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MULTIPLE PRODUCTS OF POLYKAYS
USING ORDERED PARTITIONS!

By D. S. TrAcy AND B. C. GurTa
University of Windsor

Methods for multiplication of polykays have been given by various
authors. Carney used ordered partitions in considering double products.
In this paper, relations between polykays, symmetric means, augmented
monomial functions and unrestricted power sums are studied. The method
of ordered partitions is extended to obtain multiple products of polykays.
Kronecker products of ordered partitions are introduced and certain rules
are suggested by whose application the size of the problem is reduced
considerably. The method is illustrated on triple products of weight 7.

1. Introduction and summary. Multiplication of polykays has been treated by
Fisher [5], Tukey [12], [13], Wishart [14], Dwyer and Tracy [4], Tracy [10],
{11] and Carney [2]. Carney [2], using ordered partitions and following Hooke
[7], developed relations connecting polykays with symmetric means and unre-
stricted sums. He also developed a method to obtain products of two polykays
using ordered partitions. In this paper we obtain relations of polykays with other
symmetric functions as in[1], and extend Carney’s method [2] for double products
of polykays to multiple products. Carney, in his method [2], encounters a matrix
of which he can eliminate certain rows and add certain columns together. This
is applicable for multiple products as well, where the matrices involved are quite
large. We formally describe these rules and devise some further rules to system-
atize the computation and reduce the sizes of the matrices and to find least upper
bounds of ordered partitions. An interesting outcome is the possibility of writ-
ing the inverse of a matrix directly without having first to obtain this matrix
itself. Formulae for triple polykay products of weight 7 are obtained by way of
illustration.

2. Preliminaries. In this section, following mainly Carney [1], [2] and Hooke
[7], we briefly review the notation needed in the paper. The reader is referred
to Fig. 1 of [1] for an example.

2.1 An ordered partition a of weight m is a list of m symbols aa, - - - a,,
any two of which are either identical or distinct. Thus for each pair (i, ]), we
have either a; = a; or @, # @,. Ordered partition « characterizes the partition
a* of weight m with sets of identical symbols as parts of a*. For example,
12213345, 12213435, ... characterize the 5-part partition 22211 of weight 8.
The correspondence between ordered partitions and partitions is many-to-one.

The number of distinct symbols in « is denoted by ¢(a). Clearly ¢(a) is the
number of parts of a*. In the example above, ¢(a) = 5.
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914 D. S. TRACY AND B. C. GUPTA

We use (a) for the polykay corresponding to ordered partition «, {a) for the
symmetric mean, [«] for the augmented monomial symmetric function and {a}
for the unrestricted sum (power sum). Actually, order is not pertinent in these
symmetric functions. Thus (12213345), (12213435) represent the same polykay
k1. Therefore corresponding to partition a*, we can define (a*), {a*}, [a*]
and {a*} with the understanding that, just as between ordered partitions and
partitions, the correspondence between (a)’s and (a*)’s is many-to-one, and
similarly for other symmetric functions. Though this leads to certain redundan-
cy, such distinction between (a)’s needs to be retained till a certain stage in order
to carry out the method given below for obtaining their products. The redundan-
cy is eliminated in the final steps of the method.

We use @ to denote the vector of all ordered partitions of weight m and a*
for the corresponding vector of partitions. If M and x denote the number of
ordered partitions and the number of partitions of weight m respectively, a is
an M-vector and a* a p-vector. Similarly we can assemble M-vectors (a), (&),
[«], {&} and p-vectors (a*), (a*}, [a*], {&*}. We list values of M and g for
some weights m.

m 1 2 3 4 5 6 7 8
M 1 2 5 15 52 203 877 4050
g 123 5 7 11 15 22

Values M can be obtained by adding the entries in the last row of Table 1.1 of
David, Kendall and Barton [3], whereas x is the number of rows in the same
table.

22 Leta =aya,---a,and 8 = §,8, --- B, be ordered partitions of weight
m. Then « is said to be an ordered subpartition of 8 (o« < g) if and only if
a, = a; implies 8, = g, for all pairs (i, j); i,j = 1,2, ---, m.

EXAMPLES.
(1) Every ordered partition is an ordered subpartition of itself.
(2) 11233455 is an ordered subpartition of 11122333.

