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ON OPTIMAL ESTIMATION METHODS USING STOCHASTIC
APPROXIMATION PROCEDURES!?

By DAN ANBAR®
University of California, Berkeley

The problem of estimating the zero of a regression function by means of
Robbins Monro type of stochastic approximation procedures is discussed.
Optimality of the procedures is defined in terms of asymptotic variance.
The discussion is restricted to the case of identically distributed errors. In
that case we suggest transforming the observed random variables in order
to minimize the asymptotic variance of the estimators. The optimal trans-
formation turns out to depend on the underlying distribution of the errors
and on the slope of the regression function at the zero.

0. Summary. The problem of estimating the zero of a regression function by
means of Robbins-Monro type of stochastic approximation procedures, is dis-
cussed.

Optimality of the procedures is defined in terms of asymptotic variance.

The discussion is restricted to the case of identically distributed errors. In
that case we suggest to transform the observed random variables in order to
minimize the asymptotic variance of the estimators. The optimal transfor-
mation turns out to depend on the underlying distribution of the errors and on
the slope of the regression function at the zero.

1. Introduction. Investigations concerning stochastic approximation pro-
cedures were initiated by the work of Robbins and Monro [9]. Since their
pioneer work, a great deal of effort has been made by many authors to gener-
alize and improve the results of Robbins and Monro and to study the properties
of the procedures.

In this work we will be concerned with the Robbins-Monro (RM) procedure.

Let M(x) be a real-valued measurable function. Let ¢ be the unique solution
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of the equation
M(x)=6.

Let {F,} be a family of distribution functions, and let Y, ~ F,, be a random

variable with
EY, = M(x)

for all x. Let X, be an arbitrary real number (in fact X, can be taken to be any
random variable. See Sacks [10]). For n = 1 define

(1) Xn+1 - Xn - anYn

where {a,, n = 1} is a sequence of nonnegative real numbers satisfying

(2) Dine1 G, = 00, Dimera, < oo,
and Y, is a random variable whose conditional distribution given (X, = xi,
X,=2x, -, X, =x,)Is F, .

It is known that under certain conditions the process defined by (1) converges
to 6 almost surely and in the square mean (Blum [4]). Sacks [10] had shown
that under further conditions, and for the choice

3) a, = An™*, n=1,2,...,

nt(X, — 6) converges in law to a normal random variable with mean zero and
variance

4) AG*(QAa — 1)7?

where « is the derivative of M at ¢ and ¢* = lim,_, Var (Y,), which is assumed
to be finite.

Clearly the user of the RM procedures would like to minimize the asymptotic
variance of the procedure he uses.

In this work we deal with the problem of minimizing the asymptotic variance
of the Robbins-Monro procedures by means of transforming the observed
random variables. Our approach is as follows:

Consider a class =" of Borel measurable transformations from the real line to
itself such that the regression functions M, (x) = Eg(Y,) have a unique zero at
the same point § as M(x) for all g in 2. We ask the question: For a given
family of underlying distribution functions F,, what is the function ¢ in &,
and the corresponding A(g, F), which minimizes the asymptotic variance of
the process

5 X, ., =Xn— A,7'9(Y,), n=12 ...
“+ n

n

with X, = x, an arbitrary real number?

We solve this problem for the case of the translation-parameter family of under-
lying distribution functions. Namely, we assume that F,(y) = F(y — M(x)) for
a given distribution function F. We define the family .2’ (Section 3) and show
that if F possesses a differentiable density function f w.r. to Lebesgue measure
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and the function d/dxlog f(x) is in &, then it is the (unique) solution of the
minimization problem. Unfortunately it turns out that the corresponding opti-
mal 4 depends on the slope of the regression function at x = #. Of course, we
would not like to assume that the slope is known. This led us to look for a
proper estimator of the slope. Such an estimator is suggested and its properties
discussed.

Various authors have dealt with problems similar to the above-mentioned one
in processes related to Robbins and Monro’s.

Albert and Gardner [2] investigated procedures under a somewhat more gener-
al setup than that of Robbins and Monro’s, but their approach is different.

