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LOWER BOUNDS FOR THE ASYMPTOTIC BAYES RISK
IN THE SCALE MODEL (WITH AN APPLICATION
TO THE SECOND-ORDER MINIMAX ESTIMATION)!

By L. GAJEK AND M. KALUSZKA

Polish Academy of Sciences and Technical University of L6dZ

The problem of Bayes estimation of the scale parameter is considered.
Lower bounds for the asymptotic Bayes risk are given as the restricted
parameter space increases to the positive half-line. The results are next
applied to establish the second-order minimax estimator of the scale pa-
rameter. Surprisingly, the least favorable distribution coincides with that
for the corresponding location parameter problem.

1. Introduction. LetY be a random variable with Lebesgue density

fl,N=X"i(y/N), >0,

where A € A. This paper concerns Bayes and minimax estimation of \°, s # 0,
under the quadratic loss normalized by A\~%, when the parameter space A is
restricted to some interval (\;, Ap) for 0 < A\; < Ag < co. Roughly speaking, any
restrictions on the parameter space A enable one to localize the unknown pa-
rameter A with improved precision when compared with the model without
restrictions A = (0, 00). In particular,

V=1-a?/ay,

where a; = EX*, which is the minimax risk (i.e., the greatest Bayes risk) in the
model without restrictions, is a good level to compare improvements. Before
describing the main results of the paper, let us formulate the problem in an
equivalent but more convenient form. Let us notice that after applying the
transformation X = logY and 6 = log A\, we arrive at the equivalent location
parameter family

f,0)=fox-6), =x€R,

where fo(u) = e“fi(e*) and § € © = {log), A € A}. Now, the corresponding
estimation problem for the location parameter family is to estimate e under
the loss

L(a, 0) = (ese _ a)2e—230

for 6 € (61, 03), where 6; = log A\; and 6, = log \o. Let § = 6(x) be an estimator of es?
and let R(§, 0) = E¢L(6(X), 8). Let g(6) be a prior density with respect to Lebesgue
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measure on ©. The expected risk relative to g is R(6, g) = [ R(6,6)g(6)d6 and
the Bayes risk for g is R(g) = infs R(6, g). Let §; denote the Bayes estimator
corresponding to the prior g. Assume that —6; =6, =m > 0.
In Section 2 we give an upper bound for
lim supm?{1 — a2 /ag; — R(6m, &m)},
m — oo
where (g,,) is a sequence of priors on (—m, m).

In Section 3 we construct a sequence of least favorable priors as well as
the corresponding family of minimax estimators, which we call, according to
Levit (1980), minimax of the second order. It turns out that the least favorable
distributions, after rescaling to (-1, 1), are converging weakly to a distribution
with density cos?(mx/2). This distribution was proven earlier to be the least
favorable in the problem of second-order minimax estimation of 4, instead of
e*%, under the quadratic loss with a constant weight; see Levit (1980), Bickel
(1981) and Melkman and Ritov (1987).

As pointed out by one of the referees the results of the last section can be
alternatively proven using the approach of Melkman and Ritov although the
regularity assumptions do not coincide exactly for both approaches.

2. Asymptotic bounds for the Bayes risk. In the sequel we shall use
the following extension of the Van Trees inequality [see Van Trees (1968)]:

[/ [ sefox — O)h(x, 0)gm(8) dx d6)”
I ({ (8/88) [folx — O)h(x, 6)gm(0)] }2 St o)gm(0)>e2so dxdo

(1) R(6,8m) 2

which follows from Cauchy’s inequality if the following assumptions hold:

Al: fo()h(x,)gn(-) is absolutely continuous a.e.,

A2: [ [|h(x, 0)|folx — 0)e?g,n(0)dxdb < oo,

A3: the function v,,(8) = g, (), 0 € suppgm, = 0, otherwise, is absolutely contin-
uous, where from now on for any real function g, suppg = {x € R: g(x) # 0}.