Two ordered partitions & and 8 of weight m are the same if « < fand 8 < a.

2.3 In an ordered partition &« = aya, .-+ «,,, we say that a, @, - a;,,
¢=0,1,2,--.,m—1;r=1,2,..--,m—1i), is a run of length r if a;, #
Qg =+ 00 = Quyp F Ayypg.

2.4 Let a; denote the column vector formed by the set of ordered partitions
of weight m;,. Then the symbolic product @, ®a,® --- @ a, is the column
vector whose components are the ordered partition

11...1 22...2...nn---n

~—— — —_—
m my, m,

of weight ;" m, (with runs of length m,, m,, - .., m,) and all ordered subpar-
titions.
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EXAMPLE.
1122

17 [117] _ | 1123
{12} @ [12} ~ | 1233
1234

2.5 Let a be an ordered partition of weight m. Then the mth degree polykay

{a) is defined implicitly by the equation

() = 2 (@)
where the summation extends over all ordered subpartitions a; of «a, and the
symmetric mean {a) = [a]/n'¢).

For each symmetric mean there is only one such equation, since when all mth
degree symmetric means are assembled in {a), and similarly all mth degree poly-
kays in (a), we have

a) = M)

where the incidence matrix A is nonsingular, its determinant being unity, cf.
[7, page 60].

26 Leta=a,---a,and =, ... B, be ordered partitions of weight m.
Their L.u.b. § = a vV 8 =4d,0, --- 9, is defined as an ordered partition of weight
m such that

(i) a9, =9,
(ii) if 2 is any other ordered partition of weight m such that &« < 2, 8 < 4,
then ¢ < 4.

Ordered partition ¢ is formed by setting 9, = ¢, if @; = a; or 8, = B, or d, and
d, are linked by partitions which are equal in « or 8 [2, page 1749]. Construc-
tion of l.u.b. has been demonstrated by Carney [1, page 645].

ExAMPLE. Let a = 11232434, g = 12223123. We want to determine § =
aV B =00, --0. Here @, =a,and 8, =8, =, = B,, thus 6, = d, = 0, =
6,=0, Setd,=1,500,=0,=0;=0,=0,=1. Again a, = a;, 8, = f;and
a, = ag, hence 0, = d; = d; = ;. Since §, = 1, wehaved, = 1fori=1,2,...,
8,i.e. 0 = 11111111 and ¢(d) = 1.

2.7 Let the elements of the set S, of ordered partitions of weight m be o,
a?, ..., a", arranged in such a way that o’ < a? =i > j. S, with this partial
ordering, is a lattice [1].

Now define matrix A as

;=1 if a?<at,
=0 otherwise .
Also define a diagonal matrix N with elements n,; = n#@_ Then

THEOREM (Carney [2, page 1750]). Let A = A’NA. Then the elements of A
are a;; = n# Ve,
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Let @ be the vector of ordered partitions of weight m. Then we have [1, page
649]

(1) (2) = (M'NA){a}
= A—l{a}
where A~ is a symmetric matrix of dimension M.

Each row of A~* corresponds to a polykay («), each column to an unrestricted
sum {a}, and each element is the coefficient of an unrestricted sum when a poly-
kay is expressed as a linear combination of unrestricted sums by means of
equation (1). When various {a}’s characterizing the same {a*} are pooled to-
gether, columns in A~* corresponding to such {a}’s are added together. We
notice now that rows representing all (a)’s characterizing the same (a*) are
identical. To eliminate such redundancy, from various ordered partitions «
characterizing the same partition a*, we choose just one and compute the cor-
responding row. When the required columns of A~* are added together, and
repeated rows eliminated, it is denoted by (47!)*. Since 4~! is symmetric, one
need not compute all the elements of (47*)*. A method to compute the required
elements of (47*)* without first having to compute all the elements of 4 = (a;;)
is suggested below.

Let (A,;) denote the adjugate of 4. Let ¢(a’ V a’) be denoted by c,;, thus

a;; = n%i. Then

Case I. When i + j,
Av.'j =P -+ Q

P = (_ 1)i+jncij+zr¢i,jcr'r

where

and Q is the sum of all the terms obtained by permuting second suffixes in the
expression (¢;; + ., ;¢,,) in all possible ways. The sign of a term in Q is the
same or opposite of P according as it involves an even or odd permutation of
the second suffixes in P (i.e., k, the number of transpositions, is even or odd).

