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ON THE RATE OF CONVERGENCE OF THE ECM ALGORITHM!

BY X1A0-L1 MENG
University of Chicago

The fundamental result on the rate of convergence of the EM algorithm
has proven to be theoretically valuable and practically useful. Here, this
result is generalized to the ECM algorithm, a more flexible and applica-
ble iterative algorithm proposed recently by Meng and Rubin. Results on
the rate of convergence of variations of ECM are also presented. An ex-
ample is given to show that intuitions accurate for complete-data iterative
algorithms may not be trustworthy in the presence of missing data.

1. The EM and ECM algorithms. Replacing the M-step of the EM al-
gorithm [Dempster, Laird and Rubin (1977), hereafter DLR] by a set of con-
ditional maximization (CM) steps, Meng and Rubin (1993) proposed a type
of generalized EM algorithm—the ECM algorithm. The ECM algorithm not
only maintains all the desirable properties of EM, but it can eliminate the
undesirable nested iterations when the M-step of EM requires numerical it-
erations. In the absence of missing data, the ECM algorithm also includes
several well-known complete-data iterative techniques as its special cases,
such as iterative proportional fitting (IPF) for a loglinear model with contin-
gency tables [cf. Bishop, Fienberg and Holland (1975)] and iterated conditional
modes (ICM) for image reconstruction [cf. Besag (1986)].

To be specific, let Y = (Y,bs, Ymis) be the complete data with density f(Y|6)
indexed by a 1 x d vector parameter 6 € © C R?, where Yo, and Yy are
the observed and missing data, respectively. Our objective here is to find the
maximum likelihood estimate (MLE) for 6 given the observed data, that is,
we want to find 0* that maximizes the observed-data log-likelihood

1.1) Lops(8]Yobs) o log / F(Y16) dYmis.

Typically, the presence of missing data, or mathematically the presence of in-
tegration on the right-hand side of (1.1), makes the direct maximization of L,
intractable. In contrast, in many statistical applications, the maximization of
the complete-data log-likelihood L(6|Y) = log f(Y|0) is straightforward. The
EM algorithm takes advantage of this simplicity by converting the difficult
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problem of maximizing L., into an iterative sequence of simple maximiza-
tions of L. Given some initial value ¥ ¢ ©, EM performs one E-step and one
M-step at each iteration. At the (¢+1)st, £ =0, 1, ..., iteration, the E-step finds
the conditional expectation of L(0|Y) given the observed data and the previous
estimate 6%,

(1.2) QOI6®) = [ L{6IY) £ (Yol Yoo 0°) d¥omis

then the M-step maximizes Q(9|6)) as a function of 6, which uses the same
method for maximizing L. It is well-known that any sequence generated by
EM, {6%,¢ > 0}, always increases Lqps(9]|Yobs), and it converges appropriately
under some regularity conditions [see Baum, Petrie, Soules and Weiss (1970),
DLR and Wu (1983)]. :

Although the simplicity and applicability of EM has made it one of the most
popular iterative algorithms in statistics during the past 15 years or so, it has
long been noticed that there exist a variety of practically important problems
where the simplicity of the M-step is lost because the complete-data MLE’s
themselves are hard to compute and require numerical iterations. In many of
these cases, however, the complete-data constrained MLE’s, that is, the MLE’s
of @ restricted to particular subspaces of ©, are in closed form or are relatively
easy to obtain. Motivated by this observation, Meng and Rubin (1993) intro-
duced the ECM algorithm which maintains the E-step of EM, but replaces
the M-step by a set of CM-steps at the (¢ + 1)st iteration: For s = 1, ...,S,
find 6%+/9 that maximizes Q(8|6®)) over § € © subject to the constraint
g:(0) = g,(94+—1/9) where G = {g,(0), s=1,...,8} is a set of S(> 1) pre-
selected (vector) functions. In other words, the sth CM-step of the (¢ + 1)st
iteration is to find 8%*/S) such that

(1.3) Q(g(t+s/3)|0(t)) > Q(gla(t)) for all € ©, (0(t+(s—-l)/S))’
where
(1.4) 0,(0) = {9 € ©: g,(9) =g:(0)}.

