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SOME GENERALIZATIONS OF DYNAMIC STOCHASTIC
APPROXIMATION PROCESSES

By KaTtsuii Uosak!
Osaka University

Some generalizations of Dupac’s dynamic stochastic approximation
have been worked out to the more general cases of time variation. Suf-
ficient conditions for convergence in the mean square and with probability
one are given in case of deterministic trend and convergence with a bound
is proved for the random trend case, using the estimation scheme x4 =
n(Xn) + @n(a — Yni1(gn(x4))). This estimation procedure seems to be of
practical use to a variety of problems in estimation, prediction and control.

1. Introduction. The stochastic approximation method originated by Robbins
and Monro in [6] is first applied by Dupac in [1] to the dynamic trend case
where the root or the point of maximum of a regression function moves in a
specified manner during the approximation process. He discussed, in his first
and succeeding papers [1], [2], only the cases where the movement of the root
or the point of maximum is nonrandom and expressed by a certain linear func-
tion of its present location.

In this paper, we shall be concerned with some generalization of this pro-
cedure. Namely, dynamic stochastic approximation to the nonlinear trend and/
or random trend case will be discussed.

In Section 2, asymptotic convergence of the estimated value to the moving
root of the nonlinear regression function in the mean square and with probability
one is proved for the case where the trend is expressed by a certain nonrandom
deterministic nonlinear function of the present location.

In Section 3, we show also that this procedure makes the mean square error
bounded in the case where the random components are involved in the trend.

2. Asymptotic convergence to moving root. Denote by R the real line, and
for each x € R and for each integer n, let y,(x, x"™') be an observable random
variable with conditional expectation, given x"!' = (x;, ---, x,_,), M,(x),
which is an (unknown) real nondecreasing function defined for all xe R. That
is to say, .

(1) E(pa(x, x" 1) [ x"71) = M,(x)
and
(2) W, (X, X" 1) = y,(x, x*71) — M,(x) .
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Suppose that the equation
©) M,(x) = a

has a single root ¢, which is unknown and is to be estimated by choosing a
number of x, values and observing the corresponding y,(x,)’s.

In this paper, we assume, in general, the root #, moves in such a manner,
that is,

(4) 0n+1 = gn(on) + v,

where g,(x) is a known real function defined for all x € R and v, is an unknown
(random or nonrandom) component and independent of x.
First we consider the case where v, is nonrandom.

Let {a,} be a sequence of positive numbers and x, be an arbitrary number.
Define forn = 1,2, - -

) Xpp1 = X, %+ ay(a@ — y,%)
where
X5 = g(Xn)
and y,* is the observation of M, (x,*), i.e.,
Pa¥ = My (%,%) 4 W (6%, X277

The following theorem gives us sufficient conditions for the estimation process
(5) to converge to the true moving root.

THEOREM 1. Suppose the following conditions are satisfied,
C1 There exist positive numbers K, and K, such that

(6) IM,(x) — a| £ K)|x — 0,| + K, for —o<x—10,< 0.
C2 For all n and for each 0 < ¢ < 1, there exists a positive number K, such that
) ian,m_(,nI {M,(x)/sgn (x — 6,)|x — 0,/%3} > 0.

C3 There exists a sequence of positive numbers {y,} independent of x and y such
that

(8) 19.(X) — 9| = 7alx — ¥l ‘fO’ —o < x—y< oo,
and
) Yima(tn — DY < o0

where z+ means (z + |z|)/2.
C4 w,(x, x»") is a random variable satisfying

(10) E(w,(x, x| x*) == 0, Var (w,(x, x" ) |x* ) <0, < 00
CS5 For the sequence {a,}

(11) Dine1 8y = 00, Dime1 @, < oo
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C6 For nonrandom fluctuation v,
(12) v, = o(a,) .
C7 For initial estimate x,
(13) E(x,— 0) < .
Then for the estimation scheme (5), we have
(14) lim, ., E(x, — 0,)* =0, Pr {lim,_, (x, — 0,) =0} = 1.
Proor. From (4) and (5)
Xppr = Onsy = Ga(%,) — 9a(0n) — @u(M,,11(0(x,)) — @) — Vy — G W,y

Now we put

(15) Ty (x", 0%) = 0,(%) — 0a(0,) — au(M, (0,(x,) — @) — v,
and

(16) v,(x*, 0" = —a,w,,, .

Then

17) EWU,|x", 6" =0

and

(18) T B2 X", 0%) < 0,2 N5, 4,2 < oo .

For every sequence {p,} of positive numbers having the following properties;
lim, ., 0, =0, v,=0(a,0,), X7i1a,0, =,
there exists a sequence {»,} of positive numbers satisfying
lim, .7, =0, inf, .., |M(x)—a|>p,.
If |g.(x,) — 9.(0,) — v,| < a,|M, ,(9.(x,)) — «|, then there exists a finite
number N,, and for each n > N,,
ITo] < (@K — DIgu(x,) — 0,(0,) — V.| + 0, K, < a,K, ,
while in the case where |g,(x,) — ¢.( 0n)l — ,| = a,|M,,,(9.(x,)) — «a|, we have
IT,] < max {[g,(x,) — 00| + [0, — @40, 7.} -
Summarizing the above results, we hav ' for each n > N,
(19) ITol = max {r,|x, — 0. - 7 0+ 0], 705 @, Ko}

For the above inequality,

Z:=1 (T'n - 1)+ < o, Z:f:l (anpn - |vnl) = 00,
lim,_.%, =0, lim,_ ,a,K, =0
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hold. Thus by Dvoretzky’s theorem, the following results are established:
(20) lim,_., E(x, — 0,) =
(21) Pr {lim,_ (x, — 0,) =0} = 1.
REMARK 1. Obviously the sinusoidal function such that
9u(¥) = 18I0 (0, X — ¢,)

Z:ﬂ (lrnwnl - 1)+ < o

satisfies condition C3. So, for the sinusoidal trend case, this stochastic approxi-
mation process is applicable.

with

REMARK 2. If M,(x) is quasi-linear, i.e.,
(©') K/|x — 0,] < [My(x) — o] £ K/]x — 0,],
condition C3 can be weakened as
©) 7o —1=0(,).
Under these conditions, the polynomial trend case, where 6, moves as pn? + r,

where p and r are unknown and g is positive and known, can be treated. Con-
vergence is proved similarly to that of Dupac in [2].

