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AUTOREGRESSION QUANTILES AND RELATED
RANK-SCORES PROCESSES!

By Hira L. KouL anD A. K. Mbp. E. SALEH
Michigan State University and Carleton University

This paper develops extensions of the regression quantiles of Koenker
and Bassett (1978) to autoregression. It generalizes several results of
Jureckovi (1992a) and Gutenbrunner and Jurecékova (1992) in linear
regression to autoregression models. In particular, it gives the asymptotic
uniform linearity of linear rank-scores statistics based on residuals suit-
able in autoregression. It also discusses the two types of L-statistics
appropriate in autoregression.

1. Introduction and summary. The regression quantiles (RQ’s) of
Koenker and Bassett (1978) (KB) have been accepted as an appropriate
extension of the one-sample quantiles in location models to multiple linear
regression models. They characterized RQ’s as solutions of a parameterized
family of linear programs. Gutenbrunner and Jureékova (1992) (GJ) call the
solutions of the dual of this problem regression rank scores (RRS’s). They
point out that RQ’s and RRS’s are related to each other in the same fashion
as the one-sample order statistics and the ordinary rank scores [Hajek and
Sidak (1967), page 186] are in the one-sample location model. Jureckova
(1992b) further points out that unlike the ordinary rank-scores statistics, one
of the major advantages of using RRS statistics based on the residuals is that
the corresponding estimators of some of the components of the regression
parameter vector when others are treated as nuisance parameters do not
require the estimation of the latter. The focus of this paper is to develop and
investigate analogs of these procedures in the pth order autoregression
[AR( p)] models.

Using RQ’s and RRS’s, different types of L-estimators of the slope parame-
ters in linear regression were proposed by Ruppert and Carroll (1980),
Koenker and Portnoy (1987), Portnoy and Koenker (1989) and GdJ. Recently,
Gutenbrunner, Jurefkova, Koenker and Portnoy (1993) showed that tests of
subhypotheses in linear regression based on RRS statistics are asymptoti-
cally distribution-free and do not require estimation of the parameters that
are not under test. The present paper also contains analogs of some of these
estimators and tests in AR(p) models.
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More precisely, let p > 1 be a fixed integer, R? denote the p-dimensional
Euclidean space, R = R! and t' denote the transpose of a p X 1 vector
t € R?. Let F be a continuous distribution function (d.f) on R and ¢, ¢;,
i=0,+1,+2,..., be independent and identically distributed (i.i.d.) F ran-
dom variables (r.v.s). In an AR(p) model with a location parameter one
observes {X;} satisfying the relation

(1.1) Xl=p0+p1Xt—1+“. +pri—p+8i’ i=0,i'1,i'2,...,

where p = (pq, py,..., p,)’ € RP*! is the unknown parameter vector of in-
terest. Throughout we shall also assume the following:

(al) E(e) =0, E(&?) < oo

(a2) all roots of the equation x? — p,xP~ 1 — - -p,=0

are inside the unit circle.

Furthermore, let Y;_, =1, X;_;,...,X;_,), i=0,+£1,+2,..., and 2,
be the n X (p + 1) matrix whose ith row is Y;_;, 1 < i < n. Recall, say from
Brockwell and Davis (1987), that under (1.1), (al) and (a2), the process { X} is
causal and invertible. This and the continuity of F imply that the rows of 2,
are linearly independent and the columns of £, are linearly independent,
with probability 1 (w.p.1), so that the various inverses in the sequel exist
w.p.1. It also implies that the process {X} is stationary and ergodic [Hannan
(1970), Theorem IV.2.3, page 204].

Now, akin to the definition of KB in linear regression, define an ath
autoregression quantile (ARQ) as any member fp,(a) of the set

(12)  H(a)= {b e RP* L YA (X, - Y._,b) = minimum},
i

where A (u) = aul(u > 0) — (1 — )ul(u < 0), u € R, a € (0,1). Note that
$,(1/2) is the well known least absolute deviation estimator of p. Here, and
in the sequel, I( A) denotes the indicator of an event A and the index ¢ in the
summation and the maximum varies from 1 to n, unless specified otherwise.

Similar to Theorem 3.1 of KB, one obtains the following linear program-

ming version of the above minimization problem:
minimize a1, r*+(1 — a)1,r", with respect to (b,r*,r7),
1.3 ’
(1.3) subjectto X, —Zb=r"—r", (b,r*,r") € R?"' X R} X RY,

where 1, = [1,...,1];4, and X, = (X,..., X,) is the response vector. As in
KB, #,(a) is the convex hull of one or more basic solutions of the form
(1.4) bh =%h_1xh’

where h is a subset of {1,2,...,n} of size p + 1 and 2, (X,) denotes the
subdesign matrix (subresponse vector) with rows Y;_;, i € h (coordinates X,
i € h).
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In general, there will be “break-points” 0 = @y < @; < =+ <ay =1, for
some J, < (p'i 1) such that p,(-) is a stochastic process, herein called ARQ

process, that is constant over each interval (a;, @;,), 0 <i <dJ, — 1, and
takes values in [ D(0, 1)]7*1.

An analog of the corresponding dual program, mentioned in the Appendix
of KB, is the following:

maximize X', a, with respect to a,

(1.5)

subjectto Z/a = (1 — a)Z,/1,,a € [0,1]".