The final output §%+5/9 ig taken to be the input of the next iteration, §¢*b,

An interesting and useful variation of ECM is to insert more E-steps at
each iteration. For example, one may wish to perform one E-step before each
CM-step. More generally, suppose one wants to insert one E-step before the
sth CM-step, k=1, ..., K <8, s; = 1; then (1.3) is replaced by

Q(0(t+s/S)|0(t+(s,,—1)/S)) > Q(alo(&(s,,—l)/S))
(1.5) for all § € ©,(9*+¢~/9), s}, < s < Sp41.

Mené' and Rubin (1993) call such an extension of ECM the multicycle ECM
(MCECM) algorithm, where a cycle is defined as one E-step followed by one
or several CM-steps. Thus, the algorithm defined by (1.5) is a K-cycle ECM.
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As shown in Meng and Rubin (1993), any ECM or MCECM sequence mono-
tonically increases L, a key feature of EM. Furthermore, under the assump-
tion that g,(9), s = 1, ..., S, is differentiable and that the corresponding gradi-
ent Vg,(0) is of full rank at §®, for all ¢, almost all of the convergence proper-
ties of EM established in DLR and in Wu (1983) hold for ECM and MCECM.
The only extra condition needed for ECM and MCECM is the “space filling”
condition:

S
(1.6) ():(69) = {0} forall ¢,

s=1

where J;(0) is the column space of Vg,(#). By taking the orthogonal comple-
ment of both sides of (1.6), this condition is equivalent to saying that at any
6®, the convex hull of all feasible directions determined by the constraint
spaces 6,(8®), s = 1, ...,8, where ©4(0) is defined in (1.4), is the whole Eu-
clidean space R?, and thus the resulting maximization by repeated conditional
maximizations is over the whole parameter space ©, not over a subspace of it.
Notice that EM is a special case of ECM with S = 1 and g,(#) = constant (i.e.,
no constraint), whereby (1.6) is automatically satisfied because Vg(9) = 0.
Another special case of ECM is the CM algorithm (i.e., ECM without missing
data), where the complete-data MLE’s are found by iterating among condi-
tional maximizations, a technique that is also known as the cyclic coordi-
nate ascent method in the optimization literature [e.g., Zangwill (1969)]. The
aforementioned IPF and ICM are examples of the CM algorithm. Meng and
Rubin (1992) also discuss the similarity between ECM and the Gibbs sampler
[Geman and Geman (1984)], which may lead to useful stochastic generaliza-
tions of ECM and extensions of the Gibbs sampler.

2. Measuring convergence of linear iterations. Any iterative algo-
rithm that generates a sequence {#®, ¢ > 0}, such as EM and ECM, implicitly
defines a mapping § — M(0) from the parameter space to itself such that
61 = M(6®). If 6* is a limit of {6, ¢ > 0} and M(6) is differentiable in the
neighborhood of 6*, a Taylor series expansion then yields

(2-1) 0(t+1) — 0~ (0(t) _ 9*)DM(0*),
where

_ (oM;(6)
2.2) DM(6) = (8—0)

is the d x d first derivative matrix for M(0) = (M1(9), ...,M4(9)), that is, the
Jacobian matrix for the mapping M. Thus, if DM(#*) is nonzero, as with EM
and ECM, expression (2.1) implies that the iterative algorithm determined by
the mapping M is essentially a linear iteration with the rate matrix DM(6*).
For this reason, DM(#*) is often referred to as the matrix rate of convergence,
or simply the rate of convergence.
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For multidimensional 6, a measure of the actual observed convergence rate
is the global rate of convergence, which is defined as

2.3) r=hEm e e

where || - || is the Euclidean norm. It is well-known that, under certain regu-
larity conditions,

(2.4) r=max = the largest eigenvalue of DM (6*).

In practice, r is typically calculated by

. “0(t+1) _ 0(t)“
(2.5) r= tl_lglo ~—————”0(t) g

Expression (2.5) allows the global rate to be calculated simultaneously with
the calculation of #* and essentially is an application of the well-known power
method for finding the largest eigenvalue of a matrix [e.g., Faddeev and
Faddeeva (1963), Dennis and Schnabel (1983)].