Case II. When i = j,
Ay =P+ O
where
Pl — nEr#icr'r
and Q, is obtained from P, in the same manner as Q from P.
Using the rules of Section 4 below, the values of c;; are procured easily.

3. Generalization of some known results. In this section we give some results
which extend the results of Carney [1], [2].

3.1 Relation of polykays with other symmetric functions. We express polykays
of degree 4 in terms of symmetric means and unrestricted sums and vice versa.
Let s + 1 < d < s + n(= m), where s in an arbitrary integer such that 0 < s <
d — 1. Let the ordered partitions of weight s + 1 be denoted by a, a®, - .-,
aMi, those of weight s 4 2 by a”1+%2, ... @¥1+¥22 and so on.
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If (¢a'?)), ((a'?)) denote the matrices of symmetric means and polykays re-
spectively, then

(2) (Katy) = H((a%))
where H is a nonsingular (M, + - .- + M,) X (M, + - -- + M,) upper triangular
matrix with diagonal elements unity. One can write
H = (h”) = (ai" n a-"")
where
a*nat=0 if k#1¢t, or k=1t but a* L£a¥,
=1 otherwise.

Since H is nonsingular, we have

©) (@) = H({a')) .

For infinite populations, the symmetric means become moment products and the

polykays become cumulant products, so we get relations between such products.
Further, {a) = [a]/n**'®» and unrestricted sum {a} = }, [«;], where summa-

tion extends over all ordered partitions of which « is an ordered subpartition.

Thus

“4) ({a*?}) = H'([a*])
and
(3) ([a%]) = T(Ka'?))

where T is a diagonal matrix with elements ¢, = n#@™ for a fixed j,je
{1323"'am}a ie{Ml +"'+ Mj—1+ 1,M1+"'+ Mj—1+23"',M1+"'+
M;_, + M;}. Putting (3), (4), and (5) together,

(6) ((a¥)) = (H'TH)'({a"?}) .

Clearly Carney’s ([1], pages 647, 649) results become particular cases of the above
results when d is a fixed integer.

3.2 Some results involving Kronecker products.
REesuLT 1. Let @, 8 be column vectors formed by the set of ordered partitions

of weights m,, m, respectively, so that @ ® 8 = p’, the column vector composed

of the ordered partition
11...1 22...2

‘ m, m,
and all its ordered subpartitions. Then {a} ® {8} = {0}

PRrOOF.
{a} @ {8} = A/[@]® A/[B], where A,, A, areupper triangular
matrices with diagonal elements unity,
= (A ® AY)([@] ® [B])
= Aa® B]
= N[p']
={e'}.
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The above result can easily be extended to
{2} Q{2,}® -+ Qa,} = {0}

where a, is a column vector composed of ordered partitions of weight m, and p’
is the column vector composed of the ordered partition

—— ———— ——
m; my m,

and all its ordered subpartitions. In the following section this subset of ordered

partitions in p is referred to as a sublattice since it forms a sublattice of the
lattice of ordered partitions of weight m, + m, 4+ ...~ 4 m, (proved in [6]).

ResULT 2. Leta, ®a,® --- Qa, = p'. Then
() (@) ® (@)X -+ O (a,) = (44X - @ 4,)7B(p)
where 4, = A/N,A,, B is the matrix such that {0’} = B{p}, @’ is the column
vector composed of the ordered partition -

11...1 22...2...nn++-n
— —_—
ml m2 m’n
and all its ordered subpartitions, and p is the column vector of the ordered
partitions of weight m, + m, 4 ... 4 m,,.

Proor. Let (@) be the column vector formed by the products of polykays
(@) ® (@)@ - @ (a,). Then
(@) = (a) ¥ (@) @ - -+ & (a,)
= A4 e} @ 4} ® - - ® 4,7 Ha,}
=47 A4TQ - @4, T)(@]} @@} @ - ®a,))
=(4,R34,0 - QA4,) e}, by Result 1 above,
=494, - ®A4,)"B(p) .

Using Rules 1 and 2 below, 4,7'® 4,7 ® --- ® 4,7* and B are reduced to
AR AR - ®A4,7Y)* and B*, matrices of size v X v, v X u respectively,
where v represents the number of distinct polykay products in (&) and g the
number of partitions of weight m;, + m, 4+ ... 4 m,,.

