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ASYMPTOTICALLY OPTIMAL BAYES SEQUENTIAL
DESIGN OF EXPERIMENTS FOR ESTIMATION

By VicTor J. YOHAI
University of La Plata, Argentina

The purpose of this paper is to find asymptotically optimal Bayes se-
quential procedures for estimating a function g(6;, 62, - - -, 6) when there
are k experiments Ej, Es, - - -, Ex and the performance of the experiment E;
conducts to the observation of a random variable whose distribution de-
pends on the vector parameter §;. The term asymptotical refers here to
the cost of experimentation tending to zero. The methods used are a gen-
eralization of those introduced by Bickel and Yahav."

1. Introduction. The problem of finding asymptotically optimal sequential
procedures for testing in a design situation was treated first by Chernoff in [4]
and then in a very general form by Kiefer and Sacks in [5].

Bickel and Yahav in [1] and [2], developed an asymptotic theory of sequential
procedures for estimation when only one éxperiment is available. This theory
is based on the concept of pointwise asymptotic optimality that they introduced.

The purpose of this paper is to apply the methods introduced by Bickel and
Yahav in [1] and [2], to the problem of obtaining asymptotically optimal Bayes
sequential procedures for estimation in a design situation. We consider the par-
ticular case when (i) there are a finite number of experiments E,, E,, - - -, E;;
(ii) if the experiment E; is used we observe a random variable whose distribu-
tion depends on a vector parameter 6,; (iii) we want to estimate some function
90y, 0y, - -, 0,)-

In Section 2 we generalize Theorems 2.1 and 3.1 of [2] to cover the design
situation. In Section 3 we present the problem of sequential procedures for
estimation in a design situation and state the assumptions we shall use. In Sec-
tion 4 we construct a sequential procedure that is asymptotically pointwise op-
timal as defined by Bickel and Yahav in [1] for the estimation of g(6,, 6,, - - -, 6,)
in the situation described in Section 3. In Section 5 we give additional con-
ditions in order to prove that the procedure introduced in Section 4 is also
asymptotically optimal as defined by Kiefer and Sacks in [5]. In Section 6 we
give some indications of how the preceding results can be extended to the case
in which the distributions corresponding to the different experiments depend on
some common parameters. In Section 7 we give the proof of Theorem 4.1, used
for proving that the design constructed in Section 4 is asymptotically pointwise

optimal.

2. General results on asymptotic pointwise optimality and asymptotic optimality. Let
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(Q, &, P) be a probability space, D an arbitrary set that we call design space,
and suppose that for each d e D we have a sequence of random variables {Y, ,},
n > 1 where Y, ,is &, , measurable and &, , C &, ,,, C % isan increasing
sequence of o-fields.
Define
X(n,d,c)=Y,, + nc.

Y, , may be interpreted as the Bayes risk after n observations and ¢ as the cost
of each observation. Then X{(n, d, c) represents the total posterior expected cost
when we stop after n observations using the design 4 and when the cost of each
observation is c.

A stopping time for the design d will be a positive integer-valued random
variable ¢ such that {tr = k} belongs to &, ,.

A sequential procedure for our problem will be a pair (d, t) where d belongs
to D and ¢ is a stopping time for the design d.

Generalizing the concept of sequence of stopping times asymptotically point-
wise optimal introduced by Bickel and Yahav in [1] we say that a sequence of
sequential procedures (d(c), t(c)) is asymptotically pointwise optimal (A.P.O.)
if for any other sequence of sequential procedures (d’(c), t'(c)) we have

lim sup,_, X(#(c), d(c), ¢)/X(¢'(c), d'(c), ¢) < 1 a.s.

The following theorem gives a general way to construct A.P.O. procedures.

Make the following assumptions:

Al. inf{Y,  : de D}is a random variable, n > 1.

A2, P(inf{Y,,:deD}>0)=1,n>1.

A3. There exists d e D, a finite random variable ¥ > 0 and a real number
B > 0 such that

(a) nfY;,—V as. as n— oo
(b) liminf,  nfinf, , Y, =V a.s.

THEOREM 2.1. Let us define the stopping time i(c) by: “stop for the first n such
that Y, (1 — (n/n + 1)%) < ¢” and t'(c) by: “stop for the first n such that
Y;.B8(1 + n)y* < c.” Then under Al, A2, and A3, the sequence of procedures
(d, #(c)) and (d, t'(c)) are A.P.O.

Proor. Put A(c) = (c!VB)/#+1 37 (1 + B). It will be enough to prove the
following three inequalities

(2.1) lim sup,_, X(i(c), d, ¢)]A(c) < 1 a.s.
(2.2) lim sup,_, X(#'(c), d, ¢)/A(c) = 1 a.s.
(2.3) lim inf__ inf, inf,. , X(n, d, ¢)/A(c) = 1 a.s.