The part of Albert and Gardner’s work which related most closely to our
work is the one which deals with asymptotic efficiency, and its improvement
via transformation of the parameter space. They apply a certain transformation
to the parameter space (the interval to which @ is assumed to belong). Then
they construct a process on the new parameter space and show that the induced
process on the original space is asymptotically normally distributed with asymp-
totic variance smaller than that of a corresponding process defined on the origi-
nal parameter space. The transformation and the improved process depend
explicitly on the functions F,, the expectations of the observed random variables
Y,.
It is also shown that the improved process is most efficient (in the sense that
it has a minimal asymptotic variance) if and only if the errors are normally
distributed.

In the Robbins-Monro setup, it is not assumed that the function M is known
and therefore Albert and Gardner’s results concerning the improvement of the
efficiency do not apply.

Some of Albert and Gardner’s results, such as Theorem 4.1 on page 39 of
[2], could be employed for our purposes. However, since their setup is more
general than ours, we would obtain more satisfactory results by applying our
methods which are, of course, suited to our problem.

The necessity to estimate the slope a in order to improve the efficiency was
first recognized by Venter [11]. Venter’s results were extended and generalized
by Fabian [5]. Both Venter and Fabian constructed their estimators of the slope
by taking pairs of observations at each stage and then estimating the slope in a
natural way. A different approach was used by the author in [3]. The author
has constructed a stochastic approximation analogue to the usual linear regres-
sion estimator of the slope. This way there is no need to take the observations
by pairs.

All three authors mentioned above proved that their estimators were strongly
consistent and were able to construct modifietd RM procedures which were
asymptotically most efficient.

2. Preliminaries and assumptions. Throughout this work we will be dealing
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with the Robbins-Monro procedure with a, = An~'. When we refer to the
Robbins-Monro (RM) procedures, we will mean the procedures using the Y’s
from the original underlying distribution, and we will use the term Transformed
RM (TRM) procedures for the ones defined by (5).

The following assumptions will be referred to repeatedly (compare with Sacks
[10]).

AssUMPTION (Al). M is a Borel-measurable function; M(0) =0 and

(x — O)M(x) > 0 forall x = 0.

ASSUMPTION (A2). For some positive constants K, K, and for all x
Kx — 0] < |M(x)] < K)|x — 0] .

ASSUMPTION (A3). M(x) = a(x — 0) + d(x, 0) for all x where d(x,0) =
o(Jx —0))asx — 0 — 0, and « > 0.

z-0

AssuMpPTION (A4). (a) Sup, EZ*x) < co. (b) lim
Z(x) =Y, — M(x).

EZ*x) = o® where

ASSUMPTION (AS).
lim’\’—""’ lims—'0+ SUP|;_gi<e SHZ(xDI>R) Z2(x) dr =0.

Under Assumptions (A1) (A2) and (a) of (A4) (in fact (A2) is replaced by a
slightly weaker condition), Blum [4] has proved that X, as defined by (1) con-
verges to ¢ a.s. and in square mean. Sacks [10] proved the following:

THEOREM (Sacks). Suppose Assumptions (A1) through (AS) are satisfied. If A
is such that 2AK > 1, then n*(X, — 0) converges in law to a normal variable with
mean zero and variance

A’ 2Aa — 1)1,

3. Optimization problem. In this section we assume that {F,} is a translation
parameter family of distribution functions, which are absolutely continuous
with respect (w.r.) to Lebesgue measure, i.e.,

F(y) = F(y — M(x))

and F possesses a density function f w.r. to Lebesgue measure.
Let ..~ be a family of distribution functions which are absolutely continuous
w.r. to Lebesgue measure, and such that

(6) 0> §=. L1og f(y) | fiy) dy < oo
dy

for all Fin .~
Let <" be a class of Borel-measurable functions ¢ satisfying

(G): M, (x) = §=. 9(r)f(t — M(x)) dt satisfies conditions (A 1), (A2), and (A 3)
with M(x) replaced by M (x), for all Fe >,
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(G,): Z,(x) = g(Y,) — M,(x) satisfies conditions (A4), (AS), with Z(x) re-
placed by Z (x) for all Fe .~

(Gy): (1) dldx §2. g(f(y + %) dylaco = §26 9O () D,
(i) §2. 90/ (y) &y <0,
(iii) §=., ¢*(y + x)f(y) dy is continuous at x = 0, for all F e &7

ReMARk 1. Sufficient conditions for (i) to hold are the following:

(i") (a) The left-hand side of (i) of G, exists.
(b) §=.19(»)f'(y + x)| dy is bounded in some neighborhood of x = 0, and
©) §==9()f'(y + x)dy is continuous at x = 0.