4. Rules helpful in computation. In this section we provide certain rules which
are helpful in expressing products of polykays as linear combinations of the same
using relation (7) above. Rules 1 and 2 help to reduce the sizes of the matrices
Band 4,7'® 4,7 ® - - - @ A,* respectively by eliminating rows and combining
columns corresponding to ordered partitions a characterizing the same partition
a*. Rules 3 to 7 are helpful in obtaining the l.u.b. of ordered partitions, i.e.,
the elements of the matrices B, 4,7, 4,7, ..., 4,7%
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RuLE 1. In matrix B compute rows corresponding to the partitions a*’s rather
than the ordered partitions a’s. Add together the columns corresponding to all
ordered partitions a’s characterizing the same partition a*.

ExAMPLE. Let us consider the triple polykay product (@,) ® (@,) ® (a,;) of
weight 7 (see Section 5), where (a,) = [(111), (112), (121), (211), (123)]" and
(@) = (@;) = [(11), (12)]'. The columns of B correspond to the 877 ordered
partitions of weight 7 and the rows to the 20 ordered partitions of the vector
o= Qaa, ie., 1112233 and all its ordered subpartitions. To eliminate
the redundancy in B, compute rows of B corresponding only to the ordered
partitions 1112233, 1112234, 1112345, 1123344, 1123345, 1123456, 1234455,
1234456, 1234567 (only one ordered partition characterizing each partition).
Each of these represents a distinct partition a*.

Add together the columns in B which correspond to ordered partitions char-
acterizing the fifteen partitions 7, 61, 52, 43, 511, 421, 331, 322, 4111, 3211,
2221, 31111, 22111, 211111 and 1111111, i.e., the columns to be added are 1,
next 7, next 21, next 35, ... (being entries in [3, Table 1.1.7]). Thus B is
reduced from a 20 X 877 matrix toa 9 X 15 matrix B*.

This matrix B*, by applying the rules concerning 1.u.b. below, can be written
without obtaining many of the 877 columns individually.

RULE 2. In the matrix 4,7 ® 4,7 ® - .- ® 4,7* retain only one row corre-
sponding to each polykay product. Add together the columns representing the

same polykay product.
In order to determine which columns are to be added one has to consider the

column vector of polykay products
(@) = (@) (@)@ - - B (a,).

Let us suppose that rth and sth (r < s) components of (&) represent the same
polykay product (there may be more than one s). Then add sth column of
AR A4,'® - ® 4,7t to its rth column.

ExAMPLE. Let us consider again the above example. Thus (@) = (@,) ® (a,) ®
(@;), where (a) has 20 components as below:

. (111) (11) (11 11, (121) (12) (1)
2. (111) (11) (12) 12, (121) (12) (12)
3. (111) (12) (11)  13. (211) (11) (11)
4. (111) (12) (12) 14, (211) (11) (12)
(8) 5. (112) (11) (11) 15, (211) (12) (11)
6. (112) (11) (12) 16. (211) (12) (12)
7. (112) (12) (11) 17, (123) (11) (11)
8. (112) (12) (12)  18. (123) (11) (l12)
9. (I121) (11) (11)  19. (123) (12) (11)
10. (121) (11) (12)  20. (123) (12) (12).
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Clearly certain components of (&) represent the same polykay product. For
example component 1 is the only one representing k,k,?, components 2, 3 both
represent k;k,k,;, and so on. The components (indicated by their serial number in
(8) above) belonging to the same set below represent the same polykay product.

©) (1}, {2,3}, {4}, {5,9,13}, {6,7,10,11,14, 15},
(8,12,16}, {17}, {18,19}, {20}.

Thus, by eliminating the redundant polykay products in (@), we get (a)*, a
vector with 9 components. Further to remove the redundancy in 4,7' ® 4,7 ®
A7, retain only 9 rows corresponding to the first element of each set in (9).
Also add together the columns corresponding to each set in (9). Thus we obtain
a reduced 9 X 9 matrix (4,71 Q@ 4,7 ® A;7Y)*.

Using Rules 1 and 2, (7) reduces to (&)* = (4,7 @ 4,7* ® 4;7')*B*(p*), where
(p*) is the column vector of distinct polykays of degree )., m;.

