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LINEAR ESTIMATORS IN CHANGE POINT PROBLEMS!

By J. A. HARTIGAN

Yale University

Observations X; are uncorrelated with means 6;,i = 1,...,n, and vari-
ances 1. The linear estimators a: TX, for some n X n matrix T, are widely
used in smoothing problems, where it is assumed that neighbouring param-
eter values are similar. The smoothness assumption is violated in change
point problems, where neighbouring parameter values are equal, except at
some unspecified change points where there are jumps of unknown size
from one parameter value to the next. In the case of a single change point in
one dimension, for any linear estimator, the expected sum of squared errors
between estimates and parameters is of order /7 for some choice of param-
eters, compared to order 1 for the least squares estimate. We show similar
results for adaptive shift estimators, in which the linear estimator uses a
kernel estimated from the data. Finally, for a change point problem in two
dimensions, the expected sum of squared errors is of order n3/4,

1. Introduction. The vector X of n observations has expectation 6. The
parameter vector is estimated by a linear function of the observations, 8 = T'X,
using some n x n matrix T. Such estimators are simple to compute and anal-
yse, and have been studied in an immense literature: see Buja, Hastie and
Tibshirani (1989) for a review of linear smoothers, Cleveland (1979) for smooth-
ing in nonparametric regression, Craven and Wahba (1979) and Silverman
(1985) for spline smoothing. In smoothing problems, it is usually assumed that
neighbouring parameter values are close to each other; for example, Rice and
Rosenblatt (1983) assume that the parameter values are taken at the points
0,1/n,...,1 from a continuously differentiable function on the unit interval.
Another type of justification is possible in a Bayesian framework: if it is as-
sumed that X and 0 are joint normal, then the posterior mean of 8 given X is
linear in X; such models are considered for splines by Wahba (1978) and for
image restoration of smoothly varying pictures by Besag (1986).

In this paper, we evaluate the performance of linear estimators for some
change point problems where the parameter values do not vary smoothly, and
where we would expect the linear estimates to do poorly. Intuitively, if a pa-
rameter value near a discontinuity is estimated by a weighted sum of obser-
vations which includes observations from both sides of the discontinuity, then
bias will be introduced by the observations on the other side of the discontinu-
ity to the parameter value of interest. Thus the discontinuity is blurred in the
estimated parameters.
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We will assume that the errors X; — 6; are uncorrelated with means 0 and
variances 1. The expected sum of squared errors for the estimator T at param-
eter value 0 is

M(T,0) = tr[T'T + (T — IY(T — D66'].

For each Lebesgue measurable set S of parameter vectors, define the minimax
risk M(S) = infy supgy c s M(T', 0).

In the following, we will consider lower bounds for the minimax risk in three
cases. In the first case, we consider a circular change point problem on an even
number of data points n = 2m; the parameter values are equal to %A for a
set of m contiguous indices, and equal to —-21-A on the remaining indices. The
lower bound for the risk of linear estimators is of order An'/2, although least
squares in this case has risk of order 1. The same order bound applies to change
point problems in which the first J parameter values are %A, and thelastn —J
parameter values are —%A. If there are % change points, where kn=/2 — 0, I
expect the lower bound to be order 2An1/2,

In the second case, the set of parameter values is again circular, but the
linear estimator is assumed to be a shift estimator: Tj; = f(li — j|), where
f(x) = f(n — x). The lower bound remains of order nl/2 even when the shift
estimator is adaptive: the function f is chosen based on the data X and the
parameter 0 to give the smallest sum of squared errors for each particular pair
X, 0. (This is not a choice available in practice, but it provides a lower bound
for all adaptive methods.)

In the third case, we examine linear estimators for image segmentation prob-
lems, in which the n x n torus is divided into four %n X %n blocks, in each of
which the parameter values are equal. In this case, the minimax risk is at least
of order n®/2.

The above bounds are comparable to the results of Van Eeden (1985) on
kernel density estimation when there are discontinuities in the true density,
which give the asymptotic integrated mean squared error O(n~=1/2).