By the linear programming theory the optimal solution a,(a) of (1.5) can be
computed in terms of p,(a) as follows: If p,(a) =25 (,\Xp oy for some
(p + 1)-dimensional subset h (a) of {1,2,..., n} then, for i € hé(a), the
complement of h,(a),

d,(a) =1, X, >Y_1p,(),

(1.6) .
=0, X; < Yi’—lpn(a)’

and, for i € h,(a), 4,;(a) is the solution of the p + 1 linear equations

(1.7) Y Y 46,(a)=(1~- a) ile—l - ile—II(Xj > Yf—1f’n(a))~
j=

jeh(a) Jj=

The scores {4,(a); a € (0,1)} are the analogs of GJ’s RRS’s, herein called
the autoregression rank scores (ARRS’s). The continuity of the error d.f. F
and the causality of the underlying process imply that a,(a)’s are unique for
all a € (0,1), w.p.1. The process &, € [0,1]" has piecewise linear paths in
[C(0, D] and 4,(0) =1, = 1, — &,(1). It is invariant in the sense that a,(a)
based on the observation vector X, + £t is the sme as the &,(a) based on
X,, forallt e RP*! 0 < a < 1. An obvious modification of the computation
algorithms of Koenker and d’Orey (1987, 1994) for computing RQ’s and RRS’s
can be adapted to compute the ARQ’s and ARRS’s. The comments of GJ on
the duality of order statistics and ranks scores from the one-sample location
model to the linear regression model by the RQ and RRS processes apply
equally here to ARQ’s and ARRS’s.

Section 2 obtains the asymptotic joint distribution of a finite number of
suitably normalized ARQ’s and asymptotic representations of ARQ and ARRS
processes. Section 3 applies these results to yield the asymptotic behavior of
analogs of some of the above-mentioned L-estimators and ARRS statistics. It
is observed that under appropriate conditions, the asymptotic equivalence

‘ between various L-estimators that exists in the linear regression setup
continues to hold in the AR(p) setup.

A sequence of stochastic processes {Z,(t), t € R? 1} n > 1, is said to be
asymptotically uniformly linear (a.ul) if it is approximated by a sequence of
stochastic processes that is linear in t, uniformly in t over compacts, in
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probability. Juretkova (1992a) proved that the regression rank-scores statis-
tics based on residuals in the linear regression setup is a.u.l. in the standard-
ized slope parameter vector, the basic result needed to obtain the asymptotic
distributions of the estimators in Juredkova (1992b). The corresponding
result for ARRS processes and statistics in the AR(p) model appears in
Section 4 below. All of our proofs heavily depend on a uniform closeness
result of a randomly weighted residual empirical process of Koul and Ossian-
der (1994).

For a t € R?*1 let |it|| stand for its usual Euclidean norm. All the limits
are taken as n — «, unless mentioned otherwise. For a sequence of numbers
(rv’s), 0D [0, (1)] denotes boundedness (in probability) and o(1) [0,(1)]
denotes the convergence to zero (in probability). For an R?* Lvalued stochas—
tic process {Z,(a), a € [0,1]}, we say Z,(a) = Oy (Dlo;(1)], if supf{llZ, (a)l|,
a<as<l-a}l=0,MI[0,M]VacO, 1/2].

2. Asymptotic representations of ARQ’s and ARRS’s. This section
obtains the asymptotic joint distribution of ARQ’s and an asymptotic repre-
sentation of ARRS processes. Their proofs are facilitated by Lemma 2.1 below.
To state this lemma, let (Q,.%, P) be a probability space and (g;, v,;, &,:);
1 <i < n, be an array of trivariate r.v.’s defined on ({, &) such that {g;]) are
iid. F; g is independent of (v,;, &,;), 1 < i < n. Furthermore, let {#,;} be an
array of sub-o-fields such that ; C.MM.H, A, CHypiyiy 1<i<n, n21,
(Y15 &p1) 18 l-measurable the r.v.’s {&,...,&_1; (7,”, 5,”) 1<i<j} are
&, -measurable,2 <j < n, and &; is 1ndependent of #,;, 1 <j < n.Define, for
an x € R,

V(%) =t Dod(e <5+ &),

Vi(x) =n? iy,,il(ei <x),

(%) =n7! iE{mI( 5 <%+ £)l)
(2.1) =nt EyiF(x + &),

J¥(x) =n" ;;ymF(x),

U(x) = n%(V,(2) = u(%)),
Uy (x) = n/2(VF(x) = I3 (%))

We are now ready to state our basic preliminary lemma.

LeEMMA 2.1. In addition to the above, assume that F' is continuous and
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that the following hold:
(A1) 112 maxly,| = 0,(1),
(Az) maxlgml = Op(]‘)’
1/2
(A3) (n_l Z‘y,?i) =7y + 0,(1), v a positive r.v.
1

Then,V x €.7:={x; 0 < F(x) < 1},
(2.2) U, (x) = U (%)l = 0,(1).
If the continuity of F is strengthened to
(F1) F has a continuous and positive density f on .7,

then the processes {U,} and {U}} are ventually tight on every compact subset of
R in the uniform metric and, V 0 < K <,

(2.3) Isup U, (x) — UF(x)l=0,(1).
x|<K

If (F1) is strengthened to
(F2)  F has a uniformly continuous and a.e. positive density f on .7,

then the processes {U,} and (U} are eventually tight in the uniform metric on
R and