REMARK. The matrix (4,7 ® 4,7 ® ... ® 4,7")* may also be obtained as
follows: :

Case 1. When all matrices Ay, A,, - - -, A, are of different dimension. Asdescribed
in Section 2.7, reduce the matrices 4,72, 4,7, .-, 4,71 to (4,7)*, (4,7H*, - -+,
(A4,7"* and then obtain the Kronecker product of the reduced matrices, i.e.,

AT @A D -+ @ A7) = (A7) @ (A7) @ - ® (4,7)*

Case I1. When some matrices are of same dimension. Let A;, A;; A,, A,, A,; - - -
be of the same dimension. Reduce (4,7'® 4,7), (4,7 @ 4,7 ® 4,7, -+ to
(AP Q@ A, 9%, (4,7 Q® 4, ® A,7)*, . ... Then the Kronecker product of the
reduced matrices gives (4,7 @ 4,71 ® --. @ 4,7Y)*.

It is important that the order of a,’s in ((&,) ® (@,) ® - - - ® (a,)) be the same
asthat of 4,7Vsin (4,7'R 4,7 ® --- ® 4,7Y).

RuLE 3. If ordered partition « of the lattice characterizes a one- or two-part
partition, break it into parts of the same lengths as those of the runs of the ordered
partition 8 of the sublattice. If there is at least one part containing both the
symbols, ¢(0) = ¢(a VvV B) = 1, otherwise ¢(d) = 2.

ExampPLE. Let o = 1111222, B = 1122233. Write a = 11|112]22, thus
dlaVv p) =1

RuLE 4. If ordered partition 8 of the sublattice characterizes a two-part
partition, break the ordered partition « of the lattice into two parts of the same
lengths as those of the runs of 8. Thus ¢(d) = 1 or 2 according as the two parts
of a have a common symbol or not.

ExaMPLE. Let o = 1112223, 8 = 1112222. Write a = 111|2223. Clearly
¢(0) = 2 since there is no common symbol in the two parts of a.

RuLE 5. If each ordered partition of the lattice is broken up into parts of the
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same length as those of the runs of the ordered partition of the sublattice, then
the ordered partitions obtained by permuting

(i) runs of the same length,
(ii) non-runs of the same length,
(iii) symbols within non-runs,

yield identical elements in the rows.

ExaMPLE. Leta = 1122345, 8 = 1112233. Write @« = 112|23|45. Then the
ordered partitions 1122345, 1124523, 1123245 yield identical elements in the
row corresponding to the ordered partition §.

RULE 6. Let the first /(> 1) symbols of the ordered partition 8 of the sublattice
be identical and the rest m — r distinct. Let a’s of the lattice be broken up into
two parts, the first of length r and the second of length m — r. Let the number
of distinct symbols in the second part, which have not already occurred in the
first part, be equal (f, say). Then the a’s yield identical elements and

é(0) =1t 4+ 1.
ExXAMPLE. Let a, = 1231145, a, = 1123344 and $ = 1112345. Thus a, =
123]1145, a, = 112|3344; the second part in each case contains two distinct

symbols which do not occur in the first part. So ¢(a; V ) = ¢(a, V ) =
2 4+ 1=3.

RuULE 7. For the last row, i.e. the row corresponding to the ordered partition
B =123 ... m of the sublattice, ¢(d) = ¢(«) for all « € the lattice S, since
avVv B =a.

5. Dllustration. We illustrate the method by using it to obtain triple polykay
products of weight 7. The formulae so obtained extend the results in [3], [8]
and [14].

Let (a,) = [(111) (112) (121) (211) (123)], (a;) = (@;) = [(11) (12)]'. Then,
we have

n n n n n
n n n n n
n n
A =|n n n n nj, A, = A, = )
s s n n
n n n n n
n n n n n

Now (a) = (a,) ® (a,) ® (a;) is a column vector with 20 components, only 9 of
which are distinct as in (9) above. Retaining only distinct polykay prodncts in
(@), we have