We have shown that linear estimators may perform relatively badly when
discontinuities are present in the parameters. Some authors have considered
modifications of linear estimators to allow for the presence of such disconti-
nuities. McDonald and Owen (1986) identify change points using local least
squares fits, and use linear smoothers within intervals between the change
points. Miiller (1992) considers classes of one-sided kernels and infers the pres-
ence of change points when there are large differences between the estimates
based on right-sided and left-sided kernel estimates at the change point. He de-
velops conditions under which the change points can be consistently estimated.

2. The change point problem. A one-dimensional change point problem
has parameter values that are constant in % blocks

91=62="'=6i1» 9i1+1="'=0i2,"" eik_1="'—6n-
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We will consider initially the circular change point problem where the param-
eter values are of form
1 1 1.1 1 1 1

1

2A, 2A,..., 2A, §A’§A""’§A’ —=A,...,—=A,
where n = 2m, and a block of m —;-A’s is preceded and followed by a total of
m — %A’s. We can think of the n indices as being equally spaced on the circle,
and the parameter values are equal within each of two contiguous blocks on
the circle, and of opposite sign in the two blocks. This class of change point
problems is susceptible to Fourier analysis. It will be convenient to extend the
X and 6 sequences by the “wrap-around” rule X; ., = X;,6;,, = 6,.

For any distribution P over the set S, let £ = [ 00'dP0),Tp = (I + £)~ 1.

Then TpX is a linear estimator of minimum Bayes risk corresponding to P, and
that risk bounds the minimax risk from below:

e[S+ )1 = / M(Tp, 0)dP(6)

< / M(T, 9)dP(6)

< supM(T,0),
6es

tr[2U + £)7!] < infsup M(T', 9).
T ges

Indeed, if ¥ can be chosen so that the corresponding Bayes estimator TpX
has constant risk M(T»,0) over 0 in S, then T is a minimax estimator. Our
technique will be to seek distributions P for which the minimum Bayes risk is
as large as possible; this will give us the largest possible lower bound for the
minimax risk.

THEOREM 1. Suppose that X has mean 6 and variance—covariance matrix I.
Let n = 2m be even. Let S consist of the change point parameters 87,1 < J < n:

0J +%A, for J <i<J+m,
' —%A, for J+m <i<dJ+n.

For each linear estimator 0 = TX,

1
sup M(T,0) > Llﬁ -1
0es (n/A%+1)

"Proor. Each of the 87’s contains a block of m consecutive equal parameter
values, between two blocks of equal parameter values of the opposite sign.
Consider the prior distribution that selects each 8¢ with probability 1/n.
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Under this distribution, the mean value of 0 is zero and the variance—
covariance matrix is

1 [i—J] .
2
—_—— — <
A[4 ~ ], for |i —j| < m,

O'ij=

1 n—|i—j .
A f —j| > m.
RIS PR
We have chosen the distribution of 8 to be stationary under shifts modulo n;
the covariance matrix is a circulant, having eigenvectors

e’ ef = exp[v/—1w( - 1)J], 1<1i,J <n, where w = 27 /n.

The corresponding eigenvalues are zero for  even, and 2A2%/[n(1 — cos(Jw)] for
J odd.

The Bayes estimator has the same mean squared error for each choice of
parameter vector 7. The minimum Bayes and minimax risk is

Bo Z [1+ n(1 — cos Jw)]_l‘

2A2
Jodd,J<n

The function f(x) = [1 + n(1 — cosxw)/2A2]~! is nonnegative, decreasing for
0 < x < m, and satisfies f(n — x) = f(x). Note also that f(0) = 1. Thus

/nf(x)dx—zgz 3 f(J)</nf(x)dx+2.
0 0

Jodd, J<n

From the integral [ f(x)dx = n/(n/A%+ 1)Y/2,|B — In/(n/A% + 1)/2| < 1. For
any particular T',supy . g M(T,0) > B, so the desired inequality follows. This
concludes the proof. O

While most of the eigenvalues are of order n~!, about 1/ of them are of order
1, and these force the mean squared error to be of order 1/n. The correspond-
ing Bayes estimate TX behaves as follows: each row of T contains order /n
elements that are not negligible; away from the change points, 6; is estimated
with standard error of order n~1/4, adding up to a mean squared error of order
nn~Y2 = \/n over the O(n) points. For \/n parameter values near the change
points, the nonnegligible weights in 7' will produce estimates with standard
errors of order 1, again adding up to a mean squared error of order /7.