(2.4) sup|U,(x) — Uz (%) = 0,(1).
xef

Under the additional assumption (A4),
(2.5) U, = yB(F), U= vyB(F),
where B is a Brownian bridge in C[0, 1], independent of vy, and where:
(A4) Foreachn > 1,{v,;; 1 <i < n} is square integrable.
Statements (2.2) and (2.4) are proved in Corollary 2.1 and Theorem 1.1 of
Koul and Ossiander (1994), while (2.3) can be deduced from the details of the

proof of Theorem 1.1 of the same paper. Now, consider the minimum-dis-
tance-type estimator of p defined by

pra(@) = argmin|[n/2T,(t, @),
t
(2.6) T,(t, @) =n"' LY, {I(X; - t'Y;_, < 0) — a},
12

0<a<l,teRPL,

By the continuity of F, T,(t, @) is an almost everywhere differential of the
function T,k (X; — t'Y,_,) with respect to t. The asymptotic equivalence of
pna(@) to p,(@) is given in Lemma 2.2 below. To state and prove this lemma,



AUTOREGRESSION QUANTILES 675

we need to define
p(a):=p+F_1(a)e1’ e1=(1’0,“',0),,
(2.7) q(a) =f(F'(a)), 0<a<l,
S, =n"2Z2, =0 Y, Y,;, 2X:=plimX,.
i n

Recall, say from Hannan (1970), that under (al) and (a2), 2 exists, and is
positive definite.

LEMMA 2.2. In addition to (1.1), (al) and (a2), assume that F is continu-
ous. Then,V¥ x €.7,V s € RP*1,

n2ln Y, {I(e; <x+n7V28Y, )
(2.8) '
—F(x+n"128Y,_;) —I(¢; <x) + F(x)}ll =0,(1),
(2.9) sup(lln/2T,(p(a), a)l; « € [0,1]} = O,(1).

If the continuity of F is strengthened to (F1), then V¥V a €(0,1/2] and
VO0<b <o,

(2.10) sup ||[n2[T,(p(a) +n"Y2s, @) ~ T,(p(a), a)]
IIsll< &
a<a<l-a

~3,8¢(a)] = 0,(1)

and
(2.11)(i) % (Ppa(@) — p(@)) = —{g(@)Z,} " n2T,(p(a), @) + 0¥ (1),
(2.11) (i) n2(po(@) — Pmal@)) = 0% (1).

If (F1) is replaced by (F2), then for every 0 < b < o,
sup||n'/?[T,(p(a) + n%s, @) — T,(p(a), a)] - 2,sq(a)|
= p(]‘)’

where the supremum is now over (a,s) € [0,1] x {s € R?*1; is| < b}.

(2.12)

PrOOF. To simplify the exposition, let T (s, a) =n" 2T (p(a) +
n"1%s a),0<a<1,seRP"! and write T (a) for T (0, ). Also, let & =
a—ﬁeld{ ; j<ikIfin (2 1) we take

y,; = jth coordinate of Y,_;, &, =n"'/28Y,_j,
Ay =F_ i1>1,

then U/(F~!(a)) and U*(F 1(a)) are equal to the jth coordinate of T, (s, a)
and T (a) respectively, 0 < @ < 1, s € RP*!, 1 < j < p. Using the ergodicity

(2.13)
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and stationarity of the underlying process it follows that (A1)-(A4) are
implied by (al) and (a2) for the entities given in (2.13). Thus (2.2) and (2.5)
applied p times, jth time to the entities given at (2.13), imply (2.8) and (2.9),
respectively.

To prove (2.10), apply (2.3) to the entities given at (2.13) to conclude that
for every s € R?*! a €(0,1/2],

sup [T (s, @) ~ To(@) — 2,5q(a) | = 0,(D).
a<a<l-a

The uniformity over ||s|| < b is achieved by exploiting the monotonicity of the
indicator function together with the compactness of the set {s: |ls|| < b}. The
details are similar to those in the proof of Theorem 1.2 of Koul (1991) and are
left out for the sake of brevity. The proof of (2.12) follows from (2.4) in the
same way as does that of (2.10) from (2.3).

To prove (2.11)(3), it suffices to prove the following: V&> 0,0 <z <o, 3 b
(=b7) and an N?, such that V a € (0,1/2],

(2.14) P( inf | T,(s, 0> 2, Vo< [a,1 —a]) >1-s, n>N-
lIsll>d

Note that (2.14) implies that sup{n!/?||p (@) —p(a)l; a <a<1l-a}=
0,(1). This and (2.10) imply (2.11)() in a routine fashion. We proceed to prove
(2.14).

Fix an £ > 0 and a € (0,1/2]. Write an s € RP*! with |ls|| > b as s = r#,
|r| > b and [|0]| = 1. Also note that 6'T,(r0, a) is a nondecreasing function of
r,Vae€(0,1),0 € R?*. Therefore, by the Cauchy—Schwarz (C-S) inequality,
Vae(,),