(2.1) and (2.2) are already proved in Theorem 2.1 of [3]. Now we prove

(2.3). Put
X(n, ¢) = inf,. , X(n, d, ¢)
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and for every positive real u define
X*¥(u, ¢) = uPV + uc.

Call #(c) the n that minimizes X(n, c). A3 (a)implies inf,., Y, ,— 0asn— oo.
Then using A2 we get

(2.4) lim
Call u*(c) the value of « that minimizes X*(u, ¢). Differentiating we get

ut(c) = (c[pV) .

t(c) = oo a.s.

c—0

It may also be checked that
A(c) = X*(u*(c), ¢) .
Then we have
inf, X(n, ¢)]A(c) = X(t(c), ¢)/X*(u(c), ¢)
(2.5) = X(1(¢), )/ X¥(t(c), )
= infyep (Ve + H(EHV + 1)e) -
Using A2 (b), (2.4) and (2.5) it is easy to conclude that
lim inf,_, inf, X(n, ¢)/A(c) = 1 a.s. 0
Following Kiefer and Sacks [5], we say that a sequence of procedures
(d(c), (c)) is asymptotically optimal (A.O.) if for any other sequence (d(c), #(c))
we have
lim sup,_, E(X(¥(c), d(c), ¢))/E(X(#(c), d(c), ¢)) < 1.
The following theorem is a generalization of Theorem 3.1 of [3] for the de-
sign case.

THEOREM 2.2. Under the same conditions of Theorem 2.1, and if

(2.6) sup, nE(Y;,) < oo ,

then the sequences of procedures (d(c),(c)) and (d(c), t'(c)) are asymptotically optimal.
Proor. Completely similar to Theorem 3.1 of [2]. []

REMARK. In the Bayesian applications the probability P is determined by the
conditional distributions given the parameter 6, P,, 6 € O and the prior proba-
bility on ©, 7. In this case in order to verify A3 it is enough to find @* C ©
such that

lim, 7Yz, =V a.s. Py, Y0 e O
and
lim inf,

woofinf, , Y, =V  as. Py, Vo e O
where 7(0*) = 1.

3. Bayes sequential designs for estimation. Consider a situation where there
are k possible experiments, Ei, E,, - -, E,. We may perform each of them an
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infinite number of times. When we perform for the nth time the experiment E,
we observe the variable z,,. We assume all the z,,, | <i <k, 1 <n < o are
independent random variables and for fixed i identically distributed. We also
assume that z;, has a density function f(z,, 6,) with respect to some o-finite
measure ¢ on R'. The parameter 6, takes values on an open set of R?i that we
denote by ©,. We denote by 6 = (4,, - - -, 8,). ,

Let @ = Xk, X7, R,,, where R,, are copies of the set of real numbers and
& the corresponding product of Borel g-fields. Call P, the measure induced
by the z,,’s on (Q, &7).

We suppose a prior distribution of § is given. This prior distribution has a
density ¢(0,, - - -, 8,) with respect to the Lebesgue measureon® = 0, x ... x 0,.

Our purpose will be to estimate a real-valued function g(6,, 0,, ---, 6,). In
this paper we take for loss function the quadratic error. Then if the parameter
is 6 and our estimator of g() is 4, the loss function will be

(3.1) 16, dy = (g(8) — ) .

It is possible to generalize our results for a more general type of loss func-
tions as is done in [2] for the case of one experiment, but for simplicity of ex-
position we shall consider only the loss function defined by (3.1).

A nonrandomized sequential design d will be a sequence (d,, d,, -+, d,, - --)
where d; is a Borel measurable function defined on R*~! and taking values in
{1,2, ..., k}. In particular d, is a constant. We can interpret this design as
indicating that if the first n observations take the values x,, x,, - - -, x,, then the
(n + 1)th experiment should be selected equal to E; with i = d, ,(x,, - - -, x,,).

Suppose that using a design d the experiment E; is chosen r,, times, 1 < i < k,
in the first n trials; then we put z® =z, 1 < j<r,, 1 <i < k. Assume that

(3.2) §o (9(0))¢(6) d6 < oo .

Then if the loss function is given by (3.1), the Bayes estimate of g(6) is the
conditional expectation of g(f) given z™; we denote it by

(3.3) E(g(0) | 2) .

The Bayes risk Y, , is given by the conditional variance of g(6) given z.
Then '

3.4) Y, ., = Var (9(0)|z'™) .

Call &, , the o-field generated by the first n variables observed when the
design d is used. Then if we call ¢ the cost of each experiment, we are in the
situation described in Section 2 and we can look for a sequence of procedures
A.P.O.and A.O. In order to use the results of Section 2 we need the following
further assumptions.

BL.1. ¢(b,, ---, 0,) is positive, continuous and bounded on @.

BL.2. §4]|0]*¢(0) df < co.
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B1.3. Put
201+ -5 Oiss givrs -+ -5 01) = § [6:PP(0,, - -+, 0,) db, 5

then 2,0, ---,0,_,,0,.,, - -+, 0,) is finite and continuous for all i.