The inequality for the circular change point problem may be applied to the
problem where there is a single change point with a jump of size A; that is,
S consists of the set of parameter vectors 07, -607, 1 < J < n, where 6,7 =
—3A, 1<i<d, 0,7 =3A J<i<n.

Define S* to consist of parameter vectors 68*,0 € S, where 6* is a parameter
vector of length 2n: 6 = 6;,, 1 <i<n, 6f = —6;_,, n <i < 2n. Note that S*
defines a circular change point problem as considered in Theorem 1.
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For any n x n matrix T, define T, a 2n x 2n matrix corresponding to T by

Tij; 1<i,j<n,
T = Ti—n,j—n; n<i, j<2n,
R 0, i<n,j>n,
0, j<n,i>n.

Using T* is equivalent to applying T separately to the sequence X7, Xj, ..., X,
and to the sequence X, . 1,..., Xo,. Then M(T*, 6*) = 2M(T, ), so that

1

sh
supM(T,0) > ——2—— —1
bes (1+2n/A2)"?

3. Least squares estimates of change point parameters. Consider the
change point model in which neighbouring parameter values are equal except
for a single jump of size A. Define S; = 32/ _, X;. The least squares estimate at a

change point j is 6/:

S.
-, 1<i<y,
~Jj J
i=
S, - S, .
= j+1<i<n.
n—j

A least squares estimate for the model is an estimate 67 corresponding to a
change point J for which Sf [j+(Sn —8,?/(n — j)is maximal over 1 < j < n.
If the true change point is A, so that

91=92='-'=9A=9A+1+A=-'-=0n+A,

error is measured by the sum of squared deviations

n

d@’,0=>" (67 - 6)"

i=1
We will bound the expected value of this quantity, which is denoted by Pd(87, 6).

THEOREM 2. Suppose the errors are independent unit normal. Assume A >
0. For sample sizes n and change points A such that A2A(n — A)/(4nlogn) > 1 +¢,
there exists a constant c(¢) such that Pd(87,0) < c(e).

Proor. The condition requires that the change point be not too close to
either 1 or n; if it is too close, the situation approximates the case A = 0; in that
case, the sum of squared deviations will be about 2loglogn [from the behaviour
of the maximum of standardized partial sums of independent random variables,
Darling and Erdos (1956)]; the correlations between the partial sums causes the
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maximum of n standardized partial sums to behave like the maximum of log n
independent unit normals]. Thus if the expected sum of squared deviations is
to be bounded, the minimum block size cannot be too small.

Let X = S,/n,8 = X_,0;/n. A least squares estimate 67 satisfies §7 = X.
Thus

Pd(87,6) = Pd(6” - X,0 — ) +nP(X - 0)"

=P[d(67,6-7) | S, =0] +1.

Thus it is sufficient to prove the theorem assuming 6 = 0 _and conditioning on
S, = 0. Also, since P[d(64,0)|S, = 0] = 1 and since d(67,8) < 2d(64,0) +
2d(94,67), it will be sufficient to prove that Pd(84,87) is bounded under the
condition given.

Define the random variables Z;, 1 <j < n:

JA—))
A

forj >A, SJ = :LL—_;;SA + 4 /(n —';])_(JA_A)Z‘I’

for j=A, Z;=0.

forj<A, Sj= i;SA + Zj;

The random variable Z;, j # A, is a unit normal random variable independent
of S4. Let 02 = A(n — A)/n. Then, conditional on S, = 0, Sy ~ N(o2A,02); let
Z =(Sy — 0%2A)/o.