To see this let us compute the left-hand side of (i):
d . 1
2 Ve YO+ ) @y fog = Timay — §20 9O + 0) — fO)] dy
. 1
= lim,_, = §2.. {9() §77° f() a1} &y

. 1 5
= lim; o — §2. {90) §3 /(v + D) di} dy .
By (a) and (b) of (i), Fubini’s theorem applies and we have
. 1 ..
= lim,_o = 33 §2 {9O)f (v + 1) dy} dt

= §Z. 9" (») dy by (c) of (i') .

REMARK 2. If ..~ consists of all symmetric distribution functions such that
(c) holds and f'(y) < 0 for y > 0, then (ii) of (G;) holds for all odd functions g
for which yg(y) = 0 for all y. We mention this particular example because of
the bearing it has on the minimax result of Section 4. There we consider the
family of e-contaminated normal distribution functions with a symmetric con-
taminating distribution H. Conditions (G,), (G,), and (G,) guarantee that the
process (5) converges a.s. to # and that n}(X, — 6) converges in law to a normal
random variable with mean zero and variance

A*lim,_, E[g(Y,) — M, (x)]’
2A[(dJdx)M,(x)]cg — 1

(7) 0‘%1,4] =

In our shift parameter case it follows from (iii) of (G,) that
lim,_, E[g(Y,) — M, (0] = lim,_, {§2.. *(y + M(x))f(y) dy — M *(x)}
= 2. g Df) dy -
d

A M) = 57 g0M — M) dy

By (i) of (G;) we may differentiate under the integral sign and may interchange
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integration and limit operations. Thus,

d

Mo = —a §2 90N () 4
X

which is positive by (ii) of (G;). Therefore we have:

8 2 A gD)) by

(8) %, - .
—24a 2. 9(y)f (y) dy — 1

Considering ¢?% , as a function of 4, we obtain by minimizing w.r. to 4
2. PO dy

a’{§2. 9()f () yf

Now, by the Cauchy—Schwarz inequality

(572 9007 0) T 5 187 7O 1 - | 7= (L) ) @ .
Thus,

(10) P L -
@ [P dy L)

where /’(f) is the Fisher information number. From (10) we obtain immediately
the following:

©) Thg

\%

THEOREM 1. If the underlying distribution function F is absolutely continuous
w.r. to Lebesgue measure such that (6) holds, and if

(1) 0,3) = ¢ & [10g f())]
'y

is in & for some ¢ # 0, the g, minimizes o’ ,. Furthermore, g, is unique up to a
multiplicative constant.

Proor. To show that g, minimizes ¢? , it is sufficient to show that

2 1

Yy = s for some A.
»90 a,2102(f)
But
§2e 9’ dy = ¢ §20 90 (¥) dy -
Therefore,
e 90O dy _ ¢ _ 1
20O Y 29D dy  LXf)
Therefore
1
12 Fz = 031 g = -
( ) g 090 a2102(f)
where
(13) A= — :

= >0
@ §7a 9(1)f () dy
Uniqueness follows from the fact that equality in the Cauchy-Schwarz inequality
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is obtained if and only if there exist constants ¢ == 0 and d such that

= SO 4.
9(») cf(y) +

But the requirement g € & implies (=, g(y)f(y) dy = 0. Since

Sfm%f(y) dy ==, f(y)dy =0,

it follows that d = 0. This completes the proof.

REMARK. A, as defined in (12) can be rewritten as

.

acl}(f)

This implies that ¢ must be taken to be negative. The only condition which is
affected by the sign of ¢ is Assumption (A 1). It is therefore of interest to know

whether (A1) is consistent with the requirement that ¢ should be negative, for
some interesting distribution functions.