2.15)  inf |T,(s, 2)|" = inf (0'T,(r0, )2 > inf (8T, (r8, a))%.
lsll> & |r|>b |rl=b
llell=1 lloll=1
Now, let T*(r, 0, a) = O’Tn(a) - r0'Y,0q(a), k, = infl0'%,0; 0]l = 1}, & =
plim, k£, = inf(0'30; [|0]| = 1} and AZ == [k(1 — &) <k, < (1 + &£)k]. By the
positive definiteness of 3, £ > 0. This and (2.9) imply that 3 K_, N and Ny,

such that
P(A:) >1-(&/3), n =Ny,

(2.16) P( sup |0"i‘n(a)| < Ka) >1-(¢g/3), n > Ng.
0%a<1

Also, by (2.10), 3 N3, such that V n > Ny,

p| inf (0'T,(r0,0))">2,Va<as<l- a)
rl=b

zP( inf {T*(r,0,a)}’>2z,Va<as<1 —a) - &/3.
Irl=b
llel=1

But, using the fact that ||d| — |c]| < |d + ¢l, d, ¢ real, we have



AUTOREGRESSION QUANTILES 677

P( Iilnf (T#(r,0,a))>2z,Va<a<l- a)
rl=b
llell=1

> P(|0'T,(a)| - 50'%,0¢(a)| > 22, V0l =1, a<a<1-a
2P(|0’~n(a)| < —2Y2 + bk,q,, V0l =1,a<a<1-a)

> P( sup |0"T ()| < —272 + bE(1 — £)q,; A;)
o2,

>1-(2¢/3), n>N¢f=N{V N§V N3,

by (2.16), as long as b > (Ke + 2'/%)/{k(1 — £)q,}, where g, = inflg(a);
a < a < 1 — a}. This together with (2.15) and (2.17) proves (2.14).

The details of our proof of (2.11)(ii) are very similar to those of Lemmas 4.1
and 4.2 and Corollary 4.1 of Jureckova (1971). Thus we shall first show that
Vae01/2],

(2.18) sup [ n¥/2T,(pu(a), )| = 0,(2).

a<a<l-a

The inequalities in (8.1) of Theorem 3.3 of KB, when adapted to the current
setup and after writing sgn(x) = 1 — 2I(x < 0) + I(x = 0), state that w.p.1,,
VOo<ac<l,

(-1, < X Y_{I(X; - Y_1p,(a) <0) - a}2 {,,
iehf(a)
+ Y Y I(X, -Y_p,(a)= O)%ll_nl(a) <al,,
iehf(a)

where h (o) is as in (1.4) and h%(a) denotes its complement. Let w,(a)
denote the vector inside the inequalities. Now, from (1.4), it follows that
I(X; - Y,_1p,(a) = 0) =0, for all i € h{(a). Thus we obtain the following:
wp.l,VO0<a<l,

LY {I(X] - Yi_1p,(a) <0) - a}
- Y Y {I(X,-Y_ip,(a) <0) - a} %h_,,%a) =w,(a).
ich,(a) .

Again, by (1.4), I(X; - Y/,_p,(a)<0) =1, ieh(a), 0<a<l, wp.l
Hence, w.p.1, VO < a <1,

n/?T,(p,(a), ) =n"2 3 Y, 4(1-a) + 0 Wi(a),
ich,(a)

so that
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(219)  sup  [n2T,(pu(a), @)l < 2(p + 1) maxnV2Y, .

a<a<l-a i
Now (2.18) follows from (2.19) and the fact that max; n=!/ 2Y,_,ll = op(l),
which is implied by (al) and (a2). Consequently,
(2.20) sup inf[|nY/2T,(t, @)| = 0,(1).

a<a<l-qg ¢t

Note that (2.18) and (2.20) are analogs of Lemma 4.1 and Corollary 4.1 of
Juretkova. Use them and an argument similar to the proof of Lemma 4.2 of
Jureckova (1971) together with (2.8) and (2.10) to conclude (2.11)(ii). The
details are left out for the sake of brevity. O

The following theorem gives the asymptotic joint distribution of a finite
number of ARQ’s and the asymptotic representation of the ARQ process on
Dla,1 —al, VY a € (0,1/2], as a generalization of Theorem 4.1 of KB to the
AR(p) model (1.1). In it, A & B denotes the Kronecker product, for any two
compatible matrices A and B.

THEOREM 2.1. In addition to (1.1), (al) and (a2), assume that (F1) holds.
Then

n'/?(p.(a) - p(a))

= =3.'n'2T,(p(a),a)/q(a) +05(1), O0<a<l.
Consequently, for any 0 < a; < ay < -+ < ay, < 1, the asymptotic joint dis-
tribution of [n*/%(p,(a;) — p(@)),..., n*%(p,(a) — p(a,))] is (p + 1) X k-
variate normal with mean matrix 0 and the covaraince matrix € = A & 371,

where A is a k X k matrix whose (i, j)th entry a,; = (a; — o;;)/q(e;)q(a)),
l1<i<j<k.

(2.21)

Proor. The proof of (2.21) follows from (2.11) in an obvious fashion. This
in turn implies that

[n1/2(ﬁn( a;) — p( al))""’ nl/z(ﬁn( a,) — o( ak))]
= —{1/g(ay),...,1/q( )} ® 2. 'n'/?
X [Tn(p( al)’ al)"" ,Tn(p( ak)’ ak)] + op(l)'

The asymptotic normality now follows from this and the fact that nT,(p(a), a)
is a mean zero square integrable martingale array with respect to the o-fields
{Z,_1} of (2.13), Corollary 3.1 of Hall and Heyde (1980) and the Cramér—Wold

device. O

We now turn to the ARRS processes. To define these, let ¢ > 1 be an
integer, {g,;;; 1 <i <n; 1 <j <q} be r.v’s such that {gnij; 1<j<q} are
Z,_,-measurable and independent of &, 1 <i <n. Let g, = (8,1, &niz>--->
8nig)» 1 <i<n,and & be n X g matrix whose ith row equals g,;, 1 <i <n.
Define sequences of ARRS processes
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222) U(a)=n" Lgufdu(e) —(1-a)}, O0s<as<l,
l

and an approximating weighted empirical process U, , by

(223) U, (a)=n""! Z,gm.{l(a,. >F'(a))-(1-a)}, O<as<l

Let U,, stand for U,, when ¢ =p + 1 and g,; = Y;_,. Observe that U, (a)
= —T,(p(a), ).
Before stating the next result, we need to introduce the following two
conditions:
(G1) n *(2'g) =T + 0,(1) where I is a positive definite ¢ X ¢ matrix,
(G2) n~1/2 max|lg,;ll = 0,(1).
12