(@)* = [(111)(11)(11) (111)(11)(12) (111)(12)(12)
(L12)(11)(11)  (112)(11)(12) (112)(12)(12)
(123)(11)(11)  (123)(11)(12) (123)(12)(12)] .
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Thus, using Rule 2, (4,7 ® 4,7 ® 4,7Y)* equals 1/n®n®n® times

ront —2n? n —=3n 6n’ 2n?
—n* n’(n 4 1) —n? 32 —3n(n+4 1) —2n
n? —2n? n*  —3n 6n 2
—n 2n? —n n(n+1) —2na(n+ 1) —n?
” —nn+1) n —nn+4+1) (n+ 1) n
—n 2n —n n+1  =2n+1) —1
2n? —4n 2 —3n? 6n n?
—2n 2(n+1) -2 3n —3n+4+1) —n
L 2 —4 2 =3 6 1

D. S. TRACY AND B. C. GUPTA

—3n —4n 27
3n. 2(n+41) —2
—3n —4 2
n41 2n —1
—(n 1) —( 1) 1
n-1 2 —1
—3 —2n 1
3 n+1 —1
-3 —2 1]

Further, B is a 20 x 877 matrix, which can be directly written in 20 x 15 form
by applying Rules 1 and 3—7. This matrix can be further reduced by Rule 1 to
B*, whichis 9 x 15. Denoting the column vector of distinct polykays of weight

7 by (p*), we have

(@) = (4,7 ® 4,7 @ 4,7")*B*(p%) .

Thus with p =1/n, g =1/n(n — 1), r =1/(n — 1), t = 1/(n — 1)(n — 2) and
replacing (111)(11)(11), (111)(11)(12), - - -, by (3)(2)(2), (3)(2)(11), - - - etc., we
obtain Table 1 below, where the first column represents (a)* and entries in

(o*) appear in the first row.

TABLE 1
(7) (61) (52) (43) (511) (421) (331)
3)(2)(2) p2 0 2m+Tqg @n2+22n—35qr O 0 0
(3)@)11) 0 2p2 —10pg 2(n®—5n+10)¢? p 2(n + 5)q 2(n + 5)q
(3)A1)(11) 0 0 4pq —12¢2 4p*  8(n—4)pq —24pq
21)(2)2) 0 p2 (m—5pg 2n*—4dn+5¢ 0 3n+3)q 4n — 2)qr
@)1t 0o o0 2pq 2(n — 3)q2 2p2  4(n —4)pq 4(n® — 3n + 3)q?
21)(11)(11) 0 0 0 4q? 0 12pq 4(2n — 3)q2
(13)(2)(2) 0 o0 0 0 3p? —24pq 6(n2 — 2n + 3)q2
13)(2)(11) 0 o0 0 0 0 12pg —12¢2
(13)(11)(11) 0o o0 0 0 0 0 1292
(322) (413) (3211) (231) (31%) (2213) (215 (17
n2+12n+35r2 O 0 0 0 0 0 0
—8(n + S)qr 0 (n + 5) 0 0 0 0 0
2(n? — n + 24)q? 4p 4(n — 4)q 0 1 0 0 0
2(n? — 13)qr 0 0 (n2 + 4n + 3)r2 0 0 0 0
4(n2 — n + 6)q? D Sn + 1)g 2(n? — 2n — 3)qr 0 (n+ r 0 0
12(n — 3)q? 4p2  122n — 3)pg  2(5n% — 13n + 12)q2  4p 4(2n — 3)q 1 0
12(n — 3)q? P 6(n + l)g —12(n + 1)gr 0 (n+ Lr 0 0
6(n — 5)q2 6p2  18(n — 3)pq 6(n2 — 3n + 6)q2 5p 2(3n — T)q 1 0
2442 0 60pg 24(2n — 3)q2 12p2 2(31n—24)pq 16p 1
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Table 1 gives the nine triple polykay products as linear combinations of the
polykays of weight 7. For example, the first formula reads

(3)2)(2) = (N)n* + 2(n + 7)(52)/n(n — 1) + (n* + 22n — 35)(43)/n(n — 1)?
+ (n + 3)(n 4 7)(322)/(n — 1)’
which checks with [3], [14]. The formulae for the other eight triple products,
which are all new, can similarly be read.

For completeness double products of weight 7 are worked out in the same
manner by the authors and presented above. It may be remarked that only four
of these have appeared earlier in print (besides [9]), viz., (5)(2), (4)(3) in [14]
and (32)(2), (22)(3) in [8].
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