3(rr — 12V’ L(re + X0 — 0,) — 2Lf(x — O)F(0)gx(0) d6 dx
where
(%, 0) = 3 Vi LY (Dlra + x0— 6, — 1l dy.
By Theorems 4 and 5, it is clear that if xe D° and R is large enough, then

lre(¥)] < lre(x)] +1 < A4 + 1. Using Lemma 3.3.1 (iii) and Lemma 3.3.4, it
is therefore straightforward to verify that for large enough R

(3.4.4)  [§ 22(x, 0) fix — 0)F(0)9x(0) dO| < K|rp(x) — 7a(X)[Va(X) -
Theorems 4 and S also show that if R > R, and x € D°, then

(3.45)  74(x) = 7alx) = (1 + eCNUR(X)Va(x),  where |s(x)] < 7 -
Using (3.4.4) and (3.4.5) and recalling the definitions of V(x) and Ug(x), it is
clear that

(3.4.6)  IF = K, [UA0)/V ()] dx
=K SBI LUZ (%) Va(x)]dx + K 832 [URA(x)/Vr(x)] dx,

where B, = {x:]|x|]| < Inln R} and B, = {x:Inln R < ||x|| £ R — Rii}.
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By Theorem 4 (ii) and Lemma 3.2.5,
3.4.7) K {5, [URA %)/ VR(x)]dx < K'(In R)=" ("' a0 du
= K”(In R)=}(In In R)"+2 0
By Theorem 5 (ii), Assumption 3 (iii)b, and Lemma 3.2.5,

K {5, [Up(x)/ V()] dx < K'(In R)™* § 5 F(x)[|x||7* dx
(3.4.8) S K'(InR)2 | gutdu
= K'[(InR)* — (InR)?Inlnln R] — 0.

Combining (3.4.6), (3.4.7) and (3.4.8) completes the proof. []
4. Generalizations.

1. It should be possible to generalize the problem to the multiobservational
situation by conditioning on the maximal invariant. (See Farrell (1964) or
Brown (1966) for typical such arguments.)

2. Most of the results should carry over to the case where the distribution
of X does not have a density w.r.t. Lebesgue measure.

3. The assumption of convex loss made life easier but is probably not abso-
lutely essential. The crucial features of the loss function were that L satisfy
Assumption 2 (ii), (iv), and (v), that b = E L”(X]}) > 0, and that the loss be
such that 9, is unique. (Note that results of Farrell (1964) indicate that ¢,
must be unique in order for it to be admissible.) It should be possible to obtain
similar results for L satisfying these properties.

4. The method of proof necessitated the large number of assumptions. It
would obviously be desirable to weaken many of these assumptions. In par-
ticular, the assumption that Q = Q, = R* — %" in Assumption 3 is unattractive.
A prior such as (1 + 6,*)7* does not have Q = Q, (where Q is chosen to satisfy
Assumption 1). Hence the admissibility results will not apply to such a prior.
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