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THE CHOICE OF VARIABLES FOR PREDICTION
IN CURVILINEAR MULTIPLE REGRESSION

By R. J. Brooks
University College, London

A Bayesian formulation of the problem of analysing data from a cur-
vilinear regression of y on x1, xs, - - -, X, in order to predict a future value
of y is considered. The problem is to obtain a criterion to decide which is
the best subset of xi, xz, -+, x» to perform this prediction. Under very
strict assumptions the criterion obtained is shown to use the same statistic
as the orthodox (least squares) approach.

1. Introduction. The type of problem to be discussed in this paper can be
illustrated by an example from Johnson and Leone ((1964) page 313). A rubber
manufacturing company performed an experiment in which interest was focused
on the relationship of the tear strength of a particular type of rubber with three
variables (i) percentage of component A4 in rubber, (ii) percentage of component
A in resin and (iii) percentage modifier. If these three variables are denoted by
X, X, and x, respectively and the tear strength by y, then a quadratic regression
model of y on x,, x,, x, was investigated. It was found that the values of the
coefficients of x,, x,%, x,x; and x,x, were all not significantly different from zero
(using a 59 significance level). This could be taken to suggest that x, need not be
included in the model and if we wanted to predict a future value of y we need
only use (x;, x,). In this paper, this type of problem is investigated, but from a
Bayesian viewpoint. If the model of interest is a curvilinear regression of y on
Xy, Xy -+ +, X, and the object in mind is to predict a future value of y, we have
to decide which is the best subset of x,, x,, - - -, x, to use for this prediction.

We use the decision-theoretic approach of Lindley (1968), who discussed the
same problem for linear regression of y on x;, x,, ---, x,. Consequently, the
first four assumptions stated below are generalizations of those made by Lindley.

Let & denote the results of an experiment to investigate the regression plus
&, which denotes any knowledge prior to the experiment.

AssuMPTION 1. @ and x are two random variables in 22" and 2" respectively
(Euclidean spaces of u and r dimensions) which are independent, given &

ASSUMPTION 2. y is a random variable in %' with density p(y|@, x, &)
whose form does not depend on the results of the experiment, such that

(1) E(y|0,x, &) = 8"¢(x)

and
Var (y| 0, x, &) = o¢*,

a known constant. Here, if x = (x, x,, - - -, x,)7, £ is a known integer (> 0),
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u = (*/") and 4 = {all sets (a;, a,, - -+, @,): a; isinteger = 0,0 < Y1, a; < €},
#(x) is a u X 1 vector with typical element x,*1x,%2... x.* where (aj,
@y - -+, a,) € A. The corresponding element of @ is defined to be 0, ...,

Equation (1) can then be written as
E(y|0,%, &) = Xalaayea, 2 %" -+ - X, 57
An example would be the two variable quadratic regression (i.e. r = § = 2),
2) E(y|0,x, &) = Oy + O13x, + Oy X, + Ogox2 + O01x,%, + O X}

where 6 = (04, 0195 015 050 011, 00)" and @(x) = (1, x;, Xy, X7, X1 X5, X727

In these two assumptions, x and y refer to the future values of the independent
and dependent variables, respectively.

Lindley (1968) discussed the special case £ = 1, which in his notation can be
written for the u variable linear regression as E(y|@, x, &,) = 0,x, + 0,x, +
.+« + 0,x,, where we put x, = 1 to allow for the constant term. If we replace
the elements of the u x 1 vector (x,, x,, - - -, x,)” by the elements of the u X 1
vector ¢(x), then the initial part of Lindley’s analysis, up to his expression (11),
holds for the regression model we are considering. Lindley then assumes
(Assumption 5) that p(x|&’), which with our model will be p(¢(x)|Z’), has
linear regressions. Clearly this does not hold for & > 1, so the remainder of his
prediction analysis is not applicable to curvilinear regression.

Let I denote a subset of the integers 1,2, ..., r containing s members
(0 < s £r), and J its complement. Define x, as the vector with elements x;,
i €I, and similarly define x,. Define ¢,(x;) as the v X 1 vector of all the ele-
ments of ¢(x) which do not contain any elements or function of elements belong-
ing to x;. Let the remaining elements of ¢(x) be contained in @,(x). Define
vectors @, and @, corresponding to ¢ ,(x;) and ¢ ,(x) respectively.

