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AN OPTIMALITY PROPERTY OF SCHEFFE BOUNDS'

By ROBERT BOHRER
University of Illinois at Urbana

Conditions are derived which are commonly met in applications and
which are sufficient for both one- and two-sided Scheffé bounds to have no
greater average width than any other-shaped confidence bounds which have
the same confidence coefficient.

1. Introduction and statement of results. For a given random vector B(n X 1),
we consider one-sided bounds ¢ such that

(1.1) Px'B < ¢(x), all xeE}=§,

as well as corresponding two-sided bounds (¢,, ¢,), such that
(1.2) P{¢y(X) < X'B < ¢,(x), all xeE} = §.
We define the average width of such bounds by

(1.3) Wy = §5 $(X) d/§ ; dx

in the one-sided case, or

(1.4) Wop = §5 [62(%) — $i(X)] dX/§ , dx

in the two-sided case. For fixed values of 8 and fixed sets E, our goals are to
choose ¢ so as to minimize (1.3) subject to (1.1) and to choose (¢,, ¢,) to minimize
(1.4) subject to (1.2).
Such bounds are useful and widely used in applications where, in terms of statis-
tics @ and s and of unknown parameters @, the random vector is B = (6 — 6)/s.
Then (1.2) gives simultaneous 1008%, confidence bounds for the linear function
{f(x) = x'0, x € E}, viz.,

X' + s¢,(x) < X6 < X6 + spy(x) .

Similarly, (1.1) provides one-sided simultaneous confidence bounds for f on E.

Historically, the first such bounds over nondegenerate E were derived by
Working and Hotelling [8] for the case of two-parameter linear regression over the
entire real line, i.e., f(X) = x,0, + x,0,0on E = {(x;, x;): x;, = 1, —00 < x, < oo}
These bounds are sharp, two-sided and have property (1.5):

(1.5) $,(x) is proportional to the standard deviation of x'B .

Scheffé ([7], Section 3.5) generalized bounds with shape (1.5) to the n-parameter
linear model, f(x) = x’@, under the usual ([7], Section 2.1) analysis of variance
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distributional assumptions. Scheffé’s bounds satisfy (1.2) in case E is the whole
of n-space; and in this case, (1.1) holds using the one side of Scheffé’s bound
(see [1]). The probability in (1.2) is, conservatively, at least 38 if Scheffé’s bounds
are used over subsets E of n-space.

For example, the probability in (1.2) exceeds § in the case of linear regression
over a bounded interval [a, b], i.e., E = {(1, x): a < x < b}. Thus the #.(x),
and hence the average width W, , , are conservatively too large. To overcome
this conservatism, Gafarian [4] derived bounds satisfying (1.2) and introduced
the average width measure for comparing bounds. Gafarian’s bounds have ¢,(x)
constant and thus are different in shape from Scheffé’s, as are the trapezoidal
bounds of Bowden and Graybill [3], [5]. Average width comparisons of these
differently shaped bounds for linear regression over intervals have been made in
[2], [3), [4], [5], and [6].

A problem of even more practical interest is to find, for general linear models,
bounds which have minimum average width among all bounds. This problem
does not appear to have been considered heretofore. The present paper treats
this problem for the general linear model and establishes conditions under which
bounds of the Scheffé shape (1.5) minimize the average width over elipsoidal
sets E.

The distributional assumptions of the paper are somewhat general. They include
the general linear model ([7], Section 2.1) with variance known or unknown. In
such cases, Scheffé bounds are proved optimal over ellipsoids for all sufficiently
large “coverage” probabilities 5. The tables in Section 4 show that “usual” g-
values are in the range of optimality.

In practice, the ellipsoidal shape of E in the optimality result means that
Scheffé optimality is proved for bounds over relatively large sets in n-space, i.e.,
sets of positive volume which can, by taking a sufficiently large elipsoid, include
arbitrarily large subsets of n-space. On the other hand, the theorem herein does
not prove optimality in the linear regression case, where the set E of interest is
a line segment in two-space. For one-way analysis of variance, as another ex-
ample, the theorem says that Scheffé bounds ((3.4.1) in [7]) are optimal for
bounding all (or, at least an arbitrarily large ellipsoid full of) contrasts, but not
for bounding all pairwise contrasts, for which case they are known ([7], Section
3.7) to be sub-optimal. '

The following theorem is the main result of the paper and is proved in Section
3. Section 2 gives the particularly simple yet crucial building block for the proof.
Section 4 concerns a result and tables useful in applying the theorem in practice.

