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LIMITING DISTRIBUTIONS OF STATISTICS
SIMILAR TO STUDENT’S ¢

By Z. W. BIRNBAUM! AND I. VINCZE?

University of Washington and Mathematical Institute
of the Hungarian Academy of Sciences

A class of statistics is considered, which are based on order-statistics
and have properties analogous to Student’s #. They can be used to estimate
a required quantile of a random variable or to test hypotheses about a
quantile; they are simple to compute, and can be calculated when not all
sample values are available, e.g. for censored samples. The limiting
distributions of these statistics are derived and shown to be independent of
the distribution of the underlying random variable. A numerical tabula-
tion of the limiting distribution is included, for the special case when the
quantile considered is the median.

1. Definition of a statistic and some of its properties.
1.1. Let X be a random variable with continuous distribution function
F(x) =P{X < x}, and X;, £ X,, £ .-+ £ X, an ordered sample of X. The

g-quantile of X will be defined by

(1.1.1) t, = inf{x: F(x) = ¢q} forgiven 0<g<1,
and the corresponding sample-quantile is the order-statistic
(1.1.2) X such that L q‘ < ! .

n 2n

For given integers r, ssuch that 0 < r < k, 0 < s < n 4+ 1 — k we consider the
statistic

Xy — £
(1.1.3) Sty = ——®W " Ca
X(k+s) - X(k—'r)

The special case ¢ = §, n = 2m + 1, r = s yields the statistic

(1.1.4) §S=_ Ko — 14

X(m+1+r) = Ximt1-n
which was considered in [1], while similar statistics were previously studied in
[3]. Furthermore, the authors are indebted to the referee for calling their
attention to paper [4] by M. M. Siddiqui in which a general class of related

Received July 1971; revised January 1973.
1 Research by this author was supported in part by the U. S. Office of Naval Research and by

the National Science Foundation.
2 During his stay at the Catholic University of America, Washington D. C., this author’s

research was supported in part by the National Science Foundation.
Key words and phrases. Order-statistics, nonparametric statistics, distribution-free statistics,

quantiles, censored samples, Student’s 7.
958

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. MIKOJIS

. ®
www.stor.org



STATISTICS SIMILAR TO STUDENT’S ¢ 959

statistics is considered and, as a special case, a statement is obtained which is
equivalent with the theorem in Section 3.2.

1.2. The structure of S in (1.1.4) is somewhat similar to that of Student’s ¢
(i) the numerator is the difference between a location-parameter (the population
median g,) and its estimate (sample median X,,,,)), and the denominator is an
estimate (sample interquantile range) of a scale parameter (population inter-
quantile range); (ii) the statistic S, , . ,, and as a special case the statistic S, is
invariant under linear transformations and hence, for given distribution function
F(+), the probability distribution of S, , . . is independent of location- and scale-
parameters, i.e. is the same for all random variables with distribution functions
F((x — a)/b), areal, b > 0. In particular, if X has normal distribution, the sta-
tistic S can be used in a manner analogous to that in which one uses the z-statistic,
with the additional practical advantage that it can be computed when no more
than three order statistics are available, and part or all of the remaining sample
has been “censored”.

1.3. In practical situations the values of r and s are often given, and not
within the experimenter’s control. This is, for example, the case when
X, £ .- £ X, is an ordered sample of diameters of a mass-produced item,
which is processed as follows: first each item is put through a go-no-go gauge
which rejects all items with diameters < D, or > D,, D, < D,; then the
remaining items are carefully measured. The resulting data consist of (1) the
number a — 1 of diameters < D,, (2) the number 4 — 1 of diameters > D,, and
(3) the actually observed diameters X,, < X,,;, < --- < X, contained in the
interval [D,, D,]. This determines the subscripts a and b of the extreme order-
statistics which can be used as X,_,, and X, in (1.1.3) and, if the gauge is
narrow, leads to values r and s which are not large, although n is large.