In the above example when r = & = 2, these definitions would mean that when
I = (1), g,(x;) = (1, x;, x")" and @,(X) = (X, X, X, X,7)" 50 that 8, = (Ooy, 019, O0)”
and 0, = (0, Oy, ba)"-

AssuMPTION 3. The decision space consists of elements (7, f{(+)), where f(+) is
a function from Z#* to Z#".

AssuMPTION 4. The loss in predicting y using the subset of variables x, giving
the prediction f(x;) is

[y = fE))F + <1
where c,(= 0) is the cost of observing the variables in x; per cost of unit error
in prediction. 7
The loss function is assumed to consist of additive terms arising from the cost
of the error |y — f(x;)| in prediction and the cost of observing those variables in

x;. The cost of error in prediction is assumed to be proportional to [y — f(x,)]".
Using results obtained by Lindley ((1968) (8) and (11)), we have:
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LemMMA 1. Under Assumptions 1 to 4, (a) the best set of independent variables to
use to predict y are those x; with i I, where I is chosen to be that subset of
(1,2, ---, r) which minimizes

() E0)"V[$,(X)]E@) + ¢,
where
Vig,(x)] = E([$(x) — E{g(x)|x}][P(x) — E{B(x)[x}]") ;
(b) the optimum predictor of y is E(6)"E[¢(x)|x,].

In (a) and (b), all expectations and dispersion matrices are conditional upon & .

2. The regression experiment. To choose the best set of variables, it will clearly
be useful to simplify (3). To do this we need to know the density p(x|&).
Consequently, we now discuss the nature of the experiment we conduct leading
to the information denoted by &.

The situations described by Assumptions 5a and 5b both lead to p(x| &)
belonging to the same family of densities.

AssuMPTION 5a. In the experiment, n independent observations y;, ys, « -+, V,
are obtained at values x,, X,, - - -, X, of the independent variables, where y, has
density p(y,|8, x,, &,) given in Assumption 2. Here X, = (X;;5 Xp35 * * *» X4,)75
(k=1,2,...,n). The x, are independent random variables from a common
multinormal distribution with unknown mean vector ¢ and unknown dispersion
matrix Z. Furthermore, the future value x = (x, x,, - - -, X,)” (see Assumption
1) is another independent value from the same distribution. Prior to the ex-
periment, the parameters (#, 27') are independent of # and have a Normal-
Wishart distribution (as defined by Ando and Kaufman ((1965) Section 1.3)).

AssuMpPTION 5b. This is as Assumption 5a, but the x, are selected. (x still has
the distribution given in Assumption 5a.)

The experiment discussed in detail by Lindley ((1968) Section 4) is a special
case of that described by Assumption 5a, but with a diffuse prior for (g, %),
ie. p(g, Z7| &) o |Z].

LEMMA 2. Under Assumption 5a or 5b, p(x| &) is a Student density on 2"
(the parameters in the two cases are different).

(Note: throughout this paper, the definition of the Student density is that given
by Raiffa and Schlaifer (1961) page 256.)

Proor. Consider the situation of Assumption 5b. This is a designed experi-
ment which does not give us any information about the distribution of x; thus
p(x| &) = p(x| ;). Now
4) p(x| &) = §§ p(x| g, 7, Eg)plpe, 71| &) dpe d27,
where p(x| g, L7, &,) is the density of a multivariate normal distribution and
plpe, 271 &,) is the density of a Normal-Wishart distribution. Ando and
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Kaufman ((1965) Section 2.4) show that p(x | &) is the density of a multivariate
Student distribution.

In the situation of Assumption 5a (a random experiment), we have
() p(x[Z) = §§ p(x| g2, 27, Eoplpts 7%y, Xy, -+ 05 X,y &) dpe d2T
where p(g, Z7'|x,, X,, - - -, X,,, &,) is the density of the posterior distribution of
(#, Z7') which is Normal-Wishart (Ando and Kaufman (1965) Section 1.3).
By comparing (5) with (4), p(x| &) will be the density of a multivariate Student
distribution. :

The parameters of the densities (4) and (5) can be found by comparison with
the results in Ando and Kaufman (1965) and should be such that the moments
necessary for calculating V[@,(x)| &’] exist. '

3. Choice of variables for prediction. As a result of the discussion of Section
2, we assume p(x| &) is a Student density on 2" with v degrees of freedom.
We make use of the following result.