For multidimensional #, we can also measure the rate of convergence com-
ponent by component. The ith componentwise rate of convergence is defined as

D _ g
(2.6) ri= lim Il—l_l’
t—00 Ig@l) _ 9,*'
12 12
provided that it exists. We define r; = 0 if 0?) = 0?") , for all ¢ > ¢, to fixed. For
computation in practice, the alternative expression

. I 0(_t+1) _ 0(t)|
ri= tl—lglo *'—“Iagt) — 0l(t—ll)|

is typically used in analogy to (2.5). Under broad regularity conditions, it is
also easy to show that [e.g., Meng and Rubin (1994)]

r=maxr;,
1<i<d

which is consistent with the intuition that the whole algorithm converges if
and only if every component does. A component whose componentwise rate
equals the global rate is then called a slowest component for the obvious rea-
son. A component is the slowest if it is not orthogonal to the eigenvector
corresponding to Amax, and thus typically there are more than one such com-
ponent.

Notice that a large value of r implies slow convergence. To be consistent with
the common notion that the higher the value of the measure of convergence,
the faster the algorithm converges, we may define s = 1—r as the “global speed
of convergence.” From (2.4), s is also the smallest eigenvalue of S = I;—DM(6*),
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a matrix that may be called the (matrix) speed of convergence (S is often
referred to as an “iteration matrix” in optimization literature).

For the EM algorithm, DLR established a fundamental identity between
the (matrix) rate of convergence of EM and the matrix of fractions of missing
information. More specifically, under very mild regularity conditions, DLR
showed that for the EM mapping MEM,

2.7 DM™(0*) = I, (6*)IL.(6*),
where
_ &? Ing (Ymis | Yobs’ 0)
(28) Imis(o) = / - 50 00 f(Ymis | Yobs, 0) deis
and

8 logf(Y |9)
80 09

The matrix on the right-hand side of (2.7) is called the (matrix of) fractions
of missing information, because I.,m(0*) measures the complete information
that one would expect to have if there were no missing data and Ip,;(6*) mea-
sures the loss of information due to missing data [Orchard and Woodbury
(1972), Meng and Rubin (1991)]. Throughout this paper, we assume Ioom(0*)
is positive definite. Besides its obvious theoretical value, identity (2.7) also
serves as the foundation of the supplemented EM (SEM) algorithm [Meng
and Rubin (1991)], which computes the DMEM(6*) of (2.7) and then uses it
to inflate the complete-data asymptotic variance—covariance matrix to obtain
the asymptotic variance-covariance matrix associated with the MLE when
implementing EM.

In the next section, we present the matrix rates of convergence of ECM
and MCECM. These results not only give us analytical tools for studying how
the rates of convergence of ECM and MCECM vary with different settings of
conditional maximizations (e.g., different orders for the S steps), but also pro-
vide fundamental formulas for computing the asymptotic variance—covariance
matrix for the MLE’s by combining ECM or MCECM with SEM [Meng and
Rubin (1992)]. Section 4 provides a counterintuitive example of the relation-
ships among the global rates of EM, ECM and MCECM.

(2.9) Icom(o) = f(Ymis | Yobs’ 0) deis~

3. The matrix rates of ECM and MCECM. Throughout the rest of the
paper, we assume the same regularity conditions as in Meng and Rubin (1993).
In particular, all the following calculations are performed inside ©, the inte-
rior of ©, and all required derivatives are well-defined. The following theorem
gives the Jacobian matrix of the ECM mapping at the limit and thus estab-
lishes the matrix rate of covergence of ECM.

THEOREM 1. Suppose all the outputs of an ECM, §%+/9 ¢t > 1,s=1, ...,8,
satisfy the Lagrange multiplier equations for constrained maximization, and
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6¢+s/9) _, 9* as t — oo for s = 1, ...,S. Then the rate of convergence of ECM is
given by

S
3.1) DMECM(G*) =DMEM(0*) + [Id —DMEM(O*)] HPs:

s=1
where DMEM(0*) is the rate of convergence of EM given in (2.7),
(3.2) P, =V [VIILL(60°) V5] ' VIIZL(6%), s=1,...,8,
with V, = Vg,(6*) and [[>, Ps=P;---Ps.

PROOF. For any given £,7 € © and 1 < s < S, let G;({,n) be a maximizer
of Q(9|¢) [defined in (1.2)] under the constraint § € ©4(n) = {6: g:(0) = gs(n)}.
Let My(6) =6 and
(3.3) M,(0) = Gs(9, Ms_1(0)) for all s.

Then, by the construction of ECM,
(3.4) g4/ = M, (6®), s=1,...,8,

and thus MECM(9) = Mg(0). It follows from our assumptions that

(3.5) 0* =M,(0*), s=1,...,8,
hence
(3.6) 0* = Gs(o*,o*) for all s.