B1.4. Properties B1.1, B1.2 and B1.3 hold for the marginal density of any
subset {0i1, . 0i,-}-

Assumptions B1.3 and B1.4 are implied by Bl.1 and B1.2 if 6,,6,, ---, 0,
have independent prior distributions, i.e., if ¢(6,, 0,, - - -, 8,) = T[%, ¢.(6,).

B2.1. @, + 0, implies p{fi(z, 0,) + fi(z, 6,)} > O for all i.

B2.2. f(z, 0,) is continuous in 6, for almost all z (a.e. ) and all i.

B2.3. Put ®,(z, 6,) = logfi(z, 6,); then

E, (|Qy(zi, 05)]) < o0 forall i and ¢,.

B2.4. For every i, there exists a sequence of compacts K, , and a set S; C R!
such that (i) p(S;) =1, (ii) K;, 1 ©,, (iii) if 6, is a sequence in O, with the
property that for any positive integer j there exists another n(j) such that
n > n(j) implies 6, does not belong to ’K,., ;» then fi(z, 0,,) - 0 as n — oo for z
in S;.

B2.5. Put ®;*(z, 0;, p) = sup {0, sup {®,(z, 7): ||t — b,]| = p}}. Then for all
0, there exists p(6;) such that E, (®*(z,, 0;, p(0;))) < oo.

B2.6. Put ¢,(z, n) = sup {0, sup {®,(z, 6,): 6, ¢ K, ,}}. Then for all 6, there
exists n(6;) such that E, (p,(z;;, n(6;))) < co. The K;,’s are the same as in B2.4.

B2.7. Put 6, = (0;,, ---,0;,,). Then 3*®(z, 6,)/06; ,30;, is finite and con-
tinuous in 4, for almost all z (a.e. x) and all i, r and s.

B2.8. For every 6, in O, there exists ¢(f;) > 0 such that

E, (sup {|0°@(z,1, 1)/90,,, 30| 2 ||t — 0| = €(0,)}) < o0

for all i, r and s.
It is known that B2.7 and B2.8 imply

(3-5) Ea,-(aq)e(ziv 0,)/06;,,) =0

for all i and r.

Denote the covariance matrix of (09,(z;, 6,)/00;,, - - -, 0Q(z,, 0,)/30; ,) by
Ay(0;). Set A*(6;) the matrix whose r sth entry is E, (0°®y(zy, 6,)/36; , 36, ).
Then B2.7 and B2.8 imply

(3.6) A0) = —A44(0,) .

B2.9. A6, is positive definite for all i and 6.

B2.10. A#,) is continuous.

B2.1—B2.6 are essentially the assumptions that Wald uses in [7] to prove the
consistency of the maximum likelihood estimate. The only difference is that
our assumptions B2.4 and B2.6 are more general than the corresponding ones
in [7] in order to cover the case when @, is open.
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B2.7—B2.9 are regularity conditions that suffice for the asymptotic normality
of the maximum likelihood estimator.

B3.1. 0¢(6)/96;, is continuous in @ for all i and r.

B3.2. Put grad, () = (99(0)/30;,, - - -, 99(6)/96; ,). Then for every iand 6,
grad, g(0) =+ 0.

B3.3. sup{XL,||grad; g(0)]|: 6 € B} < co.

Define the maximum likelihood estimator of 6,, 6,,(z,,, - - -, 2;,), as any func-
tion satisfying

7 @iz 9in(zi1’ ey Zy)) = max {37, @z, 0,): 0,€ 0}

Under B2.2 and B2.4 there exists a measurable version of f,,. Asin [7] it
can be proved that under B2.1—B2.6, we have
(3.7) im, o 0(zis -5 2i0) = 0y @S, Py
for any 6, in ©,.

4. A.P.O. Bayes sequential procedures for estimation. In this section we find a
sequence of sequential procedures that is A.P.O. for the estimation of g(f) in
the situation described in Section 3.

We shall need the following definitions. Assume B2.9. Put
(4.1) Ji(0) = (grad; 9(0))'(A.(6,))™* grad, g(0) -

Set

Q== A4y -+, X))t 4 = 0, Xk, 4 =1}.

For 0 = (6,, --+,0,)in ® and 2 = (4,, - - -, 4,) in Q define

(4.2) U@, 2) = k., (1/2,)J,0) .

It is easy to see that U(0, 2) with 2 = (4,, - - -, 4,) is the Rao-Cramér variance
for estimating g(@) when the frequency of the experiment E; is equal to ;. It
may be shown without difficulty that

(4.3) V(0) = inf,., U8, 2) = U, A(6))
where A(0) = (4(6), - - -, 4,(6)) With
(4.4) A(0) = (J0))} Lkt (J(0))* -

4,(0) gives the proportion in which the experiment E; should be taken in order
to obtain the minimum Rao-Cramér variance. Then it is reasonable to think
than in a “good” design the asymptotic frequence of appearance of the experi-
ment E; should be 4,(6). This is made rigorous by the following two theorems.

