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CONSTRUCTIONS FOR SOME CLASSES OF
NEIGHBOR DESIGNS

By F. K. HwANG
Bell Telephone Laboratories, Incorporated

Rees [2] introduced the concept and name of ‘‘neighbor’” designs. The
problem can be described as that of arranging v kinds of objects on 5 plates
each containing k objects in a loop such that every object on a plate has
two neighbors. The requirements are that each object appears r times
(but not necessarily on r different plates) and is a neighbor of every other
object exactly 4 times. This paper constructs neighbor designs with pa-

rameters as follows: .
i) k>2: v=2k+1, 2=1
(ii)) k=0 (mod2) > 2: v=2k+1, i=1,2,.--,2=1
(iii) k=0 (mod4): v=2mk+1, m=1,2,..., 2=1.

1. Introduction. Rees [2] introduced the concept and name of “neighbor
designs” for use in serology. He wrote, “A technique used in virus research
requires the arrangement in circles of samples from a number of virus prepa-
rations in such a way that over the whole set a sample from each virus prepa-
ration appears next to a sample from every other virus preparation.”

Figure 1 shows such an arrangement of a set of antigens (virus preparations)
around an antiserum on a plate. Hence, on the plate, every antigen has as
neighbors two other antigens.

In general, there are v kinds of antigens to be arranged on b plates each
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containing k antigens. Each antigen appears r times (but not necessarily on r
different plates) and is a neighbor of every other antigen exactly 4 times. The
following is an example forv =9, b =9, k =4, r=4,2=1:

P.=(56,4,1), P,=(6,752), P,=(1863),
P4=(8’9’7’4), P5:(9’1’8’5)’ Pe=(1,2’9’6)’
P,=(,3,1,7), P,=(3,4,2,8), P,=(4,513,9).

If the plate should also be a factor in the design, then one would like to add the
requirements that all antigens on a plate are distinct as well as some balance in
the number of times each pair of antigens appears on a plate. This seems to be
the case Lawless [1] considered when he suggested that a series of Sprott’s BIB
designs [3] are neighbor designs too.

For the complete block case, i.e., v = k, Rees constructed neighbor designs
for every odd v. For the incomplete block case, i.e., v > k, Rees constructed
neighbor designs for every v up to v = 41 whenever k is not greater than 10
and 2 = 1, some by using Galois field theory (namely, when v = 3 (mod 4) is
a prime power), but most others just by trial and error.

In this paper we construct some infinite classes of neighbor designs with
parameters as follows:

(1) k>2: v=2k+1, 21=1,
(ii) k=0 (mod2): v=2%4+1, i=1,2,..., 2=1,
(iii) k=0 (mod4): v=2mk+1, m=1,2,..., A=1.

Note that by repeating the 2 = 1 designs ¢ times, we obtain corresponding
designs for 2 = t.

2. Rees’ cyclic method. For v = 2mk + 1, Rees suggested deriving m basic
blocks and from each to derive 2mk others by cyclic addition to obtain a neighbor
design in m(2mk + 1) blocks of k (as in the example above, in which m = 1).
He noted, “The success of the method depends on arranging the numbers in the
initial blocks in such a way that the combined set of forward and backward
differences between neighboring elements takes on all the values 1 to 2mk (mod
v) once.” He also noted:

“... All that is needed is to construct a basic block to
satisfy the following conditions, (I) all the differences,
forward and backward, must be distinct; (II) the sum of
the forward differences must be zero (mod v).”

For example, the sequence of forward differences for the basic block (5 6 4
1), mod 9, is (6-5, 4-6, 1-4, 5-1); and the sequence of backward differences is
(5-6, 6-4, 4-1, 1-5).

Note that condition (II) does not rule out the possibility that the partial sum
over some subsequence of the forward differences can be zero. For example, Rees
gave this sequence of forward differences (1, —2, 3, —4, —5, 6, —7, 8) for the
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design v = 33, kK = 8. Note that the partial sum 3 + (—4) + (—5) + 6 = 0,
implying that the third antigen and the seventh antigen are the same. Similar ex-
amples can be found for designs v = 41, k = 10and v = 27, k = 9 given by Rees.

3. k > 2. We now construct neighbor designs by constructing basic blocks
satisfying conditions (I) and (II). First consider v = 2k 4+ 1, k > 2 and 2 = 1.

Let F,(1) = (f1. /s - - -5 fi) denote the sequence of forward differences in the
basic block and “C” a constant. Let F,(1) o C denote the sequence (f, o C, f, o
C, .., f,o C) where

f%oCZﬂ—i—C if ﬁgO
=fi—C if f;<0 (mod v) .

Note that the sequence of backward differences is B, (1) = —F, (1) = (—f,,
—for -2 —f) (mod v).

