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AVERAGING VS. DISCOUNTING IN DYNAMIC PROGRAMMING:
A COUNTEREXAMPLE

By JAMES FLYNN
University of Chicago

We consider countable state, finite action dynamic programming
problems with bounded rewards. Under Blackwell’s optimality criterion,
a policy is optimal if it maximizes the expected discounted total return for
all values of the discount factor sufficiently close to 1. We give an example
where a policy meets that optimality criterion, but is not optimal with
respect to Derman’s average cost criterion. We also give conditions under
which this pathology cannot occur.

1. Introduction. We consider a dynamic programming problem with a count-
able state space S (see Blackwell (1962), (1965), Derman (1965), (1966) and
Maitra (1965)). Each day we observe the current state s of some system and
choose an action a from a finite action space 4. This selection results in (1) an
immediate income i(s, @) and (2) a transition to a new state s’ with probability
q(s’|s, a). We assume that the incomes are bounded. The problem is to control
the system in the most effective manner over an infinite future.

A rule or policy « for controlling the system specifies for each » > 1 what
act to choose on the nth day as a function of the system’s current history # =
(s> ay, - - -, 5,) or, more generally, = specifies for each % a probability distribution
on 4. A (nonrandomized) stationary policy is a policy which is specified by a
single function f mapping S into 4: under it, you select act f(s) whenever the
system is in state s.

There are different ways of measuring the effectiveness of a policy. Blackwell’s
(1962) approach is to favor policies which maximize the expected value of dis-
counted total return for all values of the discount factor 3 sufficiently close to
1, while Derman’s (1966) is to favor policies which minimize the expected value
of the long-run average cost. To be more specific, we need some notation and
definitions.

Let ry(s, =) denote the expected return on the jth day under the policy = when
the initial state is s (j = 1,2, -..). For each 8¢ (0, 1), let

) Via(s, @) = 2352 BI7iry(s, @) (seS)
and
(2) x(s, m) = liminf, (37, ry(s, 7))/n (se9).
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DEeFINITION 1. A policy «, is B-optimal if there exists a 3, € (0, 1) such that
(3) Vs, ) Z Vils, @) (s€ S, 5e (1)
for any policy .

Blackwell (1962) and Derman (1965) established the existence of a (non-
randomized) stationary B-optimal policy for finite S, while Maitra (1965) con-
structed a countable state system for which there was no B-optimal policy.

DEFINITION 2. A policy =, is D-optimal if
(4) X(s, 7)) Z x(s, 7) (s€9).
for any policy .

Intuitively, one would expect D-optimality to be weaker than B-optimality.
Certainly, it is easy to construct D-optimal policies which are not B-optimal.
Also, it is natural to conjecture that B-optimal policies are always D-optimal.
This conjecture, however, turns out to be false. We will provide a counter-
example. We will also show that the conjecture is true when S is finite.

2. A counterexample. Liggett and Lippman (1969) established the existence
of a bounded sequence of real numbers {r,}7>_, satisfying

(5) ré = liminf, (1 — 3) 27,377 r; > liminf, (D1 rpyn=r,.

Let the state space S consist of 0, r,, r,, - ... To each state there corresponds
two actions, 0 and 1. Transitions are deterministic:
Gry|ry, 0) = q(ry | ry, 1) =1 (=12 )

¢(010,0) = ¢(r,]0, 1) = 1.
The immediate income depends only on the state:
i(r;, 0) =i(r, 1) =r; (=12 )
i(0,0) = (0, 1) = (r* + 2r,)/3.

Let =; denote the policy which always selects action j(j = 0, 1). Clearly, 7, is
B-optimal. One can show that 7, is D-optimal by establishing

(6) X(O, ‘TO) - (f* -+ 27‘*)/3 > ry = X(Oa 7‘-1) .
It follows that =, is not D-optimal.

3. Sufficient conditions. A sufficient condition for a B-optimal policy =, to
be D-optimal is

(7) liminf, - (1 — 3)V (s, 7,) = x(s, 7,) ($eS).
This follows immediately from the fact (Hobson (1926)) that
liminf, .- (1 — 5)V,(s, ) = x(s, 7) (Ses).

In particular, any B-optimal policy =, is D-optimal when § is finite since (7)
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always holds in that case. We establish this result as follows: By Blackwell
(1962) and Derman (1965), there exists a stationary policy # which is B-optimal.
Hence for some f,€(0, 1), we have Vs, ) = Vs, #) for all s and all
B € (B 1). Moreover, V (s, #) is a rational function (Blackwell (1962)). Hence
lim, - (1 — 3)V (s, 7,) exists. The existence of this limit and the Hardy-
Littlewood theorem (see Liggett and Lippman (1969)) give us (7).

4. Remarks. The case where D-optimality is defined in terms of the lim sup
instead of the lim inf is similar. Using the approach of Section 2, one can con-
struct an example where a B-optimal policy does not maximize the lim sup of
the average returns. Results analogous to those of Section 3 are easy to establish
for the lim sup case.
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