LeMMA 3. If p(x| &) is a Student density on %", then for fixed I,
(6) E[@,(x)|X;, ] = B, $,(X,)
where B, is a (u — v) X v matrix with elements depending on &.

The proof of Lemma 3 is found in the appendix.
By analogy with Lindley ((1968) Section 3), we find that
(7) V[g,(x)|Z] =M,, — M, M;}M,,

where M;, = E[@,(x,)$,(x)"|&] and M,,, M,,,M,, are defined similarly.
Here, in V[g,(x)| Z’], the zero rows and columns corresponding to the elements
of ¢,(x;) have been omitted. Thus, from (3), we have:

LEMMA 4. Under Assumptions 1 to 5, to predict y the optimum set I is chosen to
minimize

(8 E@0,]Z)" M;; — M;; MM, )E0,| &) + ;.
It is evident that we require moments of the form
(9) E(xlﬂlxzﬂz. . .xrﬂrl ?5)

for integers ; = Osuch that 0 < 3i7_, 5, < 2. These moments can be expressed
in terms of the elements of E(x| &) and V(x| &). (As an example, see Lemma 5.)
In the case of the random experiment these elements depend on x;, x,, - - -, X,,
&y, but in the case of the designed experiment they only depend on &;.

4. An approximate method. In general, it is tedious to evaluate (9) in terms
of the elements of E(x|&’) and V(x| &). However, in the case of the random
experiment, we can find an approximation to (8) which is analogous to a result
by Lindley ((1968) Section 5, (31)) for multiple linear regression. In addition
to Assumptions 1 to 5a we need the following:
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AssuMPTION 6. The prior distribution of @ is uniform over 7. Also, in
Assumption 5a, the prior distribution of (g, ) is the limiting case in which
Pl B 5) oc |2,

In this situation it is well known that E(@| &) is the least squares estimator
of 6.

Furthermore, Lindley ((1968) Section 4) gives v = n — 1,

(10) Ex|&)=n" Tiax,
and
(11) V| &) = n'WW7

to order n~!, where the (k, i)th element of W is x,; — X;, and X; = n™" 313, X};.

Let ®(X) be the matrix whose kth row is ¢(x,), where X denotes the matrix
with elements x,(k =1,2,...,n; i=1,2,...,r). Partition X into two
matrices X, and X, corresponding to the variables in x, and x, respectively.
Similarly, partition ®(X) into ®,(X;) and ®,(X) corresponding to @,(x,) and
&,(x), respectively. For clarity, we write Z = ®(X), Z, = ®,(X,) and Z; =
@, (X).

For n sufficiently large, from (10) and (11) we see that to order n™*, E(x;| &)
and E(x;x;| &) equal

nt Y X and nTt 3R X%,
respectively. Also, p(x| &) is approximately a multinormal density, and if we
approximate E(x,71x,’. - - x,7r | &) (see (9)) by
CEPNEE;IE N
then we replace M,, by n™'Z,”Z,, and replace M,;, M;;, M, similarly. Expres-
sion (7) is then approximately

(12) n L, "L, — (Z,°2,)"(Z,"2,) (2, Z,)] -

In an orthodox (least squares) approach to this analysis we would calculate
R(I), the reduction in the residual sum of squares due to extending the model
which includes only those independent variables in x,, (i.e. E(y|8,, X;, &) =
Z,6,) to include all the independent variables (i.e. E(y|0,X, &) = Z6).
Kendall and Stuart ((1966) (35.122)) give

(13) R(I) = E@,| &) [L,"L, — (Z,"Z,)"(Z,"Z;) (Z,"Z,)|E(8, | &)

where E(0,| %) is the least squares estimator of 8,.
Using the approximation to (7) as given by (12), we have:

THEOREM 1. Under Assumptions 1 to 5a and 6, for large n, to predict y the
optimum set I is chosen to minimize

(14) n=R(I) + ¢; .
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This result is comparable to that obtained by Lindley ((1968) (31)) for
multiple linear regression. To determine the best subset of independent variables
to use to predict a future value of y, for the curvilinear regression defined in (1),
both the orthodox and Bayesian approaches calculate the statistic R() for
sufficiently large sample size. However, this has been done with three restric-
tions:

(a) we have the full model as defined in (1),
(b) x has a multinormal distribution,
(c) xand (X, X,, - - -, X,) have a common distribution.