2. Exact distribution of S, , . .

2.1. We assume in the following the existence everywhere of the probability
density f(x) = F'(x) > 0 for 0 < F(x) < 1. From the joint probability density
of the order statistics
(2.1.1) U= X,_p> V=2Xu, W = X,

we obtain for S defined in (1.1.3) (assuming without loss of generality

ty = 0): o
P{Sukrs > 4
. . n!
(21.2) =r= k—r—DI(r—Dls—1) (n—k—s)!
X §3% Samamamn SU2 SE)A) W) F ()=
X [F(v) — F(u)"'[F(w) — F)F7[1 — F(w)]"~*=* dw du dv
for 2 > 0.

2.2. For every two-parameter family of distributions with a location- and a
scale-parameter, determined by a given F(.), expression (2.1.2) and a similar
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expression for 2 < 0 could be used to compute numerically the exact values of
all probabilities needed for practical use. These computations are being prepared
for the special case of (1.1.4) and the family of normal random variables.
Monte Carlo estimates of the probabilities (2.1.2) for this special case have been
obtained by J. Tague [5], form =1 (1) 10, r =1 (1) m, 2= 0.0 (0.1) 5, and
some selected larger values of 2.

3. Limiting distributions.

3.1. The following intuitive argument makes it reasonable to expect that for
n large and r/n and s/n small the probability distribution of S, , .. will be
practically independent of the given distribution F(.); for such n, r, s all three
order statistics (2.1.1) fall with probability close to 1 very close to z,, where
F(x) is approximately equal to ¢ + f(#,) - (x — p,). Therefore S is approxi-
mately distributed as if the sample were obtained from a random variable with
uniform distribution on [r, — q/f(1,), 1t + (1 — 9)/f(x,)], provided f{z,) > 0,
and since a change of location and of scale does not affect the probability
distribution of S, , , it is approximately distributed as if the sample came from
a random variable distributed uniformly on [—4, £]. This intuitive argument

is born out and given a specific form in the following theorem.

3.2. THEOREM. Let F(x) be a probability distribution function with q-quantile
1y Such that f(x) = F'(x) exists for 0 < F(x) < 1,* and
(3.2.1) f(x) >0  for 0K F(x)<1;
(3.2.2) the derivative f'(x) exists and is continuous in an interval
(¢ — 0, p, + 0) for some 6 > 0.
Then, for fixed integers r, s, one has

(3.2.3)  lim, P {i Sy ers < x}
n

3 nk,r,s =

1
C(r4 s = 1)
where ¢(+) is the standardized normal distribution function.

§5 plaul(q(1 — q))lustr—te~" du

Proor. We assume, again without loss of generality,
(3.2.4) t,=0
sothat s, , .= V/(W — U).
The joint probability density of
x = n[F(v) — Fw)],
(3.2.5) y = ni{F@) — q],
z = n[F(w) — F(v)]

3 The assumption that the probability density f{x) exists exerywhere is made for convenience
in the proof. It can be replaced by a weaker assumption.
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is
n!
= -2
P’n,k,'r,s(X, Vs Z) (k = 1)' (r — 1)! (s — 1)' (n — s)! n
(3.2.6) X (q + n—’)y — n—lx)k—r—l
X (n—lx)r—l(n—lz)s—l(l — q — n—,}y . n_1z)n_],_3
for

0 < x < ng + nty
(3261) _qn% <y < (1 _ Q)n*
0<z<n(l —gq)—niy
and :
P'n,k,r,s(x7 Vs Z) =0 elSCWhCre.

For n — co one obtains by Stirling’s formula and (1.1.2) for x, y, z satisfying
(3.2.6.1)
1 1 7r—1,5—1
~ , X1z
@2mq(l — g (r — Dl (s — !
X (1 + n7iy[q) =1 — x/n(q + n=iy)Jr
X [1—=nty/(1 — " *~[1 — z/n(1 — g — niy)]r—k-e.