Let 7, = n"'2'2,, A () =n"*p,(a) — p(a)), 0 < a < 1. From (2.9) and
(2.21) we obtain that V a € (0,1/2],

(2.24) sup{ll&n(a)ll; a<a<l- a} =0,(1).
We are now ready to state and prove the following theorem.

THEOREM 2.2. Assume that (1.1), (al), (a2), (F1), (G1) and (G2) hold.
Then, for every a € (0,1/2],

225)  n'2[0,(a) - Uy(a)] = ~#,-A,(a)q(a) + 0}(1).
Consequently,

(2.26)  n'/?0, (@) = n/2[U,4(a) - 7,3, 0, ()] + 0} (1).

ProOF. From (1.6) we obtain that wp.1,V1<i<n,0<a<1,
(@) =I(g;> F () + Y_o{po(a) — p(a)}) + d,( ) I(X; = Yi_1p,(a)).
This in turn gives the following identity:
G,(a) —(1-a)
=I(g;>F (a)) - (1 - a)

—{I(ai <F Y a)+Y_i(p.(a) — p(a))) —I(g < F'l(a))}
+8,(a)I(X; =Y _1p,(a)), 1<i<n,0<a<l,wp.l

(2.27)

From this and (1.4) we obtain that
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nl/zﬁng(a)
= n12U0, (a) —#,A,(a)q(a)

_ln—uz Zgni{l(c‘)i <F7'(a) +n Y] ,A,(a))
~I(&; <FY(a)} - #A,(a)q()

+272 Y gubu(@)I(X; = Yi1pu(a))
ieh,(a)

_ nl/zUng(a) _Wn&n(a)q(a) —Ry(a) + Ry(a) (say).

From (al), (a2), (G1) and the C-S inequality it readily follows that ||#;| =
0,(1). Now, apply (2. 3) to v,; = &,;; and other entities as in (2.13) and an
argument like the one used to prove (2.10), to conclude, in view of (2.24), that
sup{lR ()l @ < @ < 1 — a} = 0,(1). By (G2), sup{|[R(e)l: 0 < & < 1} = 0,(1).
Hence (2.25) follows. O

COROLLARY 2.1. Under the assumptions of Theorem 2.2, the ARQ and
ARRS processes are asymptotically independent. Moreover, for every k > 1
and for every 0 <a < - < a, the asymptotic distribution of

nl/ 2(Ung(azl) U, (@) is normal with the mean matrix 0 and the covari-
ance matrix B €B phm n g -3, 2% - WE ]2”]’ where B is a
k X k symmetric matrix with (i, J)th entry b;; = (o @), l<i<j<k

ProoF. Let s(a) =1I(g; > FYa) -1 - a), 1 <i<n; s(a) =
(sf@),...,s,(a)),0 <a<Ll Observe that the leading r.v.’s in the right-hand
sides of (2 21) and (2.26) are equal to —3;'n"Y%2's(a)/q(e) and n~ /[ g’
—#,3,%2/1s(a), respectively. By Corollary 3.1 of Hall and Heyde (1980), the
statlonarlty and ergodicity of the underlying processes, and by the
Cramér-Wold device, it follows that for every a € (0, 1), the asymptotic joint
distribution of A (@) and n'/ 2U,Lg(a) is (p + 1 + g)-dimensional normal
with the mean vector 0 and the covariance matrix

_ Dn Dy
Dy Dyl

where

Dy, = [a(l - a)/qZ(a)]2—1’

@y, = plimn" g - #,3 2|2 - 7,3, 2],

n

Dy, = [a(l - a)/q(e)] Plimn_lz;%'[gl _%2;%']'~

However, by definition, n™ 13, ]2”[.?’ v, 2 =39, -2, '¥%,=0,

for all n > 1, w.p.1. This proves the claim of 1ndependence for each a € (0 1).
The result is proved similarly for any finite-dimensional joint distribution. O.



AUTOREGRESSION QUANTILES 681

3. L-Estimators of p and regression rank-scores statistics. In this
section we derive the asymptotic distributions of two types of L-estimators
based on ARQ and ARRS processes. For a finite signed measure v with
compact support on (0, 1) an L-estimator of the first type of p is defined to be

(3.1) T = [ bl @) dv(a).

For the second type of L-estimator, assume that » is a probability mea-
sure, absolutely continuous with respect to the Lebesgue measure on (0, 1),
with density J of bounded variation on (0, 1) and vanishing outside compacts
in (0, 1). Then the second type of L-estimator is defined to be

A -1 4
(3.2) &= (29:2,) 29X,

where &, = diaglg,;, 1 < i < n}, with 7,; == — [1J(t) dd,,;(t) = [14,,(t) dJ(2),
1 <i < n. Observe that because [jJ(a)da=1= [}(1 — a)dJ(a) and be-
cause by (1.5),

i
we obtain

n_l(%j;%) =n7! ZYi—lYi,—l‘g:-u'
i

=n"'YY,_ Y/, fldni(a) dJ(a)
, 0

=n7 [TE Y ifdu(@) = (1= @)} dJ(a)¥is

+n7 ' Y)Y, Y,
i

(3.4)

=3, foralln>1,wp.l.

