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UPPER CONFIDENCE AND FIDUCIAL LIMITS
TO THE RANGE OF SEVERAL MEANS

By B. CAUSEY
U.S. Bureau of the Census

The problem of determining upper limits to the range of means of
several independent normal variables with possibly different variances is
considered. Simultaneous confidence regions based on others’ work yield
confidence limits which are rather conservative. We then approach the
problem from a fiducial viewpoint and derive the equation which yields
the exact fiducial upper limit.

1. The problem. Suppose that X;,i =1, -- -, n, for n > 1 are mutually inde-
pendent random variables with X, distributed as N(y,, ¢,*) where the ¢, are
known. Let R denote the range of the p,, i.e., max |z, — p,|. For a prescribed
probability level P* we wish to determine an upper limit B = B(X,, - - -, X,) for
Rso that P(R £ B) = P* for all g, where g = (s, - - -, p,,). Two different upper
confidence limits are discussed in Section 2; in Section 3 we consider an upper
fiducial limit, or primary result. We derive this in Section 4, and in Section 6
present a few extensions; Section 5 provides numerical illustrations.

Although we have assumed normality, we see wide possibilities for practical
use of the technique described here, since the X’s may well represent means for
large samples. By the Central Limit Theorem such X’s would tend to be nor-
mally distributed, and the variance estimates would be essentially the true vari-
ances. Information concerning R then provides a valuable starting point for the
analysis of several populations.

2. Confidence limits based on previous work. For a given P* let y = t* be
defined by P* = P(u < t) where u is distributed y*(n — 1). Then, for each g,
P(R < B)) = P* where

(2.1) B, = max,,; (|X; — X;| + x(¢. + a%)b) .

To derive this result, we may copy the proof of Scheffé (1959, pages 66-67)
with the quantities 7, §,, y,., and Var (y,.) (equal to ¢*/J,) and « there, correspond-
ing to our n, p,, X;, ¢, and P* respectively, and with because our variances ¢.*
are known, infinitely many denominator degrees of freedom for the F-value as-
sociated with S there. In our notation, S thus becomes (n — 1)y/n — 1, or y. Let
E, be the event that for all sets of fixed scalars ¢, with }; ¢, = 0 the inequalities

(2.2) YoX, —yVart (G e, X)) < Yep < X6 Xy 4 x Vart (X ¢ X))

are simultaneously satisfied; from Scheffé, we have that P(E;) = P*. Let E, be
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the event that for all i = j the inequalities
(2.3) Xo—X; — ol + o S — p; £ X, — X; + y(0) + o)}

are simultaneously satisfied. Then E, — E,, since (2.2) is based on all contrasts
and (2.3) only on pairwise differences. Occurrence of E, in turn implies that
R < B, so that P* < P(E)) < P(E,) < P(R < B,), and B, is a valid P*-level
upper confidence limit.

Where the o, are all equal to a common value ¢, we obtain from Scheffé (1959,
pages 73-75) a P*-level upper confidence limit B, = Qo + max |X; — X,| where
Q is the upper-P* point of the Studentized range for degrees of freedom n and oo
(“standardized range”) with B, < B,.

For each of B, and B, there is an accompanying test—the first developed by
Scheffé and the second by Tukey—of the null hypothesis that R = 0. Further
tests of this hypothesis, by Newman and Kuels, may be used for equal ¢’s, but
without any associated B’s other than B,; these methods and similar ones may
simultaneously be used also to divide means into “nonsignificantly different”
groups. Fraser (1952) constructed for equal o, a single confidence interval for
all the p;,, Dudewicz and Tong (1971) constructed confidence limits on max g;;
Bechhofer (1954) considered the problem of ranking the y,’s.

3. An upper fiducial limit. Our final value for B is as follows. Let ®@(+)and
$(+) denote the cdf and density for N(0, 1). The value obtained is the solution
to the equation

(3.1) P* = §= D Mo (@ (B B2 4 222)

i g
—-® <Xk - X + % z>>:| ¢(2)dz .
o, o,

We base our result on a fiducial—see Fisher (1935) and Fraser (1958, pages
289-291)—distribution of the , given the X,—namely, that the », are mutually
independent N(X;, ¢.?), as follows. The quantities Z, = X; — p; are mutually
independent N(0, ¢,?). Let Z and X denote the vectors of Z’s and X’s and, for
each region C in R", C*(X) denote {X — Y|Y e C}; we have that Ze C= p¢
C*(X) so that P(Z ¢ C) = P(z € C*(X)), and the above distribution of g, based
on all C, arises.

This fiducial distribution also has a meaningful Bayesian interpretation as a
posterior distribution, in the following sense. Suppose the prior distribution of
# is multivariate normal with fixed mean and covariance matrix aZ for fixed
positive definite matrix X and positive scalar a; it may be shown that as @ — oo,
for any Z, the posterior distribution of g converges to our fiducial distribution.
An interpretation is that the latter corresponds to the limiting form of a prior
distribution which is nearly uniform over an increasingly wide regioh: that is, it
corresponds to a prior assumption that no one value, or set of values of given
measure, for g is more likely than another.
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4. Derivation of results. Derivation is as follows. Suppose B satisfies (3.1).
Let E be the event that R < B, E, the event that0 < p, — p, < Bforalli + k.
Then, fiducially, P(E) = 3, P(E,), as follows.

(a) Fori=+j,E, n E, = p; = p; but P(p, = p;) = 0,50 thatP(E,. neE;)=0.

(b) We have E — E, for one k, namely the k—unique with probability 1 by
(a)—satisfying min g, = g, so that £ = (J E,.

(¢) If E, occurs for any k, 0 < ¢, — g, < B for all i = k; and thus, for i
k=#j, 0—B< (1 —m)— (#; — ) =B —0, so that —B< p, — p; < B,
and |p; — p;| < B. Hence E, = E, and |J E, = E.

(d) Combining (b) and (c), we have E « |J E,, and thus P(E) = P({ E,),
= 3 P(E,) by (a).

We have the conditional probability P(E, | 11,) equal to T[,., P(z, < p1s < p +
B), because of the mutual independence of the p,’s for i = k. This expression is

st <q> (EL/‘:"‘_B> —® (M)) :
i g,
Letting g,(x,) denote the density function for z,, we have
P(E,) = 2o P(E, | 1)9h(11) et -
Since g, has the distribution X, + ¢,z where z is N0, 1) (and X,, ¢, are fixed),
we have that
P(Ey) = §Za Dlins <(D <—X'°—?—A:’_|_—B + &Z> - @(@ + %z)) ¢(z)dz .

i o; i i

Hence, summing over k, we have, since B satisfies (3.1) by assumption, that
P(E) = P*.

Hence, fiducially, P(R < B) = P*. We may conveniently think of P* = P*(B)
as a fiducial cdf for B.

5. Numerical examples. An example of a set of values of X, and ¢ to which
the above analysis has been applied are:

i 1 2 3 4 5
X 8.9016 8.6823 9.2805 8.2784 9.5238
a? .15939 .16336 .15730 .21720 49717 .

The values of X represent Census Bureau coder error rates (expressed in percent)
for different areas of the country, with the ¢¥s the variances associated with
these estimates.

First we considered the first four areas alone (the fifth, Puerto Rico, lying
outside the U.S. proper). The upper 95% confidence limit B is (to 2 places)
2.71; the lower bound B, is 2.00; and (3.1) gives 2.08. Fiducial probabilities P*
corresponding to B are '

B 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
P* 7779 8297 .8725 9068 .9335 ,9537 .9685 .9790 .9864 .9914,
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With all five areas considered, B, is 3.85, and (3.1) gives 2.71. Fiducial prob-
abilities are:

B 22 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1
P* 8326 .8653 .8928 .9155 .9342 .9492 .9613 .9708 .9782 .9839-

Thus, along with the overly generous 95 9%, upper confidence limits B, = 2.71
and 3.85, we have the much smaller 959, upper fiducial limits (with corre-
sponding interpretation) B = 2.08 and 2.71, respectively.

Computation of P* is based on integratior according to (3.1); possibly the
most efficient general method is first to determine a finite interval [c,, c,] outside
which the contributions to the integral may be considered negligible (these con-
tributions are easily seen to be no greater than n®(c,) and n(1 — ®(c,))), and
second, to apply Gauss’s quadrature formula to [c,, ¢,] (possibly divided into
several subintervals). In the second stage, cruder techniques such as division
of [¢;, ¢;] into small increments will work (though less efficiently) to any desired
accuracy, and we have proceeded accordingly in our above example.

6. Generalizations and variations. All the above results are based on exact
knowledge of the ¢’s. Similar results may be obtained when the ¢’s are not
known but estimated by, say, quantities s;, and the statistics (X, — p,)/s; are
known to have, approximately, mutually indepe ndent z-distributions (instead of
standard normal) with, say, m, degrees of freedom (for all values of y, and s,).
More generally, suppose that these statistics are mutually independent with
known densities 4,(z) and cdf’s H,(z), Then, working as in Section 4, (3.1)
becomes
(6.1) Pr =2, 2 <hk(z) | | (Hz <M—*SX1+—B =+ _st>

i 85

—_ H, <Xk — X fiz)))dz . 1

S, S,

7 ]

If the X’s have independent distributions each of which is known up to a con-
stant translation, we may work out (independent) fiducial distributions for the
corresponding parameters, and obtain results resembling (6.1).

Also, if we have X’s no longer mutually independent but multivariate normal
with known covariance matrix, the fiducial distribution of the x’s has the same
covariance matrix and we are still able to express P* in terms of B. If the joint
distribution of the X’s is known up to a constant translation, we may likewise
find and make use of the fiducial distribution of the corresponding parameters.

7. Acknowledgments. The author isindebted to several persons at the Bureau
of the Census and to a referee for helpful comments.

REFERENCES

[1] BECHHOFER, R. E. (1954). A single-sample multiple decision procedure for ranking means
of normal populations with known variances. Ann. Math. Statist. 25 16-39.



CONFIDENCE AND FIDUCIAL LIMITS 477

[2] Dupewicz, E. J. and ToNG, Y. L. (1971). Optimal confidence intervals for the largest loca-
tion parameter. Statistical Decision Theory and Related Topics. Academic Press, New
York. 363-376.

[3] FisHER, R. A. (1935). The fiducial argument in statistical inference. Ann. Eugenics 6 391.

[4] FrASER, D. A. S. (1952). Confidence bounds for a set of means. Ann. Math. Statist. 23 575-
585.

[S] FRrAsEeR, D. A. S. (1958). Statistics, An Introduction. Wiley, New York.

[6] ScHEFFE, H. (1959). The Analysis of Variance. Wiley, New York.

STATISTICAL RESEARCH DIVISION
BUREAU OF THE CENSUS
WASHINGTON, D.C. 20233