If we have, for example, the model
E(y I 0, x, g0) =04 + Opx, + Oo1 X, 4= O x5

then we can still use (8) by considering the model given by (2) and assuming
prior to the experiment that 6y = 6,, = 0. However since the kth row of Z is
then (1, X,;, Xu9, X2, X1 Xpg0 X1o), this means that E(@, | &) is not given as in (13)
and the approximation (14) will no longer hold, so that the Bayesian method
does not, in this case, use the same statistic R(/) as the orthodox method.
Hence, we impose the restriction (a).

An easier example to demonstrate the restriction (a) would be to consider
simple linear regression through the origin, where we write E(y |8, x,, &) =
6, + 0,x, assuming prior to the experiment ¢, = 0 and 0, is uniformly distributed
over .

The restriction (b) can most easily be seen by considering simple linear
regression, i.e. £ = r = 1. Suppose that instead of (b), we assume x, has a
uniform distribution over (0, 2), where given &, 2 is independent of & and
PR E,) oc 72 > 0; @ = 0 is known). (This is a conjugate prior density
for 2.) According to (3), we have to find the minimum of ¢, and

E(0,| &) Var (x,| &) .

With (c), Var (x,| &) depends on the observations Xy, Xy, « -+ Xu only through
M = max,_, ..., {Xi,}. This can easily be seen, because

(x| g) = § p(x |4, go)}’() | X115 Xars * =+ X1 go) di

where p(2| Xy, Xq, * + +» Xn1 &,) is the posterior density of 2, which depends on
Xy, Xais + + 5 X,y Only through M (see Raiffa and Schlaifer (1961) page 54). Thus
it is obvious that when I = ¢, E(0,| &)* Var (x,| &) is not approximated by
n=1R(I), where R(I) is obtained from (13), and so (14) does not hold for all 1.

If instead of (c) we assume the experiment is designed (as in Assumption 5b),
then V[@,(x)| %] does not depend on X,, X,, - - -, X,. Consequently, (7) cannot
be approximated by (12) and it is obvious that we do not use R(/).

A further point of interest that should be mentioned while we are comparing
the approach of this paper and orthodox methods, is that, for example, in the
model given by (2), we are not. investigating whether we should use a quadratic
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model rather than a linear model. By our method, if we include x,, we would
include x,%, as we assume the extra cost of using x,’ is a computing cost, which
may be negligible. This procedure may seem unreasonable if say ¢ is greater
than 2. However, many problems of this nature just require the use of a
response surface for which ¢ = 2, and it is towards this class of problems that
the procedure is particularly directed.

5. An example. Consider the data from a regression experiment described in
Williams ((1959) pages 42-45). The regression model is quadratic in the in-
dependent variable, thus r = 1, § = 2 and E(y |8, x,, &) = 0, + 6,x, + 0,x,*.

With the assumptions of Section 4, we examine the criteria for selecting the
best subset of independent variables, both in the original form given by (3) or
equivalently (8), and in the approximate form given by (14). The choice of
variables is simply between observing x, or not observing x, in order to predict
a future value of y, i.e. I = (1) or ¢ respectively.

When I = ¢, (3), or (8), will equal S where

S = e Var (x,| &) + 2e,e,Cov (x;, x2| &) + e,? Var (x2| &)

and e; = E(0,|¥), i = 1,2. The quantities ¢ = E(x|&) and 7 = Var (x,| &)
are obtained from (10) and (11) respectively, and in order to calculate S, we
express E(x*| &) and E(x,*| &) in terms of ¢ and 7* using the following lemma.