To obtain DMECM(9*) = DM(6*), we first differentiate both sides of (3.3)
and evaluate them at 6 = * using (3.5). This yields

(3.7 DM,(6*) = D'°G,(6*,6*) + DM,_,(6*)D*'G,(6*,6*), s=1,...,S,

where D1° denotes the partial derivative with respect to the first argument,
and so on. Next we calculate D°G,(6*,6*) and D°'G,(6*,6*) by differentiat-
ing the following two Lagrange equations with respect to £ and 7 and then
evaluating them at £ = 0* and 7 = 6*:

(3.8) :(Gs(&,m)) =&s(n),

(3.9 DIOQ(Gs(E, "7)'&) - Vgs (Gs(£: "7)))\8 (ﬁ’ "7) =0,

where X;(£,7) is the Lagrange multiplier. This yields from (3.8) and (3.6) that

(3.10) D'°G,(6*,6*) Vs =0,
(3.11) DG, (6%,6*) Vs =V,.
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Similarly, differentiating (3.9) yields

(8.12) DG, (6*,0* ) eom(8*) — Imis(8%) + D10Xs(6%,6*) VI =0
and

(3.13) D'G,(6%, 6" )eom (6*) + D205 (6%,6*) VT =0,

where I (0*) and I (0*) are defined in (2.8) and (2.9), respectively. Notice
that in deriving (3.12) and (3.13), we have used three facts besides (3.6):
(1) D?°Q(6*|6*) = —Ieom(8*); (ii) DV1Q(6*|6*) = Iyis(0*) (DLR); (iii) As(6*,6%) = 0
because D°Q(6*|6*) = 0 [Meng and Rubin (1993)].

From (3.11) and (3.13), we have

(3.14) DY'G,(6*,6") = V, [VTIZL (6%) V,] " VIIZL(6%) = P,.
Combining (3.10) and (3.12) with (3.14) and (2.7) yields
(3.15) DG,(6*,6*) = DMEM(6*)(I; — P;).
It follows from (3.7) and (3.15) that

DM,(6*) — DM™(6*) = [DM,_,(6*) — DM™™(¢*)]P,,
which implies that [notice DMy(0) = I]

DMg(6*) — DM™(9*) = [I; — DM®™(¢*)]P; - --Ps,

and thus (3.1) follows. O

Three interesting points regarding Theorem 1 are worth mentioning. First,
in the absence of missing data, DMEM(6*) = 0, and thus (3.1) implies

s
(3.16) DM™M(6*) =[] P.,

s=1
where MCM(9) is the mapping determined by the CM algorithm. It follows
from (3.1) and (3.16) that
(3.17 [Is - DMEM(9*)] = [I; - DM®M(6*)] [I; — DM®M(6*)],

which, following our definition of the (matrix) speed of convergence in Section
2, has the following very appealing interpretation:

Speed of ECM = Speed of EM x Speed of CM .

This identity is consistent with our intuition, since ECM can be viewed as a
composition of two linear iterations: EM and CM.
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Second, if we let

@3.18 T (VFIh Vo) T2 (VTIGh Vaut) (Vi Ik Vaur) ™2,
. §=0,...,8,

where Vy = Vg,; = I, then (3.16) can be rewritten as

(3.19) DM™M(p*) = Il/2<HPs,s+l> I,

=0

Notice that ps .1 of (3.18) can be v1ewed as the “correlation coefficient” be-
tween V; and V,,; with respect to I ;L or as the cosine of the angle between
two subspaces of R?. In this sense, (3.19) has a structure similar to some re-
sults on rates of convergence of the Gibbs sampler [e.g., Amit (1991)], which
further demonstrates the similarity between ECM and the Gibbs sampler
[Meng and Rubin (1992)].