Observations (3.3) and (3.4) will be used repeatedly in the sequel.
Estimators in (3.1) and (3.2) are analogs of their regression counterparts as
defined at (4.15) and (4.21) in GJ. Various comments appearing in GJ with
regard to the connection between trimmed mean in the one-sample location
model and these estimators equally apply to the current setup.
The following theorem is an immediate consequence of Theorem 2.1.

THEOREM 3.1. Assume that (1.1), (al), (a2) and (F1) hold. Let v be a
finite signed measure with compact support in (0,1). Then

n'/*gy —o(v, F))

= -3;1n1/? fol{'rn(p(a),a)/q(a)}dv(a) +0,(1),
where m = v(0,1) and p(v, F) = pm + e, [({F~ () dv(a). Consequently,
(36) nV257 — p(v, F)} = N(0,37r2),

(35)
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where 72 = [§[H{[s At — st]/q(s)q(t)} dv(s) dv(2).

REMARK. 3.1. As in the one-sample and linear regression models, there
is an asymptotic equivalence between these L-estimators and the M-estima-
tors of p. More precisely, let ¢y be a nondecreasing bounded function from R
to R with a compact support in R and such that [y dF = 0. An M-estimator p
of p corresponding to the given ¢ is defined as a solution t of the equation

W,(t) =n"' VY, 9(X; - t'Y,_ ;) =0.
Observe that
W.(t) = w(=)nt LY, — [n7t LY, I(X; - tY,, <x) dy(x).

This and an application of (2.3) to the entities given at (2.13) and the
monotonicity of the indicator function readily yield, under (al), (a2) and (F'1),
that V L < o,

nl/z[Wn(p +n~1/2s) — Wn(p)] + Ensff(x) dy(x)| =o0,(1).

sup

llsll<L
Furthermore, an argument similar to the one used in proving (2.14) above
shows that [[n'/2(p — p)Il = O,(1). Consequently one obtains that if ¢ is as
above and if (al), (a2) and (F1) hold, then

-1
W25 - 0) = X7 [Fdu} wW(p) +0,(1).
This fact and simple algebra show that if ¢ is related to » by the relation
-1
([rav} " aw(r-i(a)) = {a(@)) " an(a),
then the corresponding M-estimator p satisfies the relation
R - p) = —27'n2 [(T,(p(), @) /a(@)}dv(a) + o,(1).
0

Put this observation together with (8.5) to readily obtain that

n”“’{ﬁ:‘— p — e [xf(x) dy(x) / / fdw}

-1
~ {5 frav) P TY () 4 01,
- .
The next theorem establishes the asymptotic equivalence of %, and 9.
THEOREM 3.2. Assume that (1.1), (al), (a2) and (F1) hold. Let v be a

probability measure with density J, with respect to the Lebesgue measure on
(0,1), such that J is of bounded variation and vanishes outside a compact
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subinterval in (0, 1). Then
BT aVZ - p(v,F)) = 0T~ p(v, F)) + 0,(1).

PrOOF. Many algebraic calculations are similar to those in GJ, so we shall
be brief whenever possible. Note that now m = 1. Let p=u(y,F) =
JAF~ (@) dv(a). Then from the definition (3.2) and relation (3.4),

3,0V - o(v, F)) =" VI (X, — 20 — 12e1)
(3.8) = n LY, 1Fe — ).

Next, define y2(¢) = [l a — I(t < F-2a)lq() " dv(a), € R. An inte-
gration by parts and the fact that [fa dJ(a) + 1 = [ladJd(a) + [jJ(a)da
= [ladd (@) + [((1 — a)dJ(a) = [§ dJ(a) = 0, shows that V ¢ € R,

w = [[la—1(t <F ()] I(@) dF ()

- jol[F-l(a)I(t <F'(a)) +(t = FY(a)) - ofF(a) - u}] dJ(a).

This and the continuity of F imply that w.p.1,V 1 <i <n,
W (e) = ['[F (@) (e < F (@)
+5,1(g; > F (@) — a{F'(a) — p}] dJ(a).

(3.9)

Also, note that
(310) —n¥ ['(T,(p(), @) /a(@)}dv(a) =n""* TV i (5).
We also need to define

g(a) =d,(a)e + (1- dni(a))F_l(a)’

ef(a) = I(ai > F_l(a))ai + I(ai sF‘l(a))F'l(a),

l1<i<n,0<a<l.
Then, w.p.1,forall 1 <i <n,0 < a < 1, we obtain

(@) — ef(a) = {Gy(a) —I(5 > F'(a)){e — F ' (a)}.
Moreover, from the definition of ., (3.3) and (3.9), we obtain

ni?’

n~1/2 ZYi—l{y;i(ei —p) - ‘p;(gi)}
=02 LY (8l @) — 6 ()
+{dn(@) = (1= )H{F (o) - p}] dJ(a)

=n 2 LY, fol{dni(a) —1(&,> F'(a)){{e; - F ()} dJ(a).