THEOREM 4.1. Assume Bl1.1—B1.4, B2.1—B2.9 and B3.1—B3.3. Let Y, , be
as defined in (3.4) and D the set of all nonrandomized designs. Then

(i) Al holds;
(ii) A2 holds,
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n—oo

(iv) Let d, be a nonrandomized design such that if 2., is the frequency of the
experiment E; in the first n observations when the design d, is used, we have

(iii) lim inf, ., inf., nY,, = V(0,) a.e. P, for every 0, in ©.

(4.5) lim, o, 2, = 4(0,)  a.s. Py .
Then
(4.6) lim, . nY, , = V(6,) as. P, .

The proof of this theorem is postponed until Section 7. Using Theorems 2.1
and 4.1 we obtain immediately Theorem 4.2.

THEOREM 4.2. Under the same assumptions as in Theorem 4.1, if a design d,
satisfies (4.5), then the sequence of procedures (d,, t,(c)), where t|(c) is the stopping
time: “stop the first time Y, ./n + 1 < ¢,” is A.P.O.

The rest of this section is devoted to constructing a design which satisfies
(4.5). The basic idea for constructing this design is to choose the (n + I1)th
experiment as if the true value of ¢ were some estimate ¢ based on the first n
observations. '

A similar idea was used first by Wald in [8] and then by Kiefer and Sacks in
[5] in a design situation. They use a two-stage design: first take n,(c) observa-
tions of the experiment E; in order to estimate ¢, and then using the estimate
of 0 choose a complementary sample. We cannot use in our approach this type
of two-stage design since it depends on ¢, and according to Theorem 2.1, the
design d, should be independent of c.

Letf,, n=>01<i<kbe any sequence of estimates of 6, such that §;, is in
0, and
4.7 limd, =0, as. P,.

We define the design d, as follows. Let 6,* = (510, -+, 0,,); then we select as
the first experiment any E; such that i, satisfies
(4.8) 4 (0,*) = max {4,(0,%): 1 < i< k}.

This means that we take as the first experiment any one that according to our
initial estimate of ¢ should appear with the greatest frequency.

Assume now that we have already selected the first n experiments and that the
experiment E; was chosen r,, times; then its frequency is 2;, = r;,/n. Call §,* =

(0%, - -+, 0%,), where 6%, = 6% . Then §,* is the estimate of 6§ based on the first
n observations. The (n + 1)th will be any E; such that ; satisfies
(4.9) 3(0,%) — 2, 2 0.

This means that the (n 4 1)th experiment is chosen equal to any one whose
frequency in the first n observations is smaller than the estimated optimal
frequency.

We have the following theorem.
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THEOREM 4.3. Assume B2.9, B2.10, B3.1, B3.2 and (4.8). Then if 2, is the
frequency of the experiment E in the first n observations when the design d, constructed
above is used, we have

(4.10) lim, ., 2, = 4(6;)  as. P, , V0,0 .

ProoF. We start by proving that if §,* — § then 2, — 4,(f). Suppose that
for iy A+ 4; (0) Then for some ¢ > 0, |4, , — (0)| > ¢ holds infinitely many
times. Since 3t (4, — 2(0)) = 0 it is easy to show that there exists i, such
that 2, , — 4, (0) = ¢/k = 2¢’ holds infinitely many times. B2.10and B3.1 imply
that 4; (0) is continuous. Then 4 (0 *) — A, (0) and we have

(4.11) Ain — il(ﬂn*) = " for infinitely many n.

1"
It is easy to find n, such that
liw—A@* <2 if nzn

tl'n
and this clearly contradicts (4.11). Then llm,ﬁw w=A40), 1 Zi<k.
We show now that

(4.12) lim, ., 0,* = 6, a.s. P, .
From (4.7) we have that
(4.13) lim,.,0,* =0, as. P,

where 6, = (6, - - -, 6,) with 6,y = 0,, if the experiment E; is taken infinitely
many times and ,, = §,, if the experiment E; is taken only n times. Then
we have

(4.14) lim, o, 4, = 4(0,)  as. P, , 1<igk.

Using B2.9, B3.2, (4.1) and (4.4) we get that 4,(f,) > 0, 1 <i < k. Then
from (4.14) we have that every experiment E; is selected infinitely many times;
then 0,, = 0, and from (4.13) we obtain (4.12). As we have proved above,
(4.12) implies (4.10). []

THEOREM 4.4. Assume B1.1—B1.4, B2.1—B2.10 and B3.1—B3.3. Then the
sequence of procedures (d,, t,(c)), where t,(c) is the stopping time: “stop the first time
Yyul(n+ 1) < ¢,” is A.P.O.

Proor. Follows immediately from Theorems 4.2 and 4.3. []

5. A.O. Bayes sequential procedures for estimation. In this section we show
that the A.P.O. sequence of sequential procedures (d,, #,(c)) is also under general
conditions A.O.