One can also treat (1) as a variation of a global Cramér-Rao inequality of Bo-
brovsky, Mayer-Wolf and Zakai (1987) with the difference that e*?, instead of 6,
is estimated. As shown in Gajek and Kaluszka (1989), the equality in (1) also
holds outside the exponential family of distributions, if % is chosen properly.
For more information concerning related results we refer the reader to these
authors as well as to Brown and Gajek (1990) and Bobrovsky, Mayer-Wolf and
Zakai (1987).
From (1), it follows that

. 2 a2 2 a2 L2
(2) limsupm®|1 - = -R(6,g,,,)] < limsupm [1 - = —],
’ m — 00 Qos m — 0o Qagg M

where L? and M denote the numerator and the denominator of the right side
of (1), respectively. So to bound the second-order behavior of the global risk of
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any (possibly depending on m) estimator, it is enough to investigate the right
side of (2).

Given a prior g,, with suppgn C [-m,m], we denote by g7, its version
normalized to the interval [—1, 1], that is, g},(v) = m~'g,(v/m). Let G denote
a class of family of priors g,, € C1[-m,m] such that for all g,, € G the Fisher
information I, = f_ll{[g;‘n(v)]’ }2/gr,(v)dv is finite and there are functions ¢,
such that

1. o, are two times continuously differentiable on supp ¢, = (=1 — Gn, 1+ Bm),
where G,, > m 1
limy, — 0o m ™1 SUD, ¢ gupp o, [PH)| = 0 fori=0,1,2,

f_ll[g;‘n(v)]’wm(v)dv =1, +o(1),
f_llg;,(v)go?n(v)dv =1, +o(l),
f_llg;,(v)som(v)dv =o(m™1).

SANE R

REMARK 2.1. Conditions 3-5 above say that ¢,, behaves asymptotically, as
m — oo, like (d/dx)log g}, (x). In fact, to construct a proper ¢,,, one can proceed
in the following way. Let g,, be an even function differentiable on R and three
times differentiable on (—m,m). If for some nonnegative reals «, such that
am — 0 and a,,m?/G7+D oo, with v > 0, the following conditions hold:

*(k)
3) lim m~*3 sup |g (x)|

=0 fork=1,2,3,
m — oo lx] <1— om gm(x)

then one can define ¢, by
d 1-on
(pm(x)_{ loggm<1+ﬂmx), when |x| < 1+ G,
0, otherwise,
where 3,, is any sequence satisfying m=! < 3, < ap.
Easy examples are g% (x) = (1 — x2™)2¢c,,, with c,, being a normalizing con-
stant, and g% (x) = cos?(mx/2). The latter prior will turn out to be asymptotically

least favorable.

THEOREM 2.2. Suppose f, satisfies the following conditions:

) /(1 +e2)utfou)du < oo,
(i) Fyu) Fs(u)]2 uie -
/[ . o [A) du<oo fori=0,2,

o 2 —2sx
(ii1) / / (FZs(U) _ M _ _é_ e2uf, (u)>du ¢ ——dx < oo,
. ags Qg Qs f ( )
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where F,.(u) = fu°° e fo(x)dx. If gm € G, then any sequence (6,,) of estimators of
%9 satisfies the following inequality

; 2 a? 202 1.
lim supm [1 - —-R(&m,gm)] < b*—limsupl,,
2s

m — 0o Q2s m— oo
where b = ag 1/ags — as,1/as and as,r = [x"efo(x)dx.

PRrROOF. Let us define hg(x,8) = h(x,0)e%¢. Then for any sequence of esti-
mators (6,,), we have, from (1),

2

(4) R(6m,8m) > m,

where
L=s / Zn(®) / hox, 0)fo(x — 6) dx d,
My = / 2n(0) / (5‘% [hoCx, ) ~ Oy — 9)]>2e-2s<x- Of=1x — 9)dxdo,
M,=2 / 2. / 5% [, 0% = Of(x — )] holx — )=~ Vfy(x — 6)
x 25~ 0£=1(x _ 9)dxdo,

' 2
N L e

A crucial point of the proof is that if ¢ is chosen properly, then the equality in
(4) holds. So assume that A satisfies the following equation:

ho(x, 0)e® = Ofy(x — 6) = as[ag Faos(x — 6) — a; 'Fs(x — 6)]

® +m~1pp, (x/m)Blx — 0),
with

®) Bx) = / ” A du,

where

(7 AW) = e~ [basfov)e® as! — asay Fos(v) + Fs(v)].