Now fixa 8> 0 and 0 < k < . Let A% = [sup{llA (a); §<a<1-8}<

(3.11)
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kland & =¢ — F '(a),1 <i <n, where A (a) is as in (2.24). Then, using
(2.27) and the fact that @,,(a) € [0,1] for all 1 <i < n and all « € (0,1), we
obtain that on A2,

I[é,”-(a) - I(ei > F'l(a))]{ei - F'l(a)}l
< an_l/ani_l"I(lfil < kn_l/ZHYi_1”),

forall 1 <i <n and all a € (0, 1). Hence, from (3.11), a conditioning argu-
ment and from the stationarity of {|[Y;_,[[}, we obtain

EI(A})

n=1/2 lZYi_l{%(e,- —w) - wﬁ(ei)}H

< ZkE{n'l lZIIY,-_IHZfOII(!si - F(a)l < n"I/ZIIY,-_III) dJ(a)}

_ 2kE{n‘1 TN, [ [F(F () + ¥ )
~F(F'(a) — n~V2Y,_,ll)] dJ(a)}

_ 2kE{I|Y0||2 [IFE ) + /1))

—F(F ' (a) - n'l/zllYOII)] dJ(a)}.

The continuity of F and the dominated convergence theorem imply that the
last expression converges to zero. Now combine this with (3.11), (3.10), 3.8
and (3.5) to conclude (3.7) in a routine fashion. O

Next, we turn to the autoregression rank-scores statistics (ARRS’s). To
define these let ¢ be a d.f. on (0, 1) and define

N 1 R . - 2
(3.12) b, = —[0 o(@)di, (@), 1<is<n; Vy=n"Yg.ub.
l

Observe that integration by parts yields that b,; = ¢(0) + [34,;(a) de(a).
Hence,

1A A 1
[ D@ de(@) =7 Tty =t S| 0(0) + [1(1~ @) de()
: i i
—_ _ _ 1 — _
=V,, — €, wherep:= fogo(a) da,g,=n"" Zgni.
13

Thus,
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= = 1 _ A
(313) Vo~ 8,2~ [ 77" Leafdu(a) — (1 - )} do(a).
i

Consequently, from (2.26) and Corollary 2.1 we readily obtain the following
theorem.

THEOREM 3.3. Under the assumptions of Theorem 2.2,

nt/2 (Vg - £.9)
.14
(3.14) = nl/? j;)l[Ung(a) - n"I?'ZLE;IUnx(a}] de(a) +0,(1).

Consequently, the asymptotic distribution of nl/ Z(V,,g — g,9) is q-variate
normal with the mean vector 0 and the covariance matrix

922/01[‘P(0‘) - 5]2 da.

REMARK 3.2. Note that the leading r.v.’s in the right-hand side of (3.14)
are equal to

n~1/? Z{gni - n_lg,%zr:lYi—l}[‘P(F(gi)) — Eo(F( 31))]'

Thus, unlike the linear regression setup, n'/*(V,, — %) is not asymptoti-
cally distribution-free (a.d.f) in general, However, if the components of g,,;
are stationary and ergodic, then by the ergodic theorem, the sequence of r.v.’s
D/ *n'/2(V,, — §9¢) is a.df, where @, = n"'2'[l - Z(2,2,) 212

4. Asymptotic uniform linearity of autoregression rank-scores
statistics. This section proves that the ARRS processes and statistics based
on residuals are a.u.l. These results are similar to those obtained by Jureckova
(1992a) in the linear regression setup. They are useful for testing subhy-
potheses in AR( p) models in the presence of a trend. Accordingly, let ¢ > 1
be a fixed integer and {w,;, 1 <i < n} be a triangular array of ¢ X 1 vectors.

We shall state the following theorem for the two cases.

Case 1. {w,;, 1 <i < n} are random vectors such that w,; is % _;-mea-
surable and independent of ¢;, 1 < i < n, and such that the following hold:
(Wrl) max n~ ' 2wl = 0,(1),

1<i<n
(Wr2) n~1EY,_ wll = 0,(1).

CaSE 2. {w,;, 1 <i < n} are nonrandom vectors such that the following
hold:
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(Wel) (W'W) " exists for all n > p,
(We2) max [, (Ww)" 2] = o(1),
where W is the n X ¢ matrix with rows w,;, 1 <i < n.
Now let, for t € R?,
(41) X,,=X,—-n'%w,t, 1<i<n,inCasel,
=X, — w,; A lt, 1<i<n,inCase?2

where A}! == (W'W)1/2 In either case, let X, = [X,;, ..., X,,.]'- Consider
an analog of the dual programming problem (1.5) based on the residuals X,
namely

maximize X', a, with respect to a,

(42) : n
subject to Z/a = (1 — a)2Z/1,,a € [0,1] .

Let {G,,(a,t)}, T, (p(a), a,t), pna,t), p,(a,t),..., denote the respective
analogs of {d,;(a)}, T,(p(a), @), p4(a), p,(a),.... The following lemma is

similar in spirit to Lemma 2.2 and Theorem 2.1. It gives the asymptotic
representations of the autoregression quantile processes obtained from (4.2).