(14) A, = —

DEerFINITION. A distribution function F is called (strictly) strongly unimodal
if it possesses a density f w.r. to Lebesgue measure, and —log f{(x) is a (strictly)
convex function in some open interval (a, #) such that —co < a < b < oo and

2 f(x) dx = 1.
THEOREM 2. If F is strictly strongly unimodal and (6) holds, then g, defined by
(11) with negative c, satisfies (A 1).

Proor.
M, (x) = §2. 9Ny — M(x)) dy

— ey LO) fy — My ay .
¢§Z ) & (x)) dy

By strict strong unimodality f’(y)/f(y) changes sign exactly once and
N =1/ = 0)

is a family with monotone likelihood ratio (see e.g. Lehmann [8] page 330,
Example 1). Therefore as Karlin and Rubin proved in [7], M, (x) changes sign
exactly once at x = ¢. The fact that ¢ < 0 guarantees that (A1) holds.

REMARK. (a) In the proof of Theorem 1 we have already indicated that if
we use the transformation g,, then the optimal choice of 4 is given by (13) and
the smallest asymptotic variance by (12). In fact the argument which led us to
(9) indicates that if we use any transformation g in %/, then the best choice of 4
for this g is

(15) A, = —[a §=. 9()f'(y) dy] ™,
which leads to a process with asymptotic variance given by the right-hand side
of (9).
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(b) As we have seen, the optimal transformation g, is determined uniquely
up to a constant c. However, the asymptotic variance (12), is independent of
c. The independence from ¢ becomes clear if we notice that the right-hand side
of (9) is scale-invariant. We may, therefore, take ¢ = —1.

ExampLEs. (i) Normal distribution.

fy) = @m)~texp{—»*/2}, —oo < y< oo,
I(f) =1

9(y) =y and Ay =al.

and therefore

It is clear that g,(y) = y is in fact in 2 and therefore, if the underlying distri-
bution is normal, the RM procedure is optimal.

(ii) Double exponential.
f0) = 5 exp (=11} —eo <y <o
In this case
Slos) = —1 ity >0

and

{,d, logf(y) },2 =1 a.s.
dy
and therefore /}(f) = 1. Hence the function under consideration is:
d .
9(y) = — @ log f(y) = sign (y) and Ay =at.

In this case g, satisfies:

§2w |90)f (¥ + a)|dy = 1 forall a
17w 0:(0)f () dy = =1 <0

(. (v +a)f(y)dy =1 forall a.

and

Therefore it is clear that g, e < and is the optimal transformation.
(iii) Logistic distribution.

fy) = e [(1 + ey —o0 <y < oo
—log fly) =y + 2log (1 + e7),

4 (—tog fly) = 1 = 267(1 + )
'y

A (—10g f() = 267((1 + € > 0
'y
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and therefore —log f(y) is convex and f(y) is strongly unimodal. Here:

1) = 57 5 108 J0) [ f0) @
= §2a e — (e + e dy =,

A0 = 3a7!
and
9o(y) = —(e7* — I)/e " + 1) = tanh (2y)

which is in ©"and is optimal.
(iv) Huber’s distribution.

(16) fx(y) = Cemrw
where
(17) o) = if |y <K

K? .
=Kl =5 i I>K.

A simple calculation shows that in this case the optimal procedure is:

(18) %(y) =y if |yl <K
= Ksign (y) if |yl >K.

4. A minimax result. In the last section we saw that for a given distribution
function F, and a given transformation g, the smallest (w.r. to the choice of
A) asymptotic variance was given by the right-hand side of (9). This expression
is essentially the same variance expression Huber has dealt within[6]. Therefore
his minimax result applies in our case as well and we obtain:

Minimax result (Huber). If the underlying distribution F is an e-contaminated
normal, i.e., F(r) = (1 — €)®@(f) + ¢H(r), where @ is the normal N(0, 1) distri-
bution, and H is a symmetric distribution function, and if K is the solution of
the equation:

(1 — &)™ = §5, p(t) dr + 20(K)/K ,

then g, defined by (18) determines a TRM process which minimizes the supre-
mum of the “best” asymptotic variance (here “best” refers to the best choice
of A), where the supremum is taken over the set of all ¢-contaminated normal
distributions.

This TRM process corresponds to the underlying distribution with density
(16). The corresponding function is therefore the least favorable distribution.
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