LEMMA 5. If x has a Student distribution with v degrees of freedom, mean p and
variance 7%, then

E(x®) = 37°u + 8,
E(x*) = 3kt* 4 6% + pt
where k = (v — 2)/(v — 4). Here we assume v > 4.

The proof of Lemma 5 is given in the appendix.
In this example, v = n — 1, and consequently

S = (3k — Dejr* 4 (e, + 2pe,)*r?

where k = (n — 3)/(n — 5).

Alternatively, if we proceed as in Section 4, S is approximately n='R(¢).

When I = (1), (3) and (14) both yield ¢, the cost of observing x per cost of
unit error in prediction. Consequently, we choose 7 = (1) if and only if ¢ < §
or ¢ < n~'R(¢), depending on whether we approximate (3) or not.

The values of ) x,,, > X%, e, ¢; and R(¢) are given in Williams as 1646.4,
81747, 9.4743, 0.50863 and 21621500, respectively. The number of observations
n is 36; hence S = 580110 and n~'R(¢$) = 600597. The error in using n~'R(¢)
instead of S is just below 349, and therefore negligible.

Comparing the Bayesian and orthodox methods used on the above example,
we see that a large value of S has corresponded to a highly significant value of
the statistic used for testing the inclusion of (6, 6,) in the regression (see
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Williams, Table 3.10). Intuitively, this is what we would expect, since a large
S means that the cost of observing x would have to be very much larger than
the cost of unit error in prediction before we would find it too expensive to
observe x, in order to predict y.

Note that if we observe x,, the optimal predictor of y is, by Lemma 2,
e, + e, x, + e,x;,% otherwise it is e, + e, E(x,| &) + e, E(x?| &).

APPENDIX
ProoOF oF LEMMA 3. That is, if p(x|Z’) is a non-degenerate Student density
on %" with v degrees of freedom, then for fixed 7,

(6) E[@,(x)|%;, ] = B, $(X;)
where B, is a matrix of dimension (¥ — v) X v, whose elements depend on &
and are regarded here as constants. We omit the & for clarity.

Suppose without loss of generality, that x is partitioned so that x, = (x,,
Xy + o+, X,)T and X; = (X,45, X4 ++ -, X,)7. Then @,(x;) contains all variables of
the form x,1x,%2 . . . x,%, and @ ,(x) all variables of the form x,*1x,%2 . . . x_% where
at least one of @, @,,,, - - -, @, is nonzero. An individual element of E[¢,(X) | x,]
can then be written as x,*1x,% - . - x,%E[¢(X;) | X;] where ¢(X;) = x{stixyst2. .. xir
and at least one of «a,,,, @,,,, -, @, is nonzero.

The definition of the non-degenerate Student density function on &2 is given

by Raiffa and Schlaifer ((1961) page 256) as
(15) p(x| o, H,v) = 5 pu(X| g2, RH)p (k| 1, v) dh ,

where H is a positive semi-definite matrix, p,(x| g, #H) is the density of the
multinormal distribution with mean g and dispersion matrix A~"H™, p(k| 1,v) =
exp (—4vh)(3vh)»~4u/I'(4v) is the Gamma-2 density (h = 0), as defined by
Raiffa and Schlaifer ((1961) page 226).

Corresponding to the partition of x into x; and x,, suppose that g and H are

partitioned as
Lll :l
J

and

respectively.
Using (15), it follows that

(16)  E[¢(x,)[x;, g, H, v]
— $¢ Exl¢(x,) | X;, #2, FH]py(X, | 21, BH ) (R | 1, v) dh
Po(Xr | 21, Hypy v)

where
Po(Xr | 2rs Hyps v) = §5 pu(X, | 2215 hHII)Pr(hl 1,v)dh.
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Now
(A7) Ey[¢(x,) %5 s BH] = § X3P - - - X0 pa(Xy | Xgs g2, HH) dX,
where py(X, | X;, g2, FH) = (27)727= [iH,|* exp [ —3A(x; — m,)TH,,(x; — m,)],
(18) m, = g, — (WH,,)HH, (%, — )
=p; — HipHp (X, — 1)
(see Raiffa and Schlaifer (1961) page 250).