THEOREM. Suppose, for M(n X n) nonsingular, that & = MM’ and that B(n x 1)
is a random vector with density fy(b) = g((b’Z-'b)}). Suppose R = ||[M~'B|| is a
continuous random variable and that its density f, is unimodal. Define r* as the 100 8
percentile of R, i.e. P{R < r*} = B, and define

L. =inf, o . §7° fr(x) dx/(r* — r).
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Suppose that the average density on (r, r*) always exceeds f. (%), whence

(1.6) La = fa(r*) -
Define E = {x: xX’Zx < ¢*}. Then ¢*(x) = r*(x'Ex)* satisfies (1.1); and if ¢ is any
bound which satisfies P(xB < ¢(x), allx € E} = B, then W, = W .. Moreover, with
P = —¢* = ¢*, (1.2) is satisfied; and if (¢,, ¢,) satisfy P{¢(X) = x'B < ¢y(x),
allxe E} = B, then W 5 = W

2. Thecaseof n = 1.

LeMMA 1. Suppose E is a bounded subset of (0, o) and B is a random variable
with P(B < b*} = B. With ¢*(x) = b*x,

2.1) P{Bx < ¢*(x), all xeE} = ;
and if ¢ satisfies
(2.2) P{Bx < ¢(x), all xeE} =8,

then Wy = W..
PRrROOF.
P{Bx < ¢(x), all xeE} = P{B = ¢(x)/x, all xekE}
= P{B < inf, [¢(x)/x]} ,
which is no less than § only in case inf [$#(x)/x] = b*, with equality if ¢ = ¢*.
Hence, if ¢ satisfies (2.2),
s o(x)dx = SE@xdx = infEﬂxx—) {pxdx

> b* {,xdx = {; p*(x) dx .

REMARK. Geometrically the result is not surprising, as one shows by graphing
any coefficient 8 bound ¢ and the shorter bound ¢*(y) = infy [#(x)/x]y; ¢ lies
above a given line only in case ¢* does.

LemMA 2. If E and the distribution of B are symmetric about zero, if P{|B| <

b*} = B, and if $*(x) = b*x then

P{Bx < ¢*(x), all xeE} =§

P{—¢*(x) < Bx < ¢*(x), all xeE} =p;

and if

P(Bx < ¢(x), all xeE} = B,
then W, = W, or if

Pgy(x) < Bx < (%), all xeE} =6,
then,
Woiog = Wogege -

Proof is as in Lemma 1. Note that +Bx < ¢*(+x) only in case |B| |x| < ¢*(|x]).
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3. Proof of the Theorem. Parts 1-3 derive the one-sided case, and part 4 ex-
tends this to the two-sided case.

1. (a simplifying transformation). Define T = M~'B, which has density
J1(t) = fa(Mt) |Det (M)| = g(||t]|) |Det (M)|. This is circularly symmetric, i.e.,
1]} = [it*]] implies fx(t) = fx(t*).

We restate the problem in terms of T. Define S = {y: ||y|| £ ¢} and P, =
P{T'y < ¢(y), ally e S}. If, among bounds ¢ with P, > B, ¢* minimizes §5¢(y) dy,
then ¢*(x) = ¢*(M’x) minimizes W, among coefficient 8 bounds in the original
problem, since

§s £(¥) dy = § ¢(M'x) dx |Det (M)
= {; $(x) dx |Det (M) .
It thus suffices to prove that
(3.1) $*(y) = $*(M7y) = r*(y MTIM7ly)t = r*ly||

minimizes {g ¢(y) dy.
2. (linearity along rays). Define U = {u: |ju]| = 1}, and write

(3.2) S 9(y) dy = §,. §5 ()l dk du
> §y §2infy e 26 kn dk du

kl

with equality if ¢ has the form ¢(y) = ||y||A(y/||y||). Note that
(3.3) P, = P{T'ku < ¢(ku), all ueU and 0 < k < ¢}

=P {T’u < inf, o0 ¢(:u), all ue U} .

Given any ¢ with P, = 8, the function ¢’(y) = ||y|| inf,. o, [¢(ky/||y||)/k] also
attains P,, = f with no increase in the width (3.2). Hence the ¢ search can be
restricted to those of the form

(3.4) o(y) = lIyllA/1I¥ID) »
where 1 is a function defined for u ¢ U. Note that the width of such a bound is
3.5) §so(y)dy = §, A(u) §5 k" dk da = c*(n + 1)~ §{, A(u) du .

3. (optimality of i(u) = r*). For ¢ asin (3.4), P, = P{T'u < A(u), allue U}.
Foru = T/|[T|| e U, T'w = ||T||and P, < P{||T|| < A(T/||T||)}. A geometric argu-
ment, or its corresponding analytics, based on circular symmetry of fr, shows
that T/||T|| is uniformly distributed on U independent of R = ||T||, and hence that

(3.6) P, < §y §8" fr(r)drdu/A,

where A is the area of U. From the definitions (3.1) of ¢* and (3.3) of P,., note
that ¢* satisfies (3.6) with equality.
Finally consider any ¢ as in (3.4) with P, > 8. Define¢ U+ = {u: r* = A(u)}



770 ROBERT BOHRER

and U~ = {u: r* < A(u)}. Using (1.6), (3.5), and (3.6) note that

(3.7) 0= Py — Py = A7 [§y+ §Tu- So- 501 /f5(r) dr du
2 [a(r) A7 §y [ — A(w)] du
= fa(r*) A7 (n 4 1)e="+V[§5 ¢*(u) du — §5 ¢(u) du] .