One can get (5) from necessary and sufficient conditions that the equality in
(1) be satisfied after dropping all terms of order o(m=2). Now we will find an
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asymptotic expansion of My, Ms, M3 and L when m — oo. Applying the change
of variablesu =x — § and v = 8/m, we get

Ml—l————-+2m /gm(v)/( S | ) (%+U>A(u)dudv

em=? / £ [ (3 + v)A2<u>fo—l<u>du dv.

Using Taylor’s expansion of ¢,, at v and integrating by parts, we get

My=1- a— +2m- / & (0)pm) dv / <“s su _ )A(u)du

Qazs

+m™2 [2/g;1(v)cp;n(v)dv/ (ﬁes“ - 1) uA(u)du
Qs

(8) +1I, /Az(u)fo_l(u)du] +o(m_2)

2
=1-% +m™2I, [—2/ (as et — )uA(u)du
Qags a2s
+ / A2(u)f0'1(u)du] +o(m™?),

where the fact that g,, € § was taken into account. Applying now the same
change of variables for My, we arrive at

_ -2 * i
My =2m /gm(v)/cpm<m +v)

x eS¢ [as (F—Qs(u) - FS(u))A(u)fo_l(u) + (f—s—es“ — l)B(u)] dudv
2s

Qazs Qas

+ 2m-3 / 2. (v) / AWB@ef; gk, (% + v)du dv.

Using Taylor’s expansion of ¢,, at v, we get

-2 FQs(u) Fs(u))A(u) (as su _ 1 ) —su
@ Mo [ Gy -on peje

+o(m™2),

where condition 4 of ¢,, was taken into account. The same procedure applied
to M gives

10)  M;=m=2I, / [ FQS(u)—F(u)] e 24 £ 1) du + o(m™2).
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Finally, it is easy to see that
2
— _ _‘_z_s__ i % ﬁ —Ssu
L=1-2t42 /gm(v)/gom (m +v>B(u)e dudy.

Applying Taylor’s expansion of ¢,, at v, we get

a2
1n L=1- E_s— +m'21ms/uB(u)e's“ du +o(m™2),

2s

since [ g5, (0)p}, W) dv = — [[g}; )] pm(v)dv +0(1) and condition 3 holds. Taking
into account (8)-(11) gives

a? L?

Y MM
= m‘2{Im62§2§—; + 2/ (gzs—s—es“ - 1)
x [Bw)e™* — uA(u)|du — 23/uB(u)e's“ du} +o(m™2).
Observe that

s/e_s“uB(u)du = /e_su [B(u) — e~ **A(u)]du

/B(u)du = /es“uA(u)du,

which holds because of Lemma 2.3 below. Therefore

A L? _2; ;202 -2
(12) l—a—m=m Imb -‘;-2—3-+0(m )

Now the result follows from (4) and (12). O
In the proof of Theorem 2.2 the following lemma is applied.

LEMMA 2.3. Suppose f satisfies conditions (i)-(iii) of Theorem 2.2. Then the
following integrals are finite:

Jy = / 22 |A(w)| du, Jp = / AW /fow)du, J= / W2A%(w) /fy(w) du,
Jy = /uzes“ |A(w)| du, Js = /luB(u)Idu, Js =/u2e‘s“|B(u)|du
and

J, = / B2 (w2 /fo(w) du,

where s # 0 and B and A are defined by (6) and (7).
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Proor. In each case the proof is straightforward. For instance, Jg < oo
because the Cauchy inequality gives

2
JZ = ( / |B(u)|e‘s“fo(u)‘1/2fo(u)1/2u2du)
< /|B(u)|2e‘2s“fo(u)‘1du/u4f0(u)du,

which is finite by assumptions (i) and (iii). O

REMARK 2.4. In Gajek and Kaluszka (1989) a method of simplifying (ii) and
(iii) was given. In fact, sufficient conditions for (ii) and (iii) to hold are

(ii") / e**u2fo(u)du < oo,
and
vy 1— Fo(x) Fo(x)
i S hw - SBR@ <

which are sometimes easier to verify than (ii) and (iii).