For k = 3, let Fy(1) = (1,2, —3),for k = 4, let F(1) = (1, -2, —3,4). For
k=5, let F(1) = (1, —2,3,4, —6). For k =6, let F(1) = (1, —2, 3, —4,
—5, 7). Then it is easy to verify that the sequence F,(1) sums to zero and takes
on each value from 1 to k (disregarding signs) once except that in F(1) and
F(1), the value k is replaced by k + 1. Therefore for k = 3,4, 5,6, F (1) and
B, (1) = —F,(1) together, include each value 1, 2, - - ., 2k (mod v) exactly once.

In general, supposing F,(1) is given for k = 3,4, ..., K — 1 where K > 7,
we construct F,(1) by defining

Fe(l)y=(1, =2, —3,4,F,_,(1) o 4) if Kiseven,

Fr(1) = (1,2, =3, Fx_4(1) 0 3) if K is odd.
Then each sequence F (1) sums to zero since for x even there are equal numbers
of positive and negative terms in F,(1). Furthermore, by induction, F.(1) takes
on each value from 1 to K (disregarding signs) exactly once except when K =

1,2 (mod 4), then the value K is replaced by K 4 1. Thus in all cases the
sequences F.(1) and B.(1) together include every value from 1 to 2K (mod v)

exactly once.

ExaMPLE. Forv =15,k =7,2 =1, then F(1) = (1,2, —3,4, —5, —6,7)
and P, = (1, 2,4,1,5,15,9)is a basic block with F,(1) as its forward differences
sequence. . The whole design will be

P,=(1,2,4,1,5,15,9), P,=(2,3,5,2,6,1, 10),
P, =(3,4,6,3,7,2,11), P,= (4,574,383, 12),
P,=(5,6,8,5,9,4,13), P, = (6,7,9,6, 10,5, 14,

P, =(7,8,10,7, 11,6, 15), P,=(8,9,11,8,12,7, 1),
P,=(9,10,12,9,13,8,2), P, = (10, 11,13, 10, 14, 9, 3),
P, = (11,12,14,11,15,10,4), P, = (12,13,15,12,1,11,5),
P, = (13,14,1,13,2,12,6), P, = (14,15,2,14,3,13,7),

P, =(15,1,3,15,4,14,8) .
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4. k =0 (mod 2) > 2. Forv = 2mk + 1 and 1 = 1, we have m basic blocks

to start the cyclic developments. Let
Gym) = {F(1), F(2), - - -, Fi(m)}

where F,(i) denotes the ith basic block. The requirements for a neighbor design
are: (I) each F,(i) sums to zero and (II) G,(m) and B,(m) = —G,(m) together
take on every value from 1 to 2mk once.

For k = 0 (mod 2) > 2, then neighbor designs for v = 27k + 1 (j an arbitrary
integer) and 2 = 1 can be constructed by specifying

F,(i) = F(1) o 2(i — 1)k, i=1,2,3,...21,
In Section 3, we have shown that F,(1) sums to zero and has equal numbers

of positive terms and negative terms. Hence F,(i) sums to zero for each i and
requirement (I) is met. Furthermore, from the definition of F (i), we obtain the

recursion relation
G,(2") = {Gy(2'7Y),  Gu(2'7) 0 27k},
for [=1,2,.--,j—1.
We prove that G,(2/~%) and —G,(27) together take on every value from 1 to
27k once by induction. In Section 3, we have shown that G,(1)(= Fi(1)) and
—G,(1) together take on every value from 1 to 2k (mod 2k), or equivalently,
take on every value in {+ i:i = 1,2, ..., k} once. Assuming
{Gy(277%), =G (2 )} ={xiti=1,2,.--,277%},
then,
{G(2772) 0 297k, —G(297%) o 2972k}
={+ii=2"%+1,27% 4+ 2,...,29%]}.
Hence
(G277, -G, ) ={xi:i=1,2,...,277%}
and requirement (II) is met.
ExampLE. For v =49, k = 6, 2 = 1 (hence j = 3), then
F(l)=(1, —2,3, -4, =5,7),
Fy2) = (13, —14,15, —16, —17,19),
Fy(3) = (25, —26,27, —28, —29, 31),
Fy4) = (37, —38, 39, —40, —41, 43) ..
5. k = 0 (mod 4). For k = 0 (mod 4), then neighbor designs for v = 2mk +
1 (m an arbitrary integer) and 2 = 1 can be constructed by specifying
Fu) = feki—k+y)iy=1,2, -, k}, i=1,2--,m,

where
e, = 1, if y=0,1(mod4),

= -1, if y=2,3(mod4).
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Disregarding the signs, then G,(m) is just the set of numbers {1, 2, 3, - - ., mk},
hence requirement (II) is met. Now the signs are repeatedly of the pattern ““+
— — 47, therefore every four consecutive numbers counting from the start
sums to zero. Since k = 0 (mod 4), F,(i) sums to zero for each i and require-
ment (I) is met.

ExampLE. For v =17, k =4, 2 = 1 (hence m = 2), then
F(l)y=(1, =2, -3,4), F(2)=(5 —6,-17,8).
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