If J < A, the least squares property requires that

o Jn—dJ) o
S5 2 A=A A)S )
which implies
Vi =D —A) - /JI/A 1Sal
\Zs| 2 1S4l VA7 2 2R/VA-J+1/0]’

which we will write as |Zs| > |Sa|B,. (The same bound holds when J>A)
Using this bound on Sy, after some algebra,

nA—d),,
Aln —) [Z

Bounding the maximum of nonnegative variables by their sum,

d(67,6%) =

n
J+n_As§] < 472,

P[d(87,8%) S, = 0] <4 PZ}{|Z)| 2 [SalB;}-
J#A
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We now adjust for the variance of Sa; set Y; = (Z; — 0B,;2)/(1 + 0?B?)'/? and use
PZ{Y; > K > 0} < PZX{Z; > K}:

PZ}{1Z;| > 1Sa|B;} < 2PZ}{Z; > |Sa|B;}

Ao?B;
< 2PZ2{Z.> SsB;} = 2PZ20Y; > —— L __
J{ 'j J} J{ J (1+azBJ?)l/2}

2K; -1iK?
< 9PZ2{Z; > K} = 2P(Z; > K}} + —%

K
< 2[\/57 : 1] exp(~ 1K?),
where K; = (1/v2)A/(2/1/]A = J]) + 1/0) < Ac?B;[1+ o2B? /2,

The quantities K; behave like Ay/|A —j| for |A — j| small, and like Ao for
|A — j| large:

—
VIATIL A -ji< o2,

K; V22 +0C)

= >

AT o
— % for|A—j| > C2%>

Va@cry orlamil=C

Thus the sum over j # A of the tail integrals is bounded by the sum over |A — j|
small, and |A — j| large; the first of these is a power series, and the second
consists of less than n constant terms. Set

—_ A A —_ A .
“2+C’ 27 9/C+1

e el

+n [1 + Azd] ex (— A§g2>
v P 4 '
The condition in the theorem asserts that A202/(4logn) > 1 + ¢. Thus we can
choose C depending on ¢ so that

|'1+A2U]ex ( A§02)
n — —
vV P 4

is bounded. The first term in the sum is bounded for each choice of C. Thus the
theorem is proved. O

Ay

The theorem asserts that the expected sum of squared errors is O(1) when the
size of each block of constant parameter values exceeds 4 log n/AZ?; although this
result has been proved only for a single change point, I expect the same result
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to apply to many change points. I suspect that block sizes exceeding C loglogn
might be sufficient to guarantee asymptotic boundedness of the expected sum
of squared errors. With block sizes exceeding en for some ¢ > 0, I would expect
to be able to find a similar bound for error distributions constrained only to
have finite fourth moments.

4. Adaptive choice of shift estimators.

THEOREM 3. Let n = 2m be an even integer. Let S consist of the change point
parameters 07, 1 < J < n:

o7 - +%A, ford <i<dJ+m,
! —1A, ford+m<i<J+n.
LetX; —0;,i=1,...,n, be independent unit normal variables. Let T be a shift

estimator T = f(|i —j|), with f(|i —j|) = f(n — |i —j|), where f may be chosen based
on the observations. Then

M(T,6%) > %min[n, A;/ﬁ - 4].

Proor. Take the true parameter to be 6" without loss of generality. The
matrix T has the Fourier eigenvectors e’: e{ = exp(v—1w(G — 1)j), 1 <i,j <n,
where w = 27/n. The corresponding eigenvalues are \; = (i) cos(w(i — 1))).
We will use the Fourier transforms of data and parameters:

X_0H=ZZLej

vn’
cje’
0" = g
Z \/ﬁ ’

where the Z; are independent unit complex Gaussians for 1 <;j < m, and
28IV jodd,
¢j= exp(v/-1jw) -1
0, J even.

The optimal adaptive T chooses the \; to minimize the sum of squared errors
for each particular data vector X and parameter vectors 6:

SSE =) (TyX; - 6,7

= Z I/\iZi + ()\z — 1)Ci|2~
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For i even, choose )\; = 0, since ¢; = 0; for i odd, minimize a quadratic equation
in )\;, to obtain

les|?|Z;|? — (Re(CiZ’))2

SSE = ‘a
4 leil? +1Z]2 — 2 Re(c:Z;)

iod

Now set U; = Re(c;Z;)/|c;| and V; = Im(c;Z;)/|c;|, to obtain

lei| V2

SSE = PR
iodd V,z + (Ui - |Ci,)

where the U; and V; are independent unit normals. The given SSE is the min-
imal sum of squares for this particular data set.
To evaluate the mean sum of squares, we first bound the individual terms:

2172 2 — )2 2
gt 221P’V2[1—V+(U 25t P

Ip)V2 +U-¢) c? c2
Now use |c;|? = 2A2/(n(1 — cosiw)), and set a = A/(w+/n). We will assess the

effect of the large |c;|, which occur for i near 1 and for i near n.
For any adaptive estimate T and parameter vector 6, and for each odd & < m,

MT,0)> > [1-2n(1-cosiw)/A?]"

iodd,i<n
>2 Y [1-2n(1-cosiw)/A?]
iodd,i <k
>2 Y [1-nifw?/A?
iodd,i <k

> (k+ D[1 - 3k +1?/?].