3. Second-order minimax estimators. Since R(6,,,8m) < supR(6n, 6), it
follows from Theorem 2.2 that

1 * 1 2
(13) limsupm? [1 —a?/ags — sup R(6m, 0)] < b%a2/ag, limsup / {_[g_m*]_}
m — oo 7] m—oo J-1 Em
Observe that the left side of (13) does not depend on g, so to get the best bound
for asymptotic minimax value, one should look for g, such that

1 2
lim sup/ { (g @)] ’} /g, (w)du = min!.

m—soo J-1
To solve the above minimization problem, it is enough to construct a sequence of
priors from § converging weakly to a distribution with density cos®(mx/2) which
produces the minimum Fisher information equal to 72 [see Melkman and Ritov
(1987)]. Thus we arrive at the following result.

PROPOSITION 3.1. Suppose f satisfies conditions (i)-(iii) of Theorem 2.2.
Then

(14) lim sup m? [1 —a2/ag— sup R(6p,0)| £ 72b%a/ay,.

m — oo -m<6<m

Now, we will show that there is a sequence (§},) of estimators for which
the equality in (14) is achieved. According to Levit (1980), this sequence of
estimators is called minimax of the second order.
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Let us define

(15) 8% (x) = age™ [1 +bm Y, (x/m)] / ags,

where ¢, corresponds to g (x) = cos?(rx/2) via Remark 2.1. The sequence of
estimators was heuristically constructed taking into account conditions under
which the equality in (1) holds.

THEOREM 3.2. If ag,, a, o and ag,, o are finite, then

lim sup m? [1 —al/ags— sup R(S, 0)] = b2%a27?/ag,.

m — 0o -m<0<m

If, in addition, conditions (i)-(iii) of Theorem 2.2 are satisfied, then (6},) defined
by (15) is minimax of the second order.

PRrOOF. Since

R(a;;,,e)=/ l“s u 1+i¢m<“+9) a u} fow) du
Qg az

m s

2
_,_ %, 2ba / (ff_esu . 1)esusom ("—*")fow)du
ags mag Qg m

2
+m_2(Z—Zs) / wi(un: ) 2ot () d,

therefore

a?
1-—= — sup R(,,,0)

A2s  |6|<m
2 bas ag Ssu su
(16) =— sup { — —e™ —1 e (pm(u/m+v)fo(U)du
<1 (™ G2 J \%2s

2
+m™2 (%) / @2 (u/m +v)e®“fo(u) du}.
2s

Now, using Taylor’s formula for ¢, (u/m + v) at v, we obtain

s su su v -1 Gs su _
l/(azs )e <pm(m+v>fo(u)du+ m <a23e 1)

amn x el (vIufo(u)du
<m™?% sup 1le®“u?fo(u)du,
x| <1+ Bm
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because [(ase™/ags — 1)e*fo(u)du = 0. In a similar way
| [ wim o)ty d - i oan

(18) < 2m~lsup |¢m|sup |, / |ule®“fo(u) du
+m~2sup|y. |? / ue® fy(u)du.

Since sup|ygm| sup|e,|/m = o(1) and sup|e,,|/m = o(1), (16)~(18) altogether give

a_f _ ooy _ =2 ' 2_0_‘_3_ 2 2 @3
1- sup R(6,,,0) = —m™° sup |2¢;, )b + 5 W) b*—=
A2s  |9|<m lv|<1 Qs Qs

+ o(m_2).
Since

lim sup [2¢},)+¢2%W)] = -7,

the result holds. O
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