REeMARK 3. The following modification will remove the necessity of imposing
the property on (M,(x) — a) to be bounded by a linear function.
Let the modified estimation scheme be

Xpp1 = X, + ap(@ — y,5) b1 (X,5) for n=1,2, ...

where 4,(x) is a function which is positive and bounded in any finite interval
and x, and x,* are defined as before. Then conditions C1 and C4 are weakened
as follows;

C1’ There exist positive constants K,'" and K, such that
(6”) IM(x) — a] < (K|x — 0, + K/)hy(x) .

C4’ For random variable w,(x, x*%)
(10)  E(w,(x, x*)[x ) = 0, Var (w,(x, x) [ ") < 0,%,(x) < oo .
Since the proof is apparent, it is omitted.

3. Convergence of the estimation error within a bound. In the case where
the unknown fluctuation v, is random, the estimation error is allowed to be
bounded within some value by this procedure. Theorem 2 shows this fact.

THEOREM 2. In this case, instead of conditions C2, C3 and C6 of Theorem 1, we
assume:
B2 There exists a positive number K, such that

22) (x — 0)(My(x) — @) = K(x — 0,)* for n=1,2,.--.
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B3 The positive sequence {y,} is defined by (8) and there exists a positive integer
N, and a positive constant K such that for each n > N,,
(23) mS1—-K<I1.
B6 For random fluctuation v,
(24) Ew,|x") £v,* < o0, Var (v, |x") £ 0, < o0,
BV, Wya(X, X7)[x7) = 0

and there exists a positive integer N, such that for each n > N,

(25) |v,*| < 2K .
Further, conditions C1, C4, C5 and C7 of Theorem 1 hold. Then
(26) lim,_,, E(x, — 0,)* < K,

where K is a finite positive number given in the proof.
ProoOF. As before,
Xuir = Onis = 0a(%,) = 04(6,) — @M, is(%,%) — @) — 0, — @, W,
Fnrr = Ouna)’ = (90(X%) — 9u(0) — 02)" + @ (Myn(X,7) — @) + a,’wr,,
— 2a,(M, 1,(x,*) — a)(x,* — 0,,1)
+ 2a, (M, 1(%,*) — @)W,y — 26, W, 40(%,* — 0,,1) .
We take the conditional expectation on both sides:
E((Xp4 — Onya)? [ 5%, 0%, ,)
< (1 = 2a,K, + 20, K3)(g.(%) — 9x(0,) — 0,)° + .50, + 2K;7)
and then,
E((Xps1 — Onsa)’] X", 0%)
= E(E((Xns1 — Onsa)’[ X", 0%, V)
= (1 — 2a,K, + 2a,°K*)(9,(%n) — 9a(0.))°
+ (1 — 2a,K, + 2a,2K)(0,* + v,*)
+ 21 — 2a,K, + 20, K0, |0,(%,) — 9,(0,)
+ a0, + 2K2) ..
Now taking unconditional expectation, we have
E(Xppy — 0p)' = (1 = 20,K, + 2a,°K7)(1 + [0, )1 E(x,, — 0,)
+ (1 — 2a,K, + 2a,’K)(0," + v,** + [v,*])
+ a,Xo,’ + 2K;%) .
In this calculation we used the following inequality for random variable z with

finite variance,
2E(2]) < K, + KE@)

which holds for any positive K.
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Applying the above inequality successively, we have for each n > N, =

max (N,, N;),
E(x, — 0,0 < K, Xk, TT5zbn (1 — 20,K, + 2a2K2)(1 + vk (1 — K,)*
where
Ky = max {E(xy, — 0y ) 0> + 4K, + 4K? 4 a} (0," + 2K,))} .

Even if n goes to infinity, the last member remains in finite. In fact, let
27) wp = 11550 (1 — 26;K, + 2a°KP)(1 + |z [)(1 — Ko)*
then by conditions B3 and B6, we have

lim sup, ., #,,/u, = limsup,_, (1 — 2a,, K, + 243, K*)(1 + |v¥ [)(1 — K;)

< +2K)(1-K)y=s1,

which indicates the convergence in finite [5].

Thus we have
(28) lim, ., E(x, — 0,)

< K; =K, ZI?=N4 | (1 — 20, K, + 2a7K*)(1 + I'U;';‘I)(l — K,)*.

REMARK 4. If condition C5 and equation (25) of condition B6 of Theorem 2
are replaced by

B5 For the positive sequence {a,}, there exists a positive number K, such that
(29) lim, . a, < K, < K,/K;,
(25) V¥ = o(a,) »
then condition B3 can be weakened as (9’) in Remark 2. In fact, since

lim sup, ., u,,,/u, < 1 also holds by these conditions, where u, is defined by
(27), convergence within a bound can be proved.

4. Concluding remarks. The results described in this paper are analogously
developed to the maximum searching problem suggested by Kiefer and
Wolfowitz in [4]. We, however, do not further mention this problem here.

In order to apply this dynamic stochastic approximation method to practical
problems such as state estimation prediction and control, it is required to extend
the present work to the multidimensional case.
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