THEOREM 5.1. Assume Bl.1—Bl1.4, B2.1—B2.10 and B3.1—B3.3. Suppose
too that

(i) For each i there exists a sequence of estimators 0,,(z,, - - -, z;,) such that

(5.1) sup, § nEy ([|0in(Ziss - -5 i) — Oil[)(0) dO < oo .
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(ii) There exists 2 > O such that
(5.2) supy,, nPy (Ui {Ain < 4}) < 00

(4;, s the frequency of the experiment E in the first n observations when the design
d, is used.)
Then the sequence of procedures (d,, t,(c)) is A.O.

Proor. According to Theorem 2.2 it suffices to prove that
(5.3) sup, E(nY, ,) < oo .
Call 4, = ¥, {4, < 4}. Then we have
(5.4) nYyn =Yy uta, + 0Yarnla,

where y, denotes the indicator function of the set 4, and 4’ the complement

of 4.
Using B1.2, (5.2) and the definition of Y, , we have

(5.5)  E(nYyata,) < E(rg'(O)14,) = § $(O)F(O0)nPy(A4,) df < Ky < o0

where K, is a constant.
Using, B3.3., (5.1) and the definition of Y, , we can write

(5.6) E(nYdO,n Aa,) = ”E(g(émn]’ ) 5k[1n]) =90, -+, 0,))
2 -
= - [An]K, 2oy E(||0iram1 — Oil]°) = K,

where [s] denotes the largest integer smaller than or equal to s, and K, and K, are

constants.
Then from (5.4), (5.5) and (5.6) we obtain (5.3). []
In order to find sufficient conditions for (i) see Theorems 4.3 and 4.4 of [2].
The following lemma gives a sufficient condition for (ii).

LemMMA 5.2. If 0 < a £ J;(0) £ b < oo for all i and 0, then (5.2) is satisfied.
Proor. From the assumptions of the lemma we obtain
3(0) = (U(0))}) S (J(0))! = @bfkb} = 22.

Then, from the construction of d, it follows that there exists a fixed positive in-
teger n, such that forn > n, we have 4, > Afor alli. Then P,(UU%., {4, < 4}) =0
for n = n, and (5.2) follows. []

ExAMPLE 1. Suppose we have two Bernoulli populations with parameters p,
and p,, and we want to estimate g(p,, p,) = py — p.. Then

fiz, p)) = p(1 — p)—=, z=0,1;0<p, < ;i=1,2.

These densities satisfy Assumptions B2.1—B2.10, and g(p,, p,) obviously
satisfies Assumptions B3.1—B3.3. Suppose that the prior density of (p,, p,)
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satisfies Assumptions B1.1—B1.4, and construct the design d, taking as p,, =
inf (1 — 1/n, sup (p;,, 1/n)) where p,, is the sample mean. Then the sequence of
sequential procedures (d,, ,(c)) is A.P.O.

Moreover, fi(z, p;) satisfies the assumption (i) of Theorem 5.1, since Var (p;,) =
p«(1 — p;)/n. In order to satisfy assumption (ii) of Theorem 5.1 a sufficient con-
dition is to take as parameter space the set

{(Pv Pz): a < p<bjae < P < b,}

where 0 < a; < b, < 1.

This follows from the fact J,(p;) = p,(1 — p;), and Lemma 5.2. Then if we
construct the design d, using as p;, = inf (b, sup (p;,»a)), the sequence of se-
quential procedures (d,, #,(c)) is A.O.

ExAMPLE 2. Consider two normal populations with unknown means and
variances, and suppose we want to estimate the difference of means, then

[z, piy 07) = (2n07)7F exp[—(z — 1)"/26°)]
i=1,2; —c0o < pt; < 0,0 < 0? < 0
and g(u, 7%, pray 05%) = 1y — 1.

These densities satisfy Assumptions B2.1—B2.10 and g obviously satisfies
B3.1—B3.3. Suppose that the prior density of (p,, 0.2, p,, ;%) satisfies Bl.1—
Bl1.4.

We have

(5.7) Jpiso) =0
and
ji(#i’ o) = 0;/(o, + ;) .

Then in order to construct the design d, we need only estimates of ¢;2, i =
1,2. We can use as the estimate of ¢.%, 62, = ", (z;; — Z;,)*/n — 1 for n = 2
where z,, = %, z;;/n. -

Then according to Theorem 4.4, the sequence of procedures (d,, #,(c)) is A.P.O.