Third, expression (3.16) and thus (3.1) have an intuitive statistical interpre-
tation. Consider, for example, a simple complete-data problem with 6 = (61, 62),
where we choose g1(0) = 0, and g2(0) = 6;. At the (¢ + 1)st iteration, the corre-
sponding first CM-step is to maximize L(6;,6y) to obtain 6%V, and the second
CM-step is to maximize L(6*",6,) to determine 4+, where L(9) is the log-
likelihood function. Let 6* = (6}, 63) be the limit of 6 = (6, 6). Because L(6)
is locally quadratic around 6*, the first CM-step is asymptotlcally (as t — 00)
equivalent to predicting 6{* — 67 from 6 — 6 by regression, that is,

(3.20) 0(t+1) _ 0* = ,312 (e(t) _ 0;)’

where (13 = po1/0s and p and o;, i = 1,2, are from the complete-data asymp-
totic variance—covariance matrix

0'2 Po102
(3.21) Veom = IZL(6%) = ( ! ) .

po109 ag
Similarly, the second CM-step is equivalent to
0;t+1) — 03 = B (0(1t+1) —07)
= B1B12(69 - 63) [from (3.20)].
Expressions (3.20) and (3.22) together imply
(3.23) DMM(¢*) = ( 0 0 ) ( 0 O)
; Bz Ba1br2 Bz p?

which can be verified as identical to (3.16) for the current problem. Notice from
(3.23) that the linear iteration determined by DM®™(6*) converges if and only

(3.22)
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if its largest eigenvalue, p?, is less than 1. In other words, the CM algorithm
is essentially alternated regressions, and it converges if and only if there is a
“regression effect,” that is, if p? < 1.

The following theorem generalizes Theorem 1 to multicycle ECM.

THEOREM 2. Under the conditions of Theorem 1, the rate of convergence of
the (K-cycle) MCECM given by (1.5) is

K 3k+l"1
(3.24) DMMCEM(p*) =] {DMEM(B*) + [I; -DM™(6")] ] Ps},

k=1 8=8,

where sy =1 and sg,1 =S + 1.

PROOF. Since the mapping MMCECM(g) defined by a K-cycle ECM is a
composition of K single-cycle ECM mappings, (3.24) follows directly from
(3.1) and the chain rule. One can also derive (3.24) directly by replacing (3.3)
with M(0) = Gy(Ms_1(0), M;_1(0)), for s = s, kR = 1, ...,K, in the proof of
Theorem 1. O

4. The global rates of ECM and MCECM. The results presented in
Section 3 are in terms of matrices. For multidimensional 6, as it must be
with ECM, the actual observed rate of convergence is the global rate r defined
in (2.3). Since the appealing relationship in (3.17) is in terms of the speed
matrices,

4.1) SECM _ GEMgCM

where SECM = 1, — DMECM(g*), and so on, we will focus on global speeds in-
stead of global rates. The results, of course, are equivalent. Let s*M denote
the global speed of ECM, and similarly for sEM and s, Although it would be
naive to conclude from (4.1) that

sECM = SEMSCM,

it seems intuitive to expect from (4.1) that
(42) SEMSCM < sECM < SEM.

Since at each interaction, ECM increases the @-function of (1.2) less than EM
would do, it seems intuitive to expect that ECM converges more slowly than
EM in terms of the global speed, which implies the inequality on the right-
hand side of (4.2). On the other hand, our intuition may suggest that the
slowest convergence of ECM occurs when EM and CM share a slowest compo-
nent (Section 2), in which cases the speed of ECM is the product of the speeds
of EM and CM. This leads to the inequality on the left-hand side of (4.2).
Surprisingly, neither of the inequalities in (4.2) holds in general! The fol-
lowing simple bivariate normal example provides counterexamples to both
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inequalities. Suppose the complete data consists of Y; = (y;y, yig)T, i=12,

such that
0 1
Yl, Y2 ~iid N [(0;) ) (p {)J ’

where p is known (|p| < 1) and 8 = (61, 62) is to be estimated. In the presence
of missing data, suppose we only observe z; = y;; and 23 = Y93 — ¥91, and we
are interested in finding the MLE of 6 based on (z;, z2). Notice that, in this
case, the desired MLE is in closed form:

(4.3) 0* = (21,21 +22).

To compare ECM with EM, we apply both algorithms ta obtain two sequences
that will converge to 6* of (4.3). The E-step is the same for both EM and ECM
and in this case, since p is known, is equivalent to imputing y;;, i, j = 1,2,
by their conditional expectations y? = E(y;|z1,22,6%), where y%) = y1;. The
M-step then estimates 6 by the “global mode” of the complete-data likelihood
using the imputed data:

40 o = (G O502) = G159,

where yj‘." = (y(,? + ygi))/ 2,j = 1,2. In contrast, ECM in this example replaces
(4.4) by two conditional maximization steps, each of which corresponds to a
“conditional mode” of the complete-data likelihood based on the imputed data:

@+1) _ (pt+1)  pt+D)
Orcm = (0ECM, 1 0ECM,2>
_(x® 0 ) (¢+1) =
= (yl +p(0ECM,2 ~%2), ¥5 +P(9ECM,1 —N ))

Notice that ECM coincides with EM when p = 0, that is, when 8; and 6, are
orthogonal.