Since k ~ ng, and r and s are fixed, we readily find that

P'n,k,r,s(x’ .y’ Z)

(3.2.7) lim, . p, 1 rs(X 7, 2) = p, (X, ¥, 2)
for all x, y, z, where the right-hand side is defined by
1 1
3.2.8 s Vs —_— . _e%xr-l, —2z,8—1
( ) Pr,s(x .y Z) (r — 1)' e X (S — 1)' Z

X [27z'q(1 — q)]—%e—vz/[zqu—q)]

forx >0,z>0, —c0 <y < 400, and p, (x, y, z) = O elsewhere.
For the inverse function of F(x) one has

(1) — F(-1 1 L (1) 1 2
F + A =F 4+ —h - 2 4 o (R .
(q ) @ f(:uq) 2 fg(#q) ° ()

Hence in view of (3.2.4) and (3.2.5)
u=FY(q + nty — n7x)

e 1 -ty _ p1
Ry "7
g Sty — o),
and similarly for v and w, so that
S VY — )Y 4 o(l)

mEet T W — U X+ Z 4 o(l)
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Using this and (3.2.8), and verifying the validity of the passages to the limit,
one obtains for n — oo and 2 > 0

PntS,,,, <2 =P {M < x}

X4+ Z 4 o,1) =
— §§§ P.(x,y,z)dxdydz
y/(z+2)S2
— (+ 1 e—¥200-0) ss 1 e—rxT—1
= (2mq(1 — 9))} stzzminwo,u/b (F — 1)!
1
X —— e "2 ldxdzd
= 1) )
N 1 e—tyrts-1 1 At/(q(1—gn} e du dt

U=—00

CrF s+ 1! (27)t
and a similar argument yields the same expression for 2 < 0, which concludes
the proof of (3.2.3).

3.3. Writing
_ 1 ) . ystr—lpo—u
(3.3.1) P, (A = (T_]“_‘m §o plAu/(g(1 — g))Hu e du
we have for fixed &
. & - . s
(3.3.2) lim, ..o Pr (i) = 916 — 91,

so that for large r + s a table of ¢(+) can be used to approximate values of
P, (4).

PrOOF.
S — 1 oo S _ r+s—1,—u
P"S<r+s—1>_(r+s—1)! SOstlir—l—s——lll/(q(l q))%:]u e du
+ — 1)+ o r4+8—1,—(r+s=1)z
= C = 5 dleai(a(1 — ) e v de
= {7 #[€z/(q(1 — Q)IT, (2) dz
where

T, (z) = (s = D™ prtamgmiraens |
m (r+s— 1!

For every ¢ > 0 we have, as r 4 5 — oo,
T, (2) >0 uniformly for |z — 1| =¢
and
1T, (2)dz —> 1,
and (3.3.2) follows.
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4. Special case ¢ = 4, n = 2m -+ 1, r = s; some numerical tabulations.

4.1. For the special case when p, = s is the population median, the sample
size n =2m + 1 is odd, X, ,,, is the sample median and r = s, our statistic
(1.1.3) becomes the statistic S of (1.1.4), and (3.2.3) may be written

4.1.1)  lim,_., P{2/m)}S < 5} = ﬁ §& d(suyu*r—te=* du = P (s) .
Similarly, when P () is written instead of P, .(+), (3.3.2) becomes
(4.1.2) lim, ., P, (L> — 4(E).
2r —1

4.2. Critical values for the limiting distributiod (4.1.1) are presented in
Table 1. This table has been abstracted from a more detailed tabulation
prepared by Dr. G. F. Steck of Sandia Laboratories. The authors wish to
express their gratitude to Dr. Steck for the permission to use his results.

TABLE 1
Table of asymptotic critical values for S, i.e., of sr,« such that according to (4.1.1.)
liMm—oo P{2/M)ES < sr,a} = 1 — a = Pp(Sr,a)

a

r

.10 .05 .025 .01 .005
1 1.0086 1.6778 2.6128 4.4575 6.5318
2 .3987 .5826 .7935 1.1272 1.4318
3 .2465 .3452 .4501 .6029 L7321
4 .1782 .2442 3115 .4052 .4812
5 .1395 .1887 .2375 .3035 .3556
6 .1146 .1537 .1917 .2421 2811
7 .0972 .1296 .1606 .2011 .2319
8 .0844 1120 1381 1718 .1972
9 .0746 .0986 L1212 .1500 1715
10 .0668 .0881 .1079 .1330 .1516
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