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THE BAYES FACTOR AGAINST EQUIPROBABILITY OF
A MULTINOMIAL POPULATION ASSUMING
A SYMMETRIC DIRICHLET PRIOR!

By I. J. Goop
Virginia Polytechnic Institute and State University

A sample (n1, n, - -+, ns) is taken from a t-category multinomial popu-
lation. The hypothesis of equiprobability, that the ¢ physical probabilities
associated with the cells are all equal to 1/¢, is called the null hypothesis.
Conditional on the non-null hypothesis, a symmetric Dirichlet prior of
parameter k is assumed (k = 0) and the Bayes factor against the null hypo-
thesis, with this assumptibn, is denoted by F(k). A Ctonjecture made in
1965 is almost proved, namely that F(k) has a unique local maximum and
that this occurs for a finite value of k if and only if Pearson’s X2 exceeds
its number of degrees of freedom. The result is required for the calculation
of max F(k), which provides a non-Bayesian significance criterion whose
simple asymptotic distribution is good even in the extreme tail, and even
for sample sizes less than ¢. This criterion arose from an attitude involving
a Bayes/non-Bayes compromise.

The purpose of this paper is to prove a conjecture made by Good (1965, page
37) related to a Bayesian ‘“significance test” for “equiprobability” of a multi-
nomial population, but which has application to a useful non-Bayesian criterion.
To avoid repetition, I assume that the reader has access to Good (1967) for
some of the background and terminology. The proof requires a side condition
that is probably unnecessary for the result, judging by some numerical results
programmed by J. F. Crook.

Let (ny, n,, ---, n,) = n denote the ¢ cell frequencies in a sample from a mul-
tinomial distribution having ¢ categories, where n, + n, + ... 4+ n, = N, the
sample size. Let p, denote the physical probability corresponding to cell i
(i=1,2,...,1), where Y] p, = 1. Let the null hypothesis H or equiprobable
case be defined by p, = 1/t (i =1,2, ---, 1).

If a symmetric Dirichlet prior, of density proportional to ] p,*~* (k > 0), is
assumed, then the Bayes factor against the null hypothesis of equiprobability is

1) F(k) = "T(tk)[TL T'(n; + )T H*)]™/TN + k)

[ (1 )z 1)

where []%7'1 + j/k is to be interpreted as 1 when n, = 0 or 1.
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Let F,,, = F(k,,,) denote the least upper bound of F(k) for k > 0. (k.

might be 0 or co.) Then F,_, is a “Type II likelihood ratio” and can be used
as a non-Bayesian criterion. In fact, if

3) G = (2log, Fp,,)},
then, for large N, if G > 0,
P(G > x)/c, ~ double tail corresponding to a standard

“4) normaldeviate x, where ¢, isthe probability that
with ¢ — 1 degrees of freedom exceeds its expectation,
(%) ¢, = P(yf-n >t —1).

Calculations show that (4) is a very good approximation, even if N < 1, down
to amazingly small tail-areas such as 10~ (Good and Crook, 1972), and is
therefore a useful non-Bayesian criterion, especially for cryptanalysts.

For calculating &, we need the following theorems. We first define Condition
C. There is not more than one i for which

Nit<n < (N+1t—=1)t.
The condition is always satisfied if N is a multiple of ¢ because there is then no
integer in the interval mentioned. In any case there is at most one such integer

and Condition C states that there are not two values of i for which n, is equal to
this integer.

THEOREM 1. Suppose that N =+ 1 and t + 1, and assume Condition C. Then
F(k) takes its maximum at k = oo if X* <t — 1 and for a finite value of k if

X:>t — 1, where
Xty (- MY
t

Thus F(k) > 1 if and only if X* > t — 1, the number of degrees of freedom.

It is convenient first to dispose of the easy case n, = N for some i. In this
case, F(0) = ¥~ and F(k) is easily seen, from (2), to be a strictly decreasing
function of k that tends to 1 when k — oo; apart from the entirely trivial cases
N=1or t=1 when F(k) =1 for all k. When n, = N for any i, we can
readily see that F(0) = 0 (which shows that the value k = 0 is untenable at least
for “significance testing”) and that F(k) — 1 as k — oo, and of course F(k) = 0
for all £ = 0 and is continuous. Therefore, in order to prove Theorem 1, it is
enough to prove the following two theorems.