The cubic x — 1x®/a? has its maximum, over x > 0, at x = o; if a > 2, there
is an even integer & + 1 in the interval [a — 2, o] such that

E+1-2k+1P/0?>a-2-ta-22/d® > (a-2).

We now need to consider two cases; in the first case, « < m + 1, and then we
setk+1c[a—2,a] <m+1sothat

M(T,0) > %[A\/ﬁ/n - 4].
In the second case, a > m + 1, and then we set £ + 1 = m, to obtain
M(T,0) >m[1 - %mz/az] > %n

Combining the two cases produces the inequality asserted in the theorem. O
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5. Partitions of the square. Suppose that X has mean 8 and variance—
covariance matrix I. Suppose that the observations X;; are indexed by the pixels
i,jin the square, with1 <i<n, 1<j<n.

THEOREM 4. Let n = 2m be even. Let S consist of the parameters 87, 1 <
I,J < n, where BinJ = 26] 0;7 /A, for ' as defined in Theorem 1. Let T be an

arbitrary linear estimator. Then

sup M(T,0) > %n [min(n, A :2n) — 7} .

{6€S}

ProoF. Each of the 6*’s consists of four m x m blocks of values that are
equal to either %A or —%A, with the blocks perhaps wrapped across opposite
edges of the square. Consider the distribution that selects each 6;; with prob-
ability 1/n2.

The mean value of 6 is zero and the variance—covariance matrix is P§;;0;; =
43,5/ A2, where

Az[%—,ln—‘]l], for i — j| <m,
iy = 1 .
A2[— - ﬁiiﬁ] for [i —j| > m,
4 n

The covariance matrix is a direct product of circulants, having eigenvectors
e = e x e’, e/: e/ = exp(v—1w(i — 1)j), 1 < i, j < n, where w = 27/n. The
corresponding eigenvalues are zero for I or J even, and 16A?/[n?(1 — cos Iw)
(1 — cosJw)] for I,J odd. These are the products of the corresponding eigenval-
ues in the one-dimensional case. The k-dimensional problem may be treated

similarly as a product of £ one-dimensional problems.
Let av/8n/m. We will use the result established in Theorem 1, that

n(l — cosJw) -1 (1/2)n
2 [“ 24° } - (n/pz+1) 27

Jodd,J <n

substituting 16A2/[n(1 — cos Iw)] for 2A2.
The Bayes and minimax risk is

B 3 16A2
B n2(1 — cosIw)(1 — cos Jw) + 16A2
1,7 odd

>y [ 1/2)n 1}

[1+n(1 - cosTw)/8A2] %

I odd
n2l2w?1*
s e
I odd, I<m (32A )

(n-2)k+1) nE+1)3
> _
= 2 602

for £ < m.



834 J. A. HARTIGAN

For a < m, take k£ + 1 as the even integer in [« — 2, al, to obtain (as in the proof
of Theorem 3),

1 1 7 1
>n(@-2)—k—1>= — ) =ZnlAV -
B> 3n(a 2)—-k-1> 3n<a 2) 6n[A 32n/m 7].
For o > m, take & + 1 = m, to obtain
1 1
>-nm—-m> =nln - 7).
B> ghm—m 2 6n[n 71
The two inequalities together imply the inequality asserted in the theorem. O

Thus, in two dimensions, the best linear estimator does relatively worse than
the best linear estimator in one dimension. The order of the error is N3/4, where
N =n? is the total number of observations.

Least squares estimates will estimate the true parameter values with mean
sum of squared errors of order 1; in fact the correct block is identified with
probability 1 as n — oo, and the mean sum of squared errors approaches 4.
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