LEMMA 4.1. Assume that (1.1), (al), (a2) and (F1) hold. Then the follow-
ing hold.
In either Case 1 or Case 2, forevery 0 <a <1/2,0<K<xwand 0 <L <

e8]
b

(a) sup “nl/z[Tn(p(a) +n71%s, a,t) — T,(p(a), a’t)]
a<a<l-a
lel<K, sl <L —3 sq(a)] = o(1),
() sup [n2[T.(p(@), a,t) = T(p(a), @)] —Z,tq(a)] = o,(1),
ltl <K

where Z, = n" %/ W in Case 1 and Z, = n" /%' WA_! in Case 2.
In addition, for every 0 <a <1/2 and 0 < L < o,

P2 (Pra( @, t) = p(a))

(c) “11ys _
= —{q(a)} n'’T,(p(a), @) +Z,t +0,(1),
(d) n1/2{ﬁmd(a’t) - ﬁn(a’t)} = 61.7(1)’
() n2(p,(a,t) — p(a)} = 0,(1),

where 0,(1) {5p(1)} is a sequence of processes that converge to zero {are
bounded}, uniformly over a < a <1 — a, IItll < K, in probability.
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Proor. (a) Follows from Lemma 2.1, by an argument similar to the one
used in the proof of (2.10) of Lemma 2.2. Note that Lemma 2.1 is general
enough to cover both cases mentioned above.

(b) First, consider Case 1. Apply (2.3) with ¢,; = n™!/2w,;t and the rest of
the entities as in (2.13), to obtain, in view of (F1), that V t € R,

sup [n/2T,(p(a), a,t) - n1/2T,(p(a), ) — n"'% Wig(a)| = 0,(1).
a<a<l-a
Note that these {£,,} satisfy all conditions of Lemma 2.1, for each t € R?. The
uniformity w.r.t. t is achieved as in the proof of Theorem 1.2 of Koul (1991).
The proof for the Case 2 is obtained exactly similarly by taking &,;, = w;; At
in (2.3).

The proof of (c) is similar to the proof of (2.11)(i) of Lemma 2.2. By an
argument similar to one used in (2.18), it follows that [|n!/2T(p(a,t), @, t)l|
= 5,(1) and hence (d) and (e) follow. O

The following theorem gives the main result of this section.

THEOREM 4.1. In addition to (1.1), (al) and (a2), suppose that (F1), (G1
and (G2) hold. Then, in either Case 1 or Case 2, with A (a,t) == n'/%(p,(a,t)
- p(a)),

n20, (a,t) = V20, (a) + n—lg/%nl/z{&n(a,t) - &n(a)}
+n 2g'Wrtq(a) +0,(1),

where W* .= n~1/2W in Case 1 and W* := WA_! in Case 2.

Moreover, if the score function ¢ is of bounded variation and constant
outside a compact subinterval of (0,1), then in either Case 1 or Case 2,
VO<L <o,

(4.3)

sup
k<L

(44) ~n gz n? [{A,(a,t) — A, (a)}de(a)

n1/2[Vng(t) - Vng]

~n"128' Wt [q(e) d(a) ” = 0,(1).

ProoF. We shall carry out details only for the Case 2 because they are
similar for Case 1. Now, akin to (2.27), we obtain that w.p.1, V a € (0, 1),
teRy,1<i<n, '

Gpi(a,t) = I(X,; > Y, 1p.(a,t)) + Qi o, t)I( X5 = Y, 1p.(a,t))
=1-I(g; < F(a) + n"2Y]_,A (a,t) + w,,AJ't)
+ 8, (o, t) [( Xy = Y/ 1pa(a, ).
Hence, w.p.1,Va €(0,1), t € RY,
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n2[0, (a,t) - U, (a)]
= —n 12 L, {I(s; < F'(a) + nV2Y]_ 1A, (a,t) + w,,AJt)
i

—I(8i < F_l(a) + n_l/ZYL{—lA"(a))}
+pl/2 Zgnifini(a,t)l(xﬂit = Yz’l—lﬁn(a’t))
i

—n1/2 Zgniéni(a)I(Xnit =Y,_1p.(@))
12

= —Ry(a,t) + Ry(a,t) — Ry(a), say.

By (G2), Ry(a,t) = 5,(1) and R,(«) = 0,(1). See also the proof of (2.25). To
handle R,(a,t), let

T(a,s,t) =n"1/2 Zgni{l(e‘i <F(a)+n12Y_;s + w,’LiA,Tvlt)};
i

s,t € RP7,
Write T(a) for T(«, 0, 0). Apply (2.3) to £,; = n~1/2Y]_;s + w,;A;'t and the
rest of the entities as in (2.13) to conclude that V s,t € R?,
sup{|T(a,s,t) — T(a) — n~V22g,,(n"2Y/_;s + w,, A t)g(a)|;
0<ax<1)=o0,1).

This and an argument similar to the one used in the proof of (2.10) yield that
V0<a=<1/2,0<K,L <,

sup|T(a,s,t) — T(a)
_n_l/zzigni(n_l/2Yi,— st W;u'A;vlt)‘I( a) " = Op(l),

where the supremum is over a < @ <1 — a, [sll < L, |t|| < K. Similarly, we
also obtain
(46)  sup |T(a,8,0) ~T(a) - n'5g, ¥ sq(a)| = 0,(1).

a<a<l-a
llsll<L

Now note that R,(a,t) = T(«, &n(a, t),t) — T(a, An(a), 0). Therefore,
from (4.5), (4.6), (2.11)(3) of Lemma 2.2 and Lemma 4.1(e), it readily follows
that

Ry(t, @) =n 'g'Zn?(A (a,t) — A, (a)} + n" /28" WA 'tq(a) + 5,(1).

Hence (4.3) follows.
_The assertion about (4.4) follows from (4.3) by using integration by parts as
in the proof of Theorem 3.2. O

(4.5)
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