We make the transformation AU, (x, — m;) = @, where U7, IU,, = H,,
and I is the unit matrix of order r — s; then

h(x; — m;)"H,,(x, — m;) = o,"'lo,,

and the Jacobian of the transformation is |#H,,|-}, Each element of x; will be

of the form

x;=ht Yo, 4 my, j=s+1,.r,
where each #/V is a constant and the m; are the corresponding elements of m,;
the right-hand side of (17) then becomes

@) § e [A7F Dl 40, + my]%i exp (—}@,"10;) do,
= Np Ky, g mittt - oo mbr B im0
where B = {all sets (B,,,, -+, B,): B; is integer = 0,0 < B; < a,} and each
K, ,,..s, 1s @ constant. The numerator of the right-hand side of (16) is now
2z Kﬂa‘l’l"'ﬂr mfﬁl s mf' §o h_iZ(aj_pj)PN(xl | #1 hHII)Pr(hl 1,v)dh

where  py(X;| g, hH;p) = (27)7% [RH,|* exp [—(B/2)(x; — p1) Hp(x; — p21)],

and hence the integral in this expression is proportional to

[+ (= ) Hy (g — |20ty
Now

(X e Hyp v) oc [v + (%, — p)"Hp (X, — )] 720+,
and for the right-hand side of (16) we then obtain

’ T 3(a;—B2)
2in Kﬂs+1"'ﬂrmfﬁl s miry 4 (X, — ) Hp (%, — p) ]P0
. _ .
where Kﬁs+r-~l{r = Lﬂs+1---ﬂr Kﬁﬁ-l'”ﬁr’ each nga+1"'19r being a constant.
We can write

(x; — p)"Hy (X, — p) = Xor M, . X1 X,
where I' = {all sets (7, - - -, 7,): 7; isinteger = 0,0 < X3¢, r; < 2}; furthermore,
from (18), m; = Y3, Q,;x; + R; for constants R; and Q;; (j =s+ 1, .-+, 1}
i=1,2,-...,5), and thus
=i mifi = 204 Q’ﬁl---ﬁsxlﬁl s X0

where A = {all sets (9,, ---,d,): d; integer =2 0,0 < 31,0, < X%, B;} and
each Qj ., is a constant.
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From (16) we finally obtain that an element of E[@,(X)|x,, ¢, H, v] has
the form

T .— .
(19) X0 e X% 3 g K,’s,+,~--ﬁ,[” + XM X X T PEj=arr(%i =85
X 2o Qs Xi® e e X0
The maximum power of any x;,i = 1,2, ...,s, is

o, + 2% (e — B) + e b=+ Dimna; =6,

and the maximum sum of the powers of x; is

2+ 2 % : Z§=s+1 (aj - :B:) + Z§=s+1 ﬁj =i =¢§.

Consequently (19) can be written as
Dzbg g Xt xbe,

where Z = {all sets ({;, ---,&,): ¢, is integer = 0,0 < 332, {; < £} and each
btl---ts is a constant. Written in matrix notation, this result means that (6) is
true, since all possible forms of x,%1 - . - x,%s will be contained in the elements of

P:(Xs)-

Proor oF LEMMA 5. Using the definition of the non-degenerate Student
density function on .Z#" as given by (15), we can show
(20) E(x7| g, H, v) = & Ey(x"| p, RH)p (k| 1, v) dh .

Since, from Raiffa and Schlaifer ((1961), page 257, (8.29)), we have
E(x|p, Hyv)y =p and Var, (x| g, H,v) = vH /(v — 2),
then y is defined as in the statement of the lemma, and H = v/(v — 2)7*.

It is easier to make the transformation @ = x — x and calculate E(w?| ¢, H, v)
for » = 3 and 4 using (20), and then transform back to x to obtain E(x?| ¢, H, v).
Since Ey(0*|0, hH) = 0 and E,(*|0, kH) = 3(hH)™* = 3(v — 2)*z*/k%?* then
from (20) we obtain E(w*|0, H,v) =0 and E(w*|0, H, v) = 3kz*, where k =
v —2)(v—4).

Transforming back to x, we obtain

E(x*| p, H,v) = 3pz® + pff
and
E(x*| p, H, v) = 3kz* + 67°0% 4 p*,
these being the quantities E(x°) and E(x*) required in Lemma 5.
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