4. (the two-sided case). As in part 2, it can be shown that it suffices to con-
sider ¢,(M'7'y) = ¢,(y) = ||y||4:(¥/ll¥]|)- For such bounds, in a hopefully obvious
notation,

P, = P{2,(u) < T'u < 2,(u), all ue U}
< P(A() < T'u < A(u), u = +T/|[T|]
= P{|IT|| = min (—A(T/[[T[)), 2(T/[[TI))} ,
with equality for ¢;*(y) = ¢,*(M’~'y). The analogs of (3.5)—(3.7) follow, to
establish the two-sided result.
4. On condition (1.6). Lemma 3 and its corollary give properties of I,., which

are useful in checking condition (1.6) over the range of possible r* values in which
Scheffé bounds are optimal for normal distribution linear models.

LEMMA 3. Suppose fy is continuous and strictly unimodal, i.e., strictly increasing
for r < ry and strictly decreasing for r > ry.

(A) If ry =0, then I, = f(r*) for all r*.

(B) If 0 < r < r* < ry, then \I° fo(x) dx < f(r*)(r* — 1), 50 L. < fR(r¥).
(C) If r* > ryand I. < fr(r*) then

L. = \{"fa(x)dx/r¥ = P{R < r¥}jr*.

(D) If r* < r** and I.. = fy(r*), then I .. = f(r**).

Proor. (A)and (B)follow immediately. To prove (C), denote I(a, b) = §} fx(x)
dx and define ' < r* by f(r') = fz(r*). Note that the inf in defining /,. can be
attained at r only if r < r’, in which case f(r) = inf,|, ,, fz(X). Also, f}isin-
creasing on [0, r']. From this and from

A-1 [I(r + A, r% I, r*)] _ I, r*) — ((r* = n/B)I(r, r + A)

rf—r—A r< —r (r* — n@r* —r—A4)

it follows that .
9K,y _ [ r®) — (= 0fu] S .

or rx —r (r* —ry

Thus, the function to be minimized increases with r and hence is minimum at
r=0. (D) follows, similarly, by proving that, if [I. = fi(r*), then
a[I(r, r*)/(r* — r)]jor = 0.

CoroLLARY. Condition (1.6) obtains for all r* = r, if and only if

(4.1) 1(0, ro) = rofp(ro) -
Proof of “only if” is immediate. To show that (4.1) suffices, note that r, = ry
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by Part (B) of Lemma 3. Hence (C) says that, if (1.6) fails, then I, = 1(0, r))/r, =
fz(ro), to contradict (4.1), i.e., (4.1) implies that (1.6) holds at r,, and hence, by
(D), for each r* = r,.

The unimodality assumption of Lemma 3 is satisfied, as noted in Section 1, in
the usual normal distribution analyses of variance for general linear model. Then
R = (x*(n))* for known variance and (nF(n, v))t if variance is estimated with v
degrees of freedom. The corollary, together with F and y?* tables, can be used to
find minimal coverage probabilities 3* for which Scheffé bounds are optimal; by
the corollary they are optimal also for all 8 = *. Some values are tabled.

Formulas (4.2) and (4.3) provide the general rules for checking whether Scheffé
bounds minimize average width for coefficient 8, n variables, and v degrees of
freedom. If v < co and B is n-variate Student r with v degrees of freedom, then
R*/n is F(n, v), so r* = (nF,(n, v))}, where F(n, v) is the 100 8 percentile of the
F(n, v) distribution. Hence, Scheffé bounds are optimal if

2I'((n + v)/2) Yu/ipkn
T(n2)T(v)2) (v + r*)n + v)]2
If B is n-variate standard normal, as in the limit of the previous case as v — oo

or in the case of known variance analysis of variance, then R? is y*(n), so r* =
(x5°(n))t, and Scheffé bounds are optimal if

4.3) Prre TN (nf2) £ 6 -

(4.2) <B.

TABLE 1
B* such that known variance, normal distribution Scheffé bounds for
>.i=1 Bix; are optimal if coverage probability is § = B*.
Thus $* is the smallest 3 for which (4.3) obtains

n=1 2 4 6 8 10 20
p*x=0 L7115 .830 .869 .890 .905 .93
TABLE 2

Bounds on B*. Scheffé bounds for 3.7_, Bix;, variance unknown and estimated
with v degrees of freedom, are optimal if coverage probability exceeds
B*. Thus B* is the smallest 8 for which (4.2) obtains

«

S<px<.75 5 < /X< .90 .90 < px< .95
n=2 2=y
n=10 2<v=4 5y
n=20 yv=2 2<vp<30 60 < v
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