It is very easy to show that in this case assumption (i) of Theorem 5.1 may
be replaced by the assumption that there exists a sequence of estimates f;, of
#; such that

(5-8) SUp, §¢ §Zw nE, o oa(fin — 1)’ i(ptis 0.) dppi do? < oo

where ¢,(p;, 07) is the marginal prior density of y;, ¢ 2.
We can take g, = Z,,; then
E,u,:,viz(ﬂi'n - #1) = aiz/n
and (5.8) holds.
Then by Theorem 5.1, Lemma 5.2 and (5.7), in order that the sequence of
procedures (d,, t,(c)) be A.O., it is sufficient that ¢, be restricted to an interval
(a;, b;) with a; > 0.
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6. Some extensions. The assumption that ® = ©, x --. x 0O,, together with
the assumption that the prior distribution of ¢ is absolutely continuous with re-
spect to the Lebesgue measure implies that the preceding formulation does not
contemplate the case when the distributions corresponding to different experi-
ments may depend on some unknown common parameters. This is the case,
for example, when there are two experiments which lead to the observation of
variables normally distributed with the same mean and different variance, and
we want to estimate for example the common mean. Anyhow, the restriction
0 =0, x -.. x 0,is not essential, but without it the proofs become very cum-
bersome, although they remain similar. In what follows we give without proof
some extensions of the preceding results. .

Consider the vector parameter § = (6,, - - -, ,) taking values in an open subset
O of R?. (Observe that in the setup of Section 3 the 6,’s are vectors while here
they are real numbers.) Let M;, 1 < i < k be subsets of {1, - -, p} not neces-
sarily disjoint with cardinal m;, and put @, = (6,, he M;). Suppose that the
distribution of the variable observed when the experiment E; is performed,
1 < i £ k, has a density f,(z, 8,) with respect- to a g-finite measure p.

As in the setup of Section 3 we have a prior density of 4, ¢(f), with respect
to the Lebesgue measure on ©. We want to estimate a function g(6"’), where
0 = (6,,0,, --+,0,) r < p, and where we have quadratic loss.

We need the following further assumptions

Cl1. ¢(0) satisfies B2.1—B2.10.

C2. fi(z, 0,) satisfies B2.1—B2.10.

C3. 09g(0)/a0, is continuous in ', different from 0 and bounded, 1 <i < r.

Define by A,%(0) the covariance matrix of the r dimensional vector whose j
component is 0 1g fi(z,;, 8,)/00, if jis in M;and O if jisnotin M, l < j < r.

PutS, ={i:heM},1 < h < p. S, istheset of indices corresponding to those
experiments whose distribution depends on #,. Call

== ) Diak=124201=isk
Zieshli> 0,1 r}.
Using B2.9 it is easy to show thatif 2 = (4,, - - -, 2,) is in Q* then }}¥_, 4, 4,7(0)
is positive definite.

Put
grad g(0) = (99(0)/[36;, - - -, 99(0)[30,) ;

then we define for ¢ in ® and A = (4, - -+, 4,) in Q,

U@, 2) = (grad g(0©))' (X 4, 4,%(6))~* grad g(6®)
and
W(0) = inf, . UG, 2) .

Let 4(9) be a version which satisfies

V(6) = U, i(9)) .
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Then Theorems 4.1 and 4.2 hold. Moreover, if there exists a continuous
version of A(¢) we can construct a design d, similar to the one constructed in
Section 4 such that the sequence of procedures (d,, #,(c)) is A.P.O. We can also
give conditions similar to those of Section 5 which make this sequence A.O.

7. Appendix. In this Section we give the proof of Theorem 4.1. We start by
studying the asymptotic behavior of the posterior distribution of ¢ after the first
n observations, when these are chosen using a design of “simple” structure. In
order to specify what we understand by “simple” we give the follow definition.

DEFINITION. A simple subdesign is a double sequence of nonnegative integers
(h,) 1 £ i<k, 1 <n < oo satisfying the following properties.

(i) For fixed i, &,, is non-decreasing.

(ii) a(n) = Xk, h;,, — o0 as n— oco.

h;, can be interpreted as the number of times that the experiment E; is taken
in the first a(n) observations.

Fix a simple subdesign 4, ] <i<k,1 <n < oo. CallJ = {i:lim,_, h;, = oo}
and J’ its complement. Then there exists n, such that for i belonging to J’ and
n = n, we have h;, = h;, . Assume for example J = {1,2, ..., s} s < k. Put
0% = 0,, and define 0%, = ki, (0, — 0%) for 1 <i <s. Setz™ = (z,;) 1 < j < b,
1 £i < kandcall¢,*(1,, - - -, t,|z™) the density of the distribution of (6%, -- -,
0%,0,., -+, 0,) given z™,

Putforl <i<s

varlti 27) eXPL I [@u(ziss O3 + Mrlts) — Dulz;, 01)] -
Call 29 = (z,,) l = n < by, s+ 1 < i < k and put

Vo(lysas -+ 1o %) = €XP[ Theyrs T;50 Pulziys )]
Put iV = (1, « -+, 1), 1% = (fiyrs - +5 1) and t = (1, 1®). Set
a(t, 27) = [p(OF, + hitt, - -, 0% + gl (¥)o(tD, 29) T3y vilty, 2™)] .
Then we have for n = n,
(7.1) ¥t z™) = a(t, ™)/ a(t, z™) dr .