To calculate the rates of convergence for EM and ECM, we first notice that,
in this problem,

1 1 1-2
(4.6) I;,;(e*)=%( ’1’ ) and Inﬁs(o*)z;,}n(o*)=%( P),
p

(4.5)

1 3
Then, applying Theorem 1 with S = 2, g,(6) = 63 and g2(9) = 0;, we have

SEM_lo,_lll—zp 1 3 20-1
0 1/ 4\1 3 4\1 1 )’

sCM=10-00=10,
01 p P -p 1-p°

3+p(1-2p) (20-1)(1- pz)).

1
SECM = SEM SCM = (
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0.5

0.4

0.3

Global Speed
0.2

0.1

0.0

Fi1c. 1. Comparisons of sECM (solid line), sEM (dashed line) and sEMCM (dotted line).

Calculating the smallest eigenvalues of these matrices yields, respectively,

o 1=/ (1-0)/2

i —
sM =1 p?

and

SECM = 1—;£(4——3p— V(4 -3p)2 -8(1-p)).

To investigate (4.2), we plot sE°M, sBM and sEMsCM in Figure 1 as functions of p.
It is clear from the plot that sEM > sEM when p < 0, and sECM < sEMgCM when
O<p< % Thus, neither of the inequalities in (4.2) holds in this example.
These comparisons are perhaps only of theoretical interest because the
choice between EM and ECM in practice is typically determined by which
one has closed-form maximizations, not by which one converges more rapidly.
A practically more relevant comparison is between the global speeds of ECM
and MCECM, which require almost the same computational effort except that
the latter involves more E-steps at each iteration. Consequently, our intuition
may suggest that MCECM should converge more rapidly than ECM would.
Practical implementation does suggest that the use of MCECM can notably
speed up the convergence of ECM [e.g., Belin, Difffendal, Rubin, Schafer and
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Fic. 2. Comparisons of sECM (solid line), sEM (dashed line) and gMCECM (dotted line).

Zaslavsky (1991)]. However, this is not true in general either! In fact, the same
bivariate normal example above can serve as a counterexample, as detailed
below.

Consider a two-cycle ECM in the example, that is, we add an E-step after
the first CM-step. Applying Theorem 2 with K = 2, we obtain

_22-1
MCECM 14p |32 £ Z
S =Ig _DMMCECM(e*) = T 3
—pP
1 4

Thus, the global speed of the two-cycle ECM is

1+p|15-9p 15-9p 2
MCECM _ _ a1
$ -8 [ 4 \/( 4 ) 8(1-0)|-

Figure 2 plots sECM, sEM gnd sMCECM 55 functions of p. No curve completely
dominates the others, and four out of the six possible dominance orderings
among the three global speeds (e.g., sSEM < sECM < gMCECM) oxist in the figure.
In particular, sMCECM < gECM for p > 1
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A final remark concerns possible explanations of these counterintuitive phe-
nomena. Take the inequality s*M < sEM ag an example. While the mathemat-
ical reason for violating this inequality is that SEM and S°M in (4.1) typically
do not commute, its statistical interpretation is less clear. One observation we
have in the bivariate normal example is that, in the case sECM > sEM (je,,
p < 0) with complete data,

COVcom(91 - 0;, 0y — 0;) = Cov(yl,y‘z) = !23 <0,
but with the observed data [see (4.3)],
COVobs(01 - 0;,02 — 0;) = Cov(zl,zl +z2) =1>0.

In other words, the missing data alter the sign of the correlation between
the two components from negative to positive. In some sense, this could be
viewed as the missing data helping to increase substantially the “dependence”
between the two components. In fact, it can be shown that this “negative to
positive” condition is sufficient to guarantee that ECM converges more rapidly
than EM does for any two-dimensional problems. Higher-dimensional gener-
alizations of this result are still under investigation. Perhaps the most im-
portant message here is that intuitions accurate for complete-data algorithms
may not be reliable in the presence of missing data, and that more studies are
needed before these counterintuitive phenomena can be better understood.
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