THEOREM 2. If n; + N for any i (which rules out the trivial cases), then, when
k is sufficiently large (depending on t, N, and n), the derivative F'(k) < 0 if X* >
t—1,and F'(k) > 0if X* <t — 1.

THEOREM 3. If N 1 and t + 1, and Condition C is satisfied, then F(k) has at
most one local stationary value, and when it exists it must be a maximum point.
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All possible forms of the graph of F(k) can be inferred from the three
theorems. (See Fig. 1.)

ProOOF OF THEOREM 2. From (1) we have
Wi(k) = t¢(tk) + Ziea §(n: + k) — t§(N + tk) — (k) ,

where W(k) = log, F(k) = weight of evidence against H, and asymptotically

for large z
') _jogr_ L _ 1 1

=t~ % " T s

We can accordingly expand W’(k) in powers of 1/k, and we obtain for large k

W,(k) =a + ak +ak? 4 akd .,
where .

(6) ao=a1=0,a2=%(t—l—Xz)

and, if X2 =7 — 1,
@) 6a, =2(X n? — N*%* — N) + 3(N%~2 — N  Nt7') — Nt2.

From (6), Theorem 2 follows for the cases X* = t — 1, as already mentioned
in Good (1965, page 37).

When X? = ¢ — 1 we have 3 n? = N — Nt~! + N*%; and, by the Cauchy-
Schwarz inequality, > n, > n? = (X n®)? Therefore, from (7), after some
elementary algebra, we see that

6a; = N(N — 1)(t — 1)¢=?
and this completes the proof of Theorem 2. ‘

Proor oF THEOREM 3. The theorem is equivalent to the statement that the
equation F’(x) = 0 has at most one positive root. But, by (2), we have

F'(x) _ 1 sy 1 N> o0
®) o = D T g — R (N>0),

where summations with minus 1 terms are taken as zero. The right side can be

written
§o e **¢(2) da

PA) = s Dpit e — i en .

where

Hence
BN — e?) = Ty (1 — e — (1 — e (1 4 e oo e tbir).
By Polya and Szego (1945, page 50) the theorem will follow if we can prove
that ¢(4) has at most one change of sign in the interval 0 < 2 < co. Write
e~*t* = y so that we have
Pu) =¢AD(l —e )=t —1—@4+u*+ - +u) — 3 utm
+ (uN 4wVt 4 uN+t-1) .
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By Descartes’ Rule of signs (see, for example, P6lya and Szego, 1945, page 43),
combined with Condition C, it follows that ®(x) has at most three roots in
0 <u < oo. But®(1) = @'(1) = 0sotwo of the roots are coincident at u = 1.
Therefore @(ux) has at most one root in 0 < # < 1 and ¢(2) has at most one in
0 < 2 < oo, as we needed to show.

It can be shown that ®"'(1) = tN(t — 1 — X*) which is negative if and only
if X* >t — 1. This again shows that F’(x) = 0 has a finite solution if and only

if X*>¢—1.

Q

F(k)

F(k)

F(k)

Y

FiG. 1. Graphsof F(k) (0 < k < o) under all possible circumstances.
@N=1lort=1;(b)t>1, N> 1, n; = N for some i; (c) n; # N for
any ;; X2 > t—1;(d)ni = Nforany i; X2 <t — 1.
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THEOREM 4. Under Condition C, each successive derivative of the weight of evi-
dence against H,
dy :
— ) log F(k :0,1,2,3,...
() 1og Fik) g )
vanishes for at most one positive value of k.

The derivative can be obtained from the Laplace integral that occurs in the
proof of Theorem 3 by replacing ¢(2) by 2*¢(2). But this function again vanishes
for at most one positive value of 2 and the result follows as before.

The case v = 3 shows that F’(k)/F(k) is convex (from below) to the left of
k.- Hence Newton’s method for calculating k., applied to F'(k)/F(k), suc-
ceeds when the initial value of k is less than k .

max*

I 'am indebted to Bruce Levin and James Reeds for pointing out an error in
my original proof of Theorem 3. In addition they appear to have found another
proof together with some extensions.
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