Define ¢ *(¢* | 29, 6,, - - -, 0,) the density function of * = (@,,,, - - -, 0,) given
z® and 6 = (@,, .-, 0,).

The following theorem is a generalization of Theorem 2.2. of [3]. It gives
the asymptotic behavior of the posterior distribution of # when a simple sub-
design is used. The joint posterior distribution of 6;, 1 < i < s behaves asymp-
totically up to the second moment as the distribution of independent multivariate
normal random vectors with means 8%, and covariance matrix A0y)/n.

THEOREM 7.1. Assume Bl1.1—Bl1.4 and B2.1—B2.9. Then for any 6,¢ O,
0y = (0sy; -+ -, Oro), there exists a P, null set F(6,) independent of the simple subdesign
(hi,) 1 Si<k,1 <n< oo, such that

limn—wo S ”t”q |¢n*(t’ Zm) - ¢0*(t(2) | Z(O)’ ‘910, A } 0s0)|H§=1 ?((Ai(aio))_l’ ti)l dt =0
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for0=g=<2andz=(z;)1<i<k,1<j< oo notinF(6,) where ¢(A, t) de-
notes the density function corresponding to a multivariate normal distribution with
mean 0 and covariance matrix A.

Proor. Using the same argument as that in Theorem 3.1 of [1] it will be
enough to show that there exists a P, null set F(f,) such that

(7.2)  lim, o S+ Pe@h + Biin, -, 08 4 Bk, 1)
X (1, Z“”)IIL-=1 ”in(ti’ 2™) — [lic ¥ (1)l1dr = 0
for z not in F(6,), where ¢ *(t;,) = exp[—1t,/A4,(0,,)t;]-
B2.2 and B2.4 imply that there exists a ;x-null set S, 1ndependent of the simple
subdesign such that

(7.3) sup {v,(t®, 2): 1,,,€0,,4, -+, 1,€0,} <

for z not in S.
Then in order to show (7.2), it is enough to find a P, null set F(6,) O S such that
(7.4)  lim, o §[(1 + DGO + At -, 05 + Bl
X |ITi= V«;n(ti’ z®) — [Mi= @*(1)|]dt? = 0
for z not in F(6,), and

(7.5)  lim,_ o § 0% + ki, -, 0% + B3l
X T8 ”in(ti’ Z(")) — [T a*(8)| dt® = 0
for z not in F(6,), where

9/;(11, cen, ts) — S (/)(t(l), t(2’) dr®
and
2([1, ey ts) — S ”t(2)”2¢(t(1), t(2)) dt(2) .
Then according to Assumptions B1.1—B1.4 we have that ¢(t, ---,1t,) is
bounded and continuous and A(t,, - - -, t,) is finite and continuous.

As in Theorem 2.2 of [3], for every (zy, - -+, z,, +-+) outside a P, null set
we can find d; > 0 and Ny(z,;, - -+, z;,, - - -) such that we have

(7.6) log v, (t;, z™) < —t/B;t; for ||t; — 6, < 20;
where B; are positive definite matrices that may depend on 6,,.

As in Theorem 1 of [7] it may be proved that there exists ¢; > 0 such that

(7.7) lim sup, ., SUPyg,—o, 1z, (1/1) 2251 [PilZi55 05) — Pi(zi55 0s)]
< —2¢ as. P, .

Then using the same arguments as in Lemma 2.6 of [3] it may be proved
that there exists N;*(z;, -, z;,, - ++) such that for n = N*(z;;, -, Zsp, ++ )
we have

(7.8) SUPyp,—0,125; Yinllis V) = eXp(—¢;hy,) a.s. Py .
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Using the strong law of large numbers we may prove

(7.9) lim, ., v, (%, 2) = @.*(2;) a.s. Py, 1<is.

Call F(6,) the union of S with the set where any one of (3.7), (7.6), (7.8) or
(7.9) does not hold. Then P, (F(6,)) = 0.
0
For each subset M of {1, 2, ..., s} call

AM, 1) = (-, 1) e R TS0 S 5, 1] < 0K,
for ieM,||t]| > o;h%, for ie M'}.

Then in order to prove (7.4) and (7.5) it is enough to show that for any M
we have .

(7'10) limn_,w SA(M'n) Hl(t(l)’ Z(m) art =0
for z not in F(6,), and
(7.11) 1M, oy § aoarmy Hay(t0, 2%) dtO = 0

for z not in F(6,), where H (1, z'™) and H,(1, z'™) are the integrands of (7.4)
and (7.5) respectively.

The proofs of (7.10) and (7.11) for the case in which M = {1, ..., s} are
straightforward but long. For details see Yohai [9].

Consider now M = {1, 2, - .., s}. Then using (7.6) it is easy to obtain inte-
grable functions p,(1) i = 1, 2, such that for z in F(f,) and t* in A(M, n) we
have

H(1, 27) < p (1) i=1,2.

Then, since according to (7.9) we have lim, ., H,(tV, z") = 0; i = 1, 2 for z
not in F(6,) we get by dominated convergence, (7.10) and (7.11). []

The following two lemmas show the asymptotic behavior of the posterior risk
when we use a simple subdesign in which each experiment is taken an infinite
number of times.

LEMMA 7.2. Assume the same conditions as in Theorem 7.1. and B3.1, B3.3.
Let (h,) 1 £i <k, 1< n < oo bea simple subdesign such that

(7.12) lim,_ A, = o forall i,
and
(7.13) lim, . 2;fBin = s s forall i and i’ .

(- may be oco.) Suppose p,; > oo for alli. Then for z not in F(0,) we have
lim, o, £, Var (9(0) | 2™) = Tt pag(grad; 9(6,)) (4:(0:0)) 7 grad; g(6) -
F(8,) is the same as in Theorem 7.1.

Proor. It is enough to show that for z not in F(6,) we have

(7.14) lim,_, b, , EX(9(0) — 9(0,*)|z") = 0
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and
(7.15)  lim,_ k; , E((9(8) — 9(6,*))*| ™)
= i tug(grad; 9(6,))'(4:(0,0)) " grad; g(6,) -

(7.14) and (7.15) follows from Theorem 7.1 using a standard linear expansion
for g(6) — g(6,*). For details see Yohai [9]. [J

LeMMA 7.3. Assume the same conditions as in Lemma 7.2. Let (k)1 < i < k,
1 £ n < oo be a simple subdesign satisfying (7.12) and (7.13). Put a(n) = Y,*_, h;,,
and lim,_, h,, Ja(n) = A, = 1/23%_, p;;. Then we have
(i) If 4, > O for all i then
lim,_,, a(n) Var (9(0) | 2™) = Xi. (1/2:)(grad; 9(6,))'(4:(0:0)) ™" grad; 9(0,)

for z not in F(0,).
(ii) Assume B3.2 too, then if 2, = O for some i it follows that

lim,_,, a(n) Var (9(6) | z2'™) = oo for z notin F(0,) .

The following lemma shows that if we use a simple subdesign in which at
least one of the experiments is taken a finite number of times, the posterior risk
does not converge to 0.

LEMMA 7.4. Assume the same conditions as in Lemma 7.2 and B3.2. Let (h,,)
1 <i<k,1 £n < oo bea simple subdesign such that lim,_, h;, < co for some i.
Then for z not in F(6,) we have lim,_, Var (g(6)|z™) > 0.

Proor. Suppose for example that lim,_, A4, = co for i =1,2,--.,5 and
lim, . h;, < oo for i =541, ..., k. Then using Theorem 7.1 it is easy to

n—0 i

show that

(7.16) lim,_,, Var (9(0) | z™)
= Var (g(alo: ) 030: 0s+1’ ) 0k)|z(0)$ 01 = 010, ) 03 = 030)

for z not in F(6,), where z is defined as in Theorem 7.1.
Clearly B3.2 implies

Var (9(010’ ) 050’ 05+1’ Tt 0k)lz(0), 01 = 010, Tt 03 = 030) > 0. D
Proor oF THEOREM 3.1. From (3.4) we have
(7.17) inf,., Y, , = minimum {Var (9(0) | z;;, | £ j < 55, 1 S i S k)2
Sin = 0, ko1 8iy = 1}

Then inf,., Y, , is random variable and (i) holds.
In order to prove (ii), according to (7.17) it is enough to show that

P(Var (9(0) | 25, | £ j £ 8iay 1 S 1 k) > 0) = 1

for any set of nonnegative integers (s;,) 1 < i < k such that ¥ s, = n. But
this follows from the fact that the posterior distribution of 6 given z;;, 1 < j < s
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1 <i < k is absolutely continuous with respect to the Lebesgue measure and
the assumption B3.2.

In order to prove (iii) it suffices to prove that for any z not in F(6,) any
strictly increasing sequence n, has a subsequence »,’ such that

(7.18) lim inf, .., inf,. 1Y, = V(0,) .

Fix z not in F(6,). Consider for each n the nonnegative integers (s}) 1 <
J < k such that minimize Var (9(0)|z;,,1<j<s,,,1 <i< k) subject to
k18, = n. Then clearly

1=1"in
(7.19) inf,.,nY,, =nVar(9(0)|z;;, 1 £ j< sk, 1 i<k,

It is easy to show that any strictly increasing sequence n, has a subsequence
n, such that if we put &;, = s} ., then (k) 1 i<k, 1 <1< oo is a simple

subdesign satisfying (7.13). Then if h;, — oo as n — oo for all i, from Lemma
7.3 and (7.19) we get (7.18). If lim,_, A;, < co for some i, using Lemma 7.4
we get

lim, ., infycp 1Yy, = oo for z notin F(0,).

(iv) follows immediately from Lemma 7.3 and the fact that P, (£(